
http://www.misterpete.co.uk © Copyright 2010 misterpete

Page 1 of 6

SqlMyTunes for iTunes Instructions
A Solution for Making the Most of your Media Database

SqlMyTunes for iTunes is an application which exports your media library to a 
chosen SQL server and allows you to write SELECT statements that create playlists
as well as perform updates on your iTunes library. Currently, SqlMyTunes supports 
Microsoft SQL Server and SQL Express.

Installation

Just unzip the contents of the file wherever you like and run it!

Quick Startup

Install it and explore the options! I recommend reading the instructions at least a 
little, but hovering the mouse pointer over an option will give you a quick run-down of 
that option. By default on the first run nothing is selected, and SqlMyTunes will do 
nothing until you press the Start button. The default options allow you to export your 
library and experiment with a few SQL queries.

Using SqlMyTunes

Selecting a source

Select a source you wish to configure for export. “Library” is your main library, your 
iPods/iPhone will also be available here if you plug them in. Checking Export this 
source will include the currently selected source in the export.

Setting SQL configuration

Click the SQL button to set SQL configuration. Each source has a separate SQL 
configuration. It is recommended for simplicity that you create a different database 
for each source, though you may export all sources to the same database if you wish 
– this, however, requires some more advanced setting-up in the Actions list. For 
more details see the section headed Multiple Sources into a Single Database.

Selecting Fields

Select the fields you wish to include in the export. The more fields you select, the 
longer the export will take.

Selecting Playlists

Check the playlists you wish to export to SQL. The more playlists you export, the 
longer the export will take. Checking Export all source entries will export all entries, 
regardless of whether an entry is in the checked playlists. Unchecking Export all 
library entries will only export files in the checked playlists.



http://www.misterpete.co.uk © Copyright 2010 misterpete

Page 2 of 6

Actions

Actions are stored procedures that you write yourself in SQL, inside the database 
you have attributed to the library. These are executed according to their type;

Setup
Expected input parameters: 

 None
Expected returns: 

 Nothing

A stored procedure of this type performs an initial setting up of the database, 
creation of Tables, etc and is called automatically by SqlMyTunes on clicking Start. 
There is a default stored procedure created automatically on clicking Start named 
DefaultSetup. You may choose to execute this or write your own and execute that 
instead. You may specify as many or as few stored procedures of this type as you 
like.

Insert file
Expected input parameters:

 @sourceName NVARCHAR(255)
The name of the current source

 @fileID NVARCHAR(16)
The iTunes File ID value

 Dependent on fields checked for export
The value of each checked field

Expected returns: 
 Nothing

A stored procedure of this type inserts a library file entry into the database tables and 
is called automatically by SqlMyTunes when iterating through your iTunes library. 
There is a default stored procedure created automatically on clicking Start named 
DefaultInsertFile. You may choose to execute this or write your own and execute 
that instead. You may specify as many or as few stored procedures of this type as 
you like.

Insert playlist
Expected input parameters:

 @sourceName NVARCHAR(255)
The name of the current source

 @playlistID NVARCHAR(16)
The iTunes Playlist ID

 @name NVARCHAR(max)
The iTunes Playlist ID

 @path NVARCHAR(max)
The path of the playlist

 @smart BIT
Whether the playlist is a smart playlist



http://www.misterpete.co.uk © Copyright 2010 misterpete

Page 3 of 6

 @shared BIT
Whether the playlist is shared

 @duration INT
The duration of the playlist

 @kind NVARCHAR(255),
The playlist kind

 @specialKind NVARCHAR(255),
The playlist “special” kind

 @time NVARCHAR(255),
The total time of the playlist

 @visible BIT,
Whether the playlist is visible

 @size FLOAT(53)@name NVARCHAR(max)
The size of the playlist

Returns: 
 Nothing

A stored procedure of this type inserts a library playlist entry into the database tables
and is called automatically by SqlMyTunes when iterating through your iTunes
library. There is a default stored procedure created automatically on clicking Start
named DefaultInsertPlaylist. You may choose to execute this or write your own and 
execute that instead. You may specify as many or as few stored procedures of this 
type as you like.

Insert playlist file
Expected parameters: 

 @sourceName NVARCHAR(255)
The name of the current library

 @playlistID NVARCHAR(16)
The iTunes Playlist ID

 @fileID NVARCHAR(16)
The iTunes File ID

 @sequence INT
The file’s numbered sequence in the playlist

Returns: 
Nothing

A stored procedure of this type inserts a library playlist file entry into the database 
tables and is called automatically by SqlMyTunes when iterating through your iTunes
library. There is a default stored procedure created automatically on clicking Start
named DefaultInsertPlaylistFile. You may choose to execute this or write your own 
and execute that instead. You may specify as many or as few stored procedures of 
this type as you like.

Finalize
Expected input parameters: 

 None
Expected returns: 

 Nothing



http://www.misterpete.co.uk © Copyright 2010 misterpete

Page 4 of 6

A stored procedure of this type performs a finalizing of the database and is called 
automatically by SqlMyTunes when it has finished iterating through your iTunes
library. There is a default stored procedure created automatically during export 
named DefaultFinalize. You may choose to execute this or write your own and 
execute that instead. You may specify as many or as few stored procedures of this 
type as you like.

