
PySCeS User Guide
Release 0.7.0

Brett Olivier, Johann Rohwer, Jannie Hofmeyr

December 12, 2008

CONTENTS

I Introduction 1

II Getting started 5

1 Loading PySCeS 7

2 Creating a PySCeS model object 9
2.1 Advanced . 9

3 Creating a PySCeS model object 11

4 Basic model attributes 13
4.1 Advanced . 14

III Modelling 15

5 Structural Analysis 17
5.1 Structural Analysis - new objects . 17
5.2 Structural Analysis - legacy . 18

6 Time simulation 19
6.1 Simulation results . 20
6.2 Advanced . 21

7 Steady-state analysis 23
7.1 New: mod.data_sstate . 24
7.2 Stability . 24

8 Metabolic Control Analysis 25
8.1 Elasticities . 25
8.2 Control coefficients . 25
8.3 Response coefficients . 26

i

IV Parameter scanning 27

9 Single dimension parameter scans 29

10 Two dimension parameter scans 31

11 Multi-dimension parameter scans 33

V Plotting 35

VI Displaying data 41

12 Displaying/saving model attributes 43

13 Writing formatted arrays 45
13.1 Write_array() . 45
13.2 Write_array_latex() . 46

VII Installing and configuring 47

14 Configuring 51

VIII References 53

IX The PySCeS Model Description Language 57

15 Defining a PySCeS model 61
15.1 A kinetic model . 61
15.2 Model keywords . 61
15.3 Global unit definition . 62
15.4 Symbol names and comments . 62
15.5 Compartment definition . 63
15.6 Function definitions . 63
15.7 Defining fixed species . 64
15.8 Reaction stoichiometry and rate equations . 64
15.9 Species and parameter initialisation . 66

16 Advanced model construction 69
16.1 Assignment rules . 69
16.2 Rate rules . 69
16.3 Events . 70
16.4 Piecewise . 70

17 Example PySCeS input files 73
17.1 Basic model definition . 73

ii

17.2 Advanced example . 74

X PySCeS Module documentation 77

18 PyscesPlot2 79

19 PyscesModel 89

20 PyscesScan 107

21 PyscesInterfaces 111

22 PyscesStoich 113

23 PyscesLink 119

XI Indices and tables 121

iii

iv

Part I

Introduction

1

PySCeS User Guide, Release 0.7.0

PySCeS: the Python Simulator for Cellular Systems is an extendable toolkit for
the analysis and investigation of cellular systems. It is available for download at
http://pysces.sourceforge.net

Welcome! This users guide will get you started with the basics of modelling cellular systems
with PySCeS. It is meant to be used together with the input file guide. If you already have
PySCeS installed continue straight on if not, Installing and configuring contains instructions
on building and installing PySCeS.

PySCeS is distributed under the PySCeS (BSD style) license and is made freely
available as Open Source software. See LICENCE.txt for details.

PySCeS continued development depends, to a large degree on support and feedback from Sys-
tems Biology community, if you use PySCeS in your work please cite it using the following
reference:

Brett G. Olivier, Johann M. Rohwer and Jan-Hendrik S. Hofmeyr Modelling cellu-
lar systems with PySCeS, Bioinformatics, 21, 560-561, DOI 10.1093/bioinformat-
ics/bti046.

We hope that you will enjoy using our software. If, however, you find any unexpected features
(i.e. bugs) or have any suggestions on how we can improve PySCeS please let us know.

The PySCeS development team.

3

http://pysces.sourceforge.net

PySCeS User Guide, Release 0.7.0

4

Part II

Getting started

5

CHAPTER

ONE

Loading PySCeS

In this section we assume you have PySCeS installed and configured (see Installing and config-
uring for details) and a correctly formatted PySCeS input file that describes a cellular system in
terms of its reactions, species and parameters. For a detailed description of the PySCeS Model
Description Language see the PySCeS Input File Guide. Note that on all platforms PySCeS
model files have the extension .psc.

To begin modelling we need to start up an interactive Python shell (we suggest iPython) and
load PySCeS with import pysces:

Python 2.5.2 (r252:60911, Feb 21 2008, 13:11:45) [MSC v.1310 32 bit (Intel)]
Type "copyright", "credits" or "license" for more information.

>>> import pysces

Matplotlib interface loaded (pysces.plt.m)
GnuPlot interface loaded (pysces.plt.g)
Continuation routines available
NLEQ2 routines available
You are using NumPy (1.2.1) with SciPy (0.7.0b1)
PySundials available

PySCeS environment

pysces.model_dir = C:\mypysces\pscmodels
pysces.output_dir = C:\mypysces

* Welcome to PySCeS (0.7.0) - Python Simulator for Cellular Systems *
* http://pysces.sourceforge.net *
* Somewhere In Time *
* Copyright(C) B.G. Olivier, J.M. Rohwer, J.-H.S. Hofmeyr, 2004-2009 *
* Triple-J Group for Molecular Cell Physiology *
* Stellenbosch University, South Africa *
* PySCeS is distributed under the PySCeS (BSD style) licence, see *
* LICENCE.txt (supplied with this release) for details *

PySCeS is now ready to use. If you would like to test your installation try running the test suite:

7

http://ipython.scipy.org

PySCeS User Guide, Release 0.7.0

pysces.test()

this also copies the test models supplied with PySCeS into your model directory.

8 Chapter 1. Loading PySCeS

CHAPTER

TWO

Creating a PySCeS model object

This guide uses the test models supplied with PySCeS as examples, if you would
like to use them and have not already done so run the PySCeS tests (described in
the previous section).

Before modelling, a PySCeS model object needs to be instantiated. As a convention we use
mod as the instantiated model instance. The following code creates such an instance using the
test input file, pysces_test_linear1.psc:

>>> mod = pysces.model(’pysces_test_linear1’)

Assuming extension is .psc
Using model directory: C:\mypysces\pscmodels
C:\mypysces\pscmodels\pysces_test_linear1.psc loading

When instantiating a new model object, PySCeS input files are assumed to have a .psc ex-
tension. If the specified input file does not exist in the input file directory (e.g. misspelled
filename) a list of existing input files is shown and the user is given an opportunity to enter the
correct filename.

2.1 Advanced

The model constructor can also be used to specify a model directory other than the default
model path:

mod = pysces.model(’pysces_test_linear1’, dir=’c:\\Pysces\\psc’)

alternatively input files can also be loaded from a string:

>>> F = file(’c:\\Pysces\\psc\\pysces_test_linear1.psc’, ’r’)
>>> pscS = F.read()
>>> F.close()
>>> mod = pysces.model(’test_lin1s’, loader=’string’, fString=pscS)

Assuming extension is .psc
Using model directory: C:\mypysces\pscmodels

9

PySCeS User Guide, Release 0.7.0

Using file: test_lin1s.psc
C:\mypysces\pscmodels\orca\test_lin1s.psc loading

note that now the input file is saved and loaded as model_dir\orca\test_lin1s.psc.

10 Chapter 2. Creating a PySCeS model object

CHAPTER

THREE

Creating a PySCeS model object

Once a new model object has been created it needs to be loaded. During the load process the in-
put file is parsed, the model description is translated into Python data structures and a stoichio-
metric structural analysis is performed. All this is done by simply calling mod.doLoad():

>>> mod.doLoad()

Parsing file: C:\mypysces\pscmodels\pysces_test_linear1.psc
Calculating L matrix done.
Calculating K matrix done.

Once loaded, all the model elements contained in the input file are made available as model
(mod) attributes so that in the input file where you might find initialisations such as s1 = 1.0
and k1 = 10.0 these are now available as mod.s1 and mod.k1. For variable species and
compartments an additional attribute is created which contains the elements initial (as opposed
to current) value. These are constructed as <name>*_init*:

>>> mod.s1
1.0
>>> mod.s1_init
1.0
>>> mod.k1
10.0

Any errors generated during the loading process (almost always) occur as a result of syntax
errors in the input file. These error messages may not be intuitive for example, ‘list out of
range’ exception usually indicates a missing multiplication operator “3(” instead of “3*(” or
unbalanced parentheses.

11

PySCeS User Guide, Release 0.7.0

12 Chapter 3. Creating a PySCeS model object

CHAPTER

FOUR

Basic model attributes

Some basic model properties are accessible once the model is loaded:

• mod.ModelFile, the name of the model file that was used.

• mod.ModelDir, the input file directory.