Updates
Expected parameters: 

 @sourceName NVARCHAR(255)
The name of the current source

Returns: 
One or many query datasets, each containing the following columns;

 FileID NVARCHAR(16)
The iTunes File ID of the file to be updated

 Other field name(s)
Each of these field names will be updated with its associated value, as they are displayed in 
the Fields List in the main screen

A stored procedure of this type performs an update of your iTunes library according 
to the values in the returned data set, and is executed once all selected sources 
have been exported successfully. For each row in the data set the file in your 
iTunes library with the iTunes File ID is retrieved and then updated with any further 
column/value pairs passed in the dataset. You may specify as many or as few stored 
procedures of this type as you like. Obviously you must take care to only include 
field names in the returned data set that you wish to be updated in iTunes to 
avoid altering your iTunes library spuriously or unnecessarily. The following iTunes 
fields are available for editing – if others are specified they are ignored;

Album
Album Artist
Album Rating
Artist
Artwork1,2,4

Bookmark Time
BPM
Category
Comment
Compilation
Composer
Description
Disc Count
Disc Number
Enabled
Episode ID
Episode Number
EQ
Exclude From Shuffle
Finish
Genre
Grouping
Location

3

Long Description

Lyrics2

Name
Part Of Gapless Album
Played Count
Played Date
Rating
Remember Bookmark
Season Number
Show
Skipped Count
Skipped Date
Sort Album
Sort Album Artist
Sort Artist
Sort Composer
Sort Name
Sort Show
Start
Track Count
Track Number
Unplayed
Video Kind
Volume Adjustment
Year

1
If Artwork is specified in an update, it is assumed the string supplied is a valid filename you wish to apply as artwork to the file

2
These fields can be slow to retrieve, and will therefore slow the export process down

3
If Location is specified in an update, the file is moved to that location and iTunes is pointed to that location. Any empty folders 

left over as a result of the move are deleted.
4
If column Move Artwork is also specified, BIT value 1, the artwork is moved to the same folder as the file that is being set



http://www.misterpete.co.uk © Copyright 2010 misterpete

Page 5 of 6

Or to delete a file from your library;

 FileID NVARCHAR(16)
The iTunes File ID of the file to be deleted

 Delete BIT
Should be 1 if the file is to be deleted from the library

Playlists
Expected parameters: 

 @sourceName NVARCHAR(255)
The name of the current source

Returns: 
One or many query datasets, each containing the following columns;

To create/maintain playlists and playlist folders;

 PlaylistPath NVARCHAR(max)
The playlist path, use backslash to separate playlist groups, much like a Windows folder 
structure e.g. This\Is\A\Test will create four playlist groups; This, Is, A, Test. If you wish a 
playlist or playlist folder name to have a backslash in it, use two backslashes to designate this 
i.e. “\\”

 PlaylistName NVARCHAR(max)
The playlist name

 FileKey INT
The iTunes File Key of the file to add to the playlist

 OPTIONAL: Shuffle BIT
Should be 1 if the playlist is to be shuffled

 OPTIONAL: Rebuild BIT
Should be 1 if the playlist is to be rebuilt, i.e. all contents cleared and rebuilt

Or to simply delete a playlist, smart playlist or playlist folder;

 PlaylistID NVARCHAR(16)
The playlist’s ID as held in the Playlists table

 Delete BIT
Should be 1 if the playlist or smart playlist is to be deleted

Or to simply shuffle a playlist;

 PlaylistPath NVARCHAR(max)
The playlist path, which is a similar to a Windows folder structure. If a playlist, smart playlist or 
playlist folder name has a backslash in it, use two backslashes to designate this i.e. “\\”

 PlaylistName NVARCHAR(max)
The playlist name

 Shuffle BIT
Should be 1 if the playlist is to be shuffled

A stored procedure of this type creates (or edits) a playlist with the specified files in 
the selected iTunes source, and is executed once all selected source entries have 
been exported successfully and any Updates to source actions have finished. 
Playlists are initially cleared before they are added to if Rebuild is specified as true. 
You may specify as many or as few stored procedures of this type as you like.



http://www.misterpete.co.uk © Copyright 2010 misterpete

Page 6 of 6

Multiple Sources into a Single Database

It is recommended you use a single database for a single source for simplicity. 
However, if you want to put all your sources into a single database you may do so. 
There are two ways to do this;

 Remove the default actions and write your own Setup database, Insert and 
Finalize database stored procedures – note that removing these actions 
means they will still be created but not executed.

Or a simpler way;

 Remove the default Setup database actions from all but the first library 
settings (using the order they appear in the dropdown list)

 You must have exactly the same field selections and settings in each of your 
source settings so the default Insert actions will execute successfully

 Remove the default Finalize database action from all of your source settings
 Make use of the passed @sourceName argument in all of your Updates to 

source and Playlist management actions

Command Line Arguments

The following command line arguments can be used:

 /StartExport - starts export immediately on startup
 /ExitAfterExport - exits once export is complete
 /RunMinimized - runs minimized
 /ExecAfterExport – executes the program and arguments specified in the 

.settings file after export
 /Settings - use an alternative .settings file, if not specified uses the default 

SqlMyTunesiTunes.

Argument usage:

SqlMyTunesMC.exe [/StartExport] [/ExitAfterExport] [/RunMinimized] 
[/ExecAfterExport] [/Settings:"xxx"]

Where xxx is the name of the settings file.

And Finally...

SqlMyTunes for iTunes works with iTunes 8 & 9.