• mod.ModelOutput, the PySCeS work/output directory.

• Parameters are available as attributes directly as specified in the input file e.g. k1 is
mod.k1.

• External (fixed) species are made available in the same way.

• Internal (variable) species are treated in a similar way except that an additional attribute
(parameter) is created to hold the species initial value (as specified in the input file), e.g.,
from s1, mod.s1 and mod.s1_init are instantiated as model object attributes.

• Compartments are also are assigned an initial value.

• Rate equations are translated into objects that return their current value when called
mod.R1().

All basic model attributes that are described here can be changed interactively. However, if the
model rate equations need to be changed, this should be done in the input file after which the
model should be re-instantiated and reloaded.

Groups of model properties (either tuples, lists or dictionaries)

• mod.species the model’s variable species names (ordered relative to the stoichiomet-
ric matrix rows).

• mod.reactions reaction names and ordered to the stoichiometric matrices columns.

• mod.parameters all parameters (including fixed species)

• mod.fixed_species only the fixed species names

• mod.__rate_rules__ a list of rate rules defined in the model

13

PySCeS User Guide, Release 0.7.0

4.1 Advanced

These attributes are used by PySCeS to store additional information about the basic model
components, generally they are supplied by the parser and should almost never be changed
directly.

• mod.__events__ a list of event object references which can be interrogated for event
information. For example if you want a list of event names try [ev.name for ev
in mod.__events__]

• mod.__rules__ a dictionary containing information about all rules defined for this
model

• mod.__sDict__ a dictionary of species information

• mod.__compartments__ a dictionary containing compartment information

14 Chapter 4. Basic model attributes

Part III

Modelling

15

CHAPTER

FIVE

Structural Analysis

As part of the model loading procedure, doLoad() automatically performs a stoichiometric
(structural) analysis of the model. The structural properties of the model are captured in sto-
ichiometric matrix (N), kernel matrix (K) and link matrix (L). These matrices can either be
displayed with a mod.showX() method or used in further calculations as numeric arrays.
The formal definition of these matrices, as they are used in PySCeS, is described in 1.

The structural properties of a model are available in two forms, as new-style objects which
have all the array properties neatly encapsulated or as legacy attributes. Although both exist it
is highly recommended to use the new objects.

5.1 Structural Analysis - new objects

For alternate descriptions of these model properties see the next (legacy) section.

• mod.Nmatrix view with mod.showN()

• mod.Nrmatrix view with mod.showNr()

• mod.Lmatrix view with mod.showK()

• mod.L0matrix

• mod.Kmatrix view with mod.showL()

• mod.K0matrix

• mod.showConserved() displays any moiety conserved relationships (if present).

• mod.showFluxRelationships() shows the relationships between dependent and
independent fluxes at steady state.

All new structural objects have an array attribute which holds the actual NumPy array data as
well as ridx and cidx which hold the row and column indexes (relative to the stoichiometric
matrix) as well as the following methods:

• .getLabels() return the matrix labels as tuple([rows], [columns])

• .getColsByName() extract column(s) with label

17

PySCeS User Guide, Release 0.7.0

• .getRowsByName() extract row(s) with label

• .getIndexes() return the matrix indices (relative to the Stoichiometric matrix) as
tuple((rows), (columns))

• .getColsByIdx() extract column(s) referenced by index

• .getRowsByIdx() extract row(s) referenced by index

5.2 Structural Analysis - legacy

• mod.nmatrix, N: displayed with mod.showN()

• mod.kmatrix, K: displayed with mod.showK()

• mod.lmatrix, L: displayed with mod.showL() (an identity matrix means L does
not exist i.e. no linear dependence).

• If there are linear dependencies in the differential equations then the reduced stoi-
chiometric matrix of linearly independent, differential equations Nr is available as
mod.nrmatrix and is displayed with mod.showNr(). If there is no dependence
Nr = N.

• In the case where there is linear dependence the moiety conservation sums can be dis-
played by using mod.showConserved(). The conservation totals are calculated
from the initial values of the variable species as defined in the model file.

• When the K and L matrices exist, their dependent parts (K0, L0) are available as
mod.kzeromatrix and mod.lzeromatrix.

• mod.showConserved() prints any moiety conserved relationships (if present).

• mod.showFluxRelationships() shows the relationships between dependent and
independent fluxes at steady state.

If the mod.showX() methods are used the row and column titles of the various matrices are
displayed with the matrix. Additionally, all of the mod.showX() methods accept an open
file object as an argument. If this file argument is present the method’s results are output to a
file and not printed to the screen. Alternatively, the order of each matrix dimension, relative
to the stoichiometric matrix, is available as either a row or column array (e.g., mod.krow,
mod.lrow‘‘, mod.kzerocol).

18 Chapter 5. Structural Analysis

CHAPTER

SIX

Time simulation

PySCeS has interfaces to two ODE solvers either LSODA from ODEPACK (part of SciPy) or
SUNDIALS CVODE (using PySundials). If PySundials is installed it will automatically select
CVODE if compartments, events or rate rules are detected during model load as LSODA is not
able capable of event handling or changing compartment sizes. If, however, you would like to
select the solver manually this is also possible:

mod.mode_integrator = ’LSODA’
mod.mode_integrator = ’CVODE’

There are three ways of running a simulation:

1. Defining the start, end time and number of points and using the mod.Simulate()
method directly:

mod.sim_start = 0.0
mod.sim_end = 20
mod.sim_points = 50
mod.Simulate()

2. Using the mod.doSim() method where only the end time and points need to be speci-
fied. For example running a 20 point simulation from time 0 to 10:

>>> mod.doSim(end=10.0, points=20.0)

3. Or using mod.doSimPlot() which runs the simulation and displays the results. In
addition to doSim’s arguments the following arguments may be used:

mod.doSimPlot(end=10.0, points=21, plot=’species’, fmt=’lines’, filename=None)

where:

• plot can be one of species, rates or all.

• fmt plot format, UPI backend dependent (default=’‘) or the CommonStyle ‘lines’ or
‘points’.

• filename if not None (default) then the plot is exported as filename.png

19

PySCeS User Guide, Release 0.7.0

Another way of quickly visualising the results of a simulation is to use the mod.SimPlot
method:

mod.SimPlot(plot=’species’, filename=None, title=None, log=None, format=’lines’)

where:

• plot: output to plot (default=’species’)

• ‘all’ rates and species

• ‘species’ species

• ‘rates’ reaction rates

• [’S1’, ‘R1’,] a list of model attributes (species, rates)

• filename (optional) if not None file is exported to filename (default=None)

• title the plot title (default=None)

• log use log axis for ‘x’, ‘y’, ‘xy’ (default=None)

• fmt plot format, UPI backend dependent (default=’‘) or the CommonStyle ‘lines’ or
‘points’.

Called without arguments, mod.SimPlot() plots all the species concentrations against time.

6.1 Simulation results

In PySCeS 0.7.x the simulation results have been consolidated into a new mod.data_sim
object. By default species concentrations/amounts, reaction rates and rate rules are automat-
ically added to the data_sim object. If extra information (parameters, compartments, assign-
ment rules) is required this can easily be added using mod.CVODE_extra_output, a list
containing any model attribute which is not added by default.

The mod.data_sim object which has many methods for extracting simulation data includ-
ing:

• data_sim.getTime() return a vector of time points

• data_sim.getSpecies() returns array([[time], [species]])

• data_sim.getRates() returns array([[time], [rates]])

• data_sim.getRules() returns array([[time], [rate rules]])

• data_sim.getXData returns array([[time], [CVODE_extra_output]])

• data_sim.getSimData(*args) return an array consisting of time plus any avail-
able data series:

20 Chapter 6. Time simulation

PySCeS User Guide, Release 0.7.0

mod.data_sim.getSimdata(’s1’, ’R1’, ’Rule1’, ’xData2’)

• data_sim.getAllSimData(*args) return an array of all simulation data

• data_sim.getDataAtTime(time) return the results of the simulation at time.

• data_sim.getDataInTimeInterval(time, bound) return the simulation
data in the interval [time-bound, time+bound], if bound is not specified it is assumed
to be the step size.

All the data_sim.get* methods by default only return a NumPy array containing the requested
data, however if the argument lbls is set to True then both the array as well as a list of column
labels is returned:

Sdata, Slabels = mod.data_sim.getSpecies(lbls=True)

This is very useful when using the PySCeS plotting interface (described later in this guide) to
plot simulation results.

6.2 Advanced

PySCeS sets integrator options that attempt to configure the integration algorithms to suit a
particular model. However, almost every integrator option can be overridden by the user. Sim-
ulator settings are stored in PySCeS mod.__settings__ dictionary. For LSODA some
useful keys are (mod.__settings__[key]):

’lsoda_atol’: 1.0e-012
’lsoda_rtol’: 1.0e-007
’lsoda_mxordn’: 12
’lsoda_mxords’: 5
’lsoda_mxstep’: 0

atol and rtol are the absolute and relative tolerances, while mxstep=0 means that LSODA
chooses the number of steps (up to 500). If this is still not enough, PySCeS automatically
increases the number of steps necessary to find a solution.

Additionally, CVODE allows per step step-size optimisation and automatic tolerance scaling:

’cvode_abstol’: 1.0e-15
’cvode_abstol_factor’: 1.0e-8
’cvode_auto_tol_adjust’: True
’cvode_mxstep’: 1000
’cvode_reltol’: 1.0e-9
’cvode_stats’: False

cvode_abstol is considered to be the minimum absolute tolerance, PySCeS first uses the initial
species values multiplied by cvode_abstol_factor (so that [s]*[factor] >= [abstol]) to calculate

6.2. Advanced 21

PySCeS User Guide, Release 0.7.0

its absolute tolerance. Once the simulation is underway PySCeS periodically readjusts the
absolute tolerance on a per species basis based on the current species value.

If CVODE cannot find a solution in the given number of steps it automatically increases
cvode_mxstep and tries again, however, it also keeps track of the number of times that this
adjustment is required and if a specific threshold is passed it will begin to increase cvode_reltol
by 1.0e3 (to a maximal value of 1.0e-3). Finally, if cvode_stats is enabled CVODE will display
a report of its internal parameters after the simulation is complete.

22 Chapter 6. Time simulation

CHAPTER

SEVEN

Steady-state analysis

PySCeS solves for a steady state using either the non-linear solvers HYBRD, NLEQ2 or for-
ward integration. By default PySCeS has solver fallback enabled which means that if a solver
fails or returns an invalid result (i.e., contains negative concentrations) it switches to the next
available solver. The solver chain is as follows:

1. HYBRD (can handle ‘rough’ initial conditions, converges quickly).

2. NLEQ2 (highly optimised for extremely non-linear systems, more sensitive to bad con-
ditioning and slightly slower convergence).

3. FINTSLV (finds a result when the change in max([species]) is less than 0.1%; slow con-
vergence).

Solver fallback can be disabled by setting mod.mode_solver_fallback = 0. Each of
the three solvers is highly configurable and although the default settings should work for most
models configurable options can be set in by way of the mod.__settings__ dictionary.

To calculate a steady state use the mod.doState() method:

>>> mod.doState()
(hybrd) The solution converged.

The results of a steady-state evaluation are stored as arrays as well as individual attributes and
can be easily displayed using the mod.showState() method:

• mod.showState() displays the current steady-state values of both the species and
fluxes.

• For each reaction (e.g. R2) a new attribute mod.J_R2, which represents its steady-state
value, is created.

• Similarly, each species (e.g. mod.s2) has a steady-state attribute mod.s2_ss

• mod.state_species in mod.species order.

• mod.state_flux in mod.reactions order.

There are various ways of initialising the steady-state solvers although, in general, the default
values can be used.

23

http://www.netlib.org
http://www.zib.de/SciSoft/ANT/nleq2.en.html

PySCeS User Guide, Release 0.7.0

• mod.mode_state_init initialises the solver using either the initial values (0), a
value close to zero (1). The default behaviour is to use the initial values.

7.1 New: mod.data_sstate

New to PySCeS 0.7 is the mod.data_sstate object that by default stores steady-state
data (species, fluxes, rate rules) in a manner similar to mod.data_sim. One notable excep-
tion is that the current steady-state values are also made available as attributes to this ob-
ject (e.g. species S1’s steady-state value is stored as mod.data_sstate.S1). Using the
mod.STATE_extra_output list it is possible to store user defined data in the data_sstate
object. Steady-state data can be easily retrieved using the by now familiar .get* methods.

• data_sstate.getSpecies() returns a species array

• data_sstate.getFluxes() returns a flux array

• data_sstate.getRules() returns a rate rule array

• data_sstate.getXData() returns an array defined in STATE_extra_output

• data_sstate.getStateData(*args) return user defined array of data
(‘S1’,’R2’)

• data_sstate.getAllStateData() return all state data as an array

All these methods also accept the lbls=True argument in which case they return both array data
and a label list:

ssdat, sslbl = mod.data_sstate.getSpecies(lbls=True)

7.2 Stability

PySCeS can analyse the stability of systems that can attain a steady state. It does this by
calculating the Eigen values of the Jacobian matrix for the reduced system of independent
ODE’s:

- ‘‘mod.doEigen()‘‘ calculates a steady-state and performs the stability analysis
- ‘‘mod.showEigen‘‘ prints out a stability report
- ‘‘mod.doEigenShow()‘‘ combines both of the above

The Eigen values are also available as attributes mod.lambda1 etc.
By default the Eigen values are stored as mod.eigen_values but if
mod.__settings__[’mode_eigen_output’] = 1 is set both the Eigen values
as well as the left and right Eigen vectors are stored as mod.eigen_vecleft and
mod.eigen_vecright respectively. Please note that there is currently no guarantee that
the order of the Eigen value array corresponds to the species order.

24 Chapter 7. Steady-state analysis

CHAPTER

EIGHT

Metabolic Control Analysis

For practical purposes the following methods are collected into a set of meta-routines that all
first solve for a steady state and then the required Metabolic Control Analysis (MCA) 2, 3

evaluation methods.

8.1 Elasticities

The elasticities towards both the variable species and parameters can be calculated using
mod.doElas() which generates as output:

• Scaled elasticities generated as mod.ecRate_Species, e.g. mod.ecR4_s2

• mod.showEvar() displays the non-zero elasticities calculated with respect to the vari-
able species.

• mod.showEpar() displays the non-zero parameter elasticities.

As a prototype we also store the elasticities in an object, mod.ec.* this may become the
default way of accessing elasticity data in future releases but has not been stabilised yet.

8.2 Control coefficients

Both control coefficients and elasticities can be calculated using a single method,
mod.doMca().

• mod.showCC() displays the complete set of flux and concentration control coeffi-
cients.

• Individual control coefficients are generated as either mod.ccSpecies_Rate for a
concentration control coefficient, e.g. mod.ccs1_R4.

• Similarly, mod.ccJFlux_Rate is a flux control coefficient e.g. mod.ccJR1_R4.

As it is generally common practice to use scaled elasticities and control coefficients PySCeS
calculated these by default. However, it is possible to generate unscaled elasticities and control

25

PySCeS User Guide, Release 0.7.0

coefficients by setting the attribute mod.__settings__[’mode_mca_scaled’] = 0
in which case the model attributes are attached as mod.uec and mod.ucc respectively.

As a prototype we also store the elasticities in an object, mod.cc.* this may become the
default way of accessing control coefficient data in future releases but has not been stabilised
yet.

8.3 Response coefficients

A new PySCeS feature is the ability to calculate the parameter response coefficients for a model
with the mod.doMcaRC() method. Unlike the elasticities and control coefficients the re-
sponse coefficients are made available as a single attribute mod.rc. This attribute is a data
object, containing the response coefficients as attributes and has the following methods:

• rc.var_par individual response coefficients can be accessed as attributes made up of
variable_parameter e.g. mod.rc.R1_k1

• rc.get(’var’, ’par’) return a response coefficient

• rc.list() returns all response coefficients as a dictionary of {key:value} pairs

• rc.select(’attr’, search=’a’) select all response coefficients that refer to
’attr’ e.g. select(’R1’) or select(’k2’)

• rc.matrix: the matrix of response coefficients

• rc.row: row labels

• rc.col: column labels

26 Chapter 8. Metabolic Control Analysis

Part IV

Parameter scanning

27

CHAPTER

NINE

Single dimension parameter scans

PySCeS has the ability to quickly generate and plot single dimension parameter scans. Scan-
ning a parameter typically involves changing a parameter through a range of values and re-
calculating the steady state at each step. Two methods are provided which simplify this task,
mod.Scan1() is provided to generate the scan data while mod.Scan1Plot() is used to
visualise the results. The first step is to define the scan parameters:

• mod.scan_in is a string defining the parameter to be scanned e.g. ’x0’

• mod.scan_out is a list of strings representing the attribute names you would like to
track in the output eg. [’J_R1’,’J_R2’,’s1_ss’,’s2_ss’]

• You also need to define the range of points that you would like to scan over. For a lin-
ear range SciPy has a useful function scipy.linspace(start, end, points)
(SciPy can be accessed by typing import scipy in your Python shell). If you need to
generate a log range use scipy.logspace(start, end, points).

Both scipy.linspace and scipy.logspace use the number of points (including
the start and end points) in the interval as an input. Additionally, the start and end values
of scipy.logspace must be entered as indices, e.g. to start the range at 0.1 and end it
at 100 you would write scipy.logspace(-1, 2, steps). Setting up a PySCeS
scan session might look something like:

>>> import scipy
>>> mod.scan_in = ’x0’
>>> mod.scan_out = [’J_R1’,’J_R6’,’s2_ss’,’s7_ss’]
>>> scan_range = scipy.linspace(0,100,11)

Before starting the parameter scan, it is important to check that all the model attributes involved
in the scan do actually exist. For example, mod.J_R1 is created when mod.doState() is
executed, likewise all the elasticities (mod.ecR_S) and control coefficients (mod.ccJ_R)
are only created when the mod.doMca() method is called. If all the attributes exist you can
perform a parameter scan using the mod.Scan1(scan_range) method which takes your
predefined scan range as an argument:

>>> mod.Scan1(scan_range)

Scanning ...

29

PySCeS User Guide, Release 0.7.0

11 (hybrd) The solution converged.
(hybrd) The solution converged ...

done.

When the scan has been successfully completed, the results are stored in the array
(mod.scan_res) that has mod.scan_in as its first column followed by columns that rep-
resent the data defined in mod.scan_out (if invalid steady states are generated during the
scan they are replaced by NaN). Scan1 also reports the scan parameter values which generated
the invalid states.} . If one or more of your input or output parameters is not a valid model
attribute, it will be ignored. Once the parameter scan data has been generated, the next step is
to visualise it using the mod.Scan1Plot() method:

>>> mod.Scan1Plot(plot=[], title=None, log=None, format=’lines’, filename=None)

• plot if empty mod.scan_out is used, otherwise any subset of mod.scan_out (default=[])

• filename the filename of the PNG file (default=None, no export)

• title the plot title (default=None)

• log if None a linear axis is assumed otherwise one of [’x’,’xy’,’xyz’] (default=None)

• format the backend dependent line format (default=’lines’) or the CommonStyle ‘lines’
or ‘points’.

Called without any arguments Scan1Plot plots all of mod.sim_out against mod.sim_in.

30 Chapter 9. Single dimension parameter scans

CHAPTER

TEN

Two dimension parameter scans

Two dimension parameter scans can also easily be generated using the mod.Scan2D method:

>>> mod.Scan2D(p1, p2, output, log=False)

• p1 is a list of [model parameter 1, start value, end value, points]

• p2 is a list of [model parameter 2, start value, end value, points]

• output the steady-state variable e.g. ‘J_R1’ or ‘A_ss’

• log if True scan using log ranges for both axes

To plot the results of two dimensional scan use the mod.Scan2DPlot method. Note that as
Matplotlib cannot produce 3D plots the GnuPlot interface must be active (see the section on
plotting later on in this guide):

>>> mod.Scan2DPlot(title=None, log=None, format=’lines’, filename=None)

• filename the filename of the PNG file (default=None, no export)

• title the plot title (default=None)

• log if None a linear axis is assumed otherwise one of [’x’,’xy’,’xyz’] (default=None)

• format the backend dependent line format (default=’lines’) or the CommonStyle ‘lines’
or ‘points’.

31

PySCeS User Guide, Release 0.7.0

32 Chapter 10. Two dimension parameter scans

CHAPTER

ELEVEN

Multi-dimension parameter scans

This new PySCeS feature allows multi-dimensional parameter scanning. Any combination of
parameters is possible and can be added as master parameters that change independently or
slave parameters whose change is coordinated with the previously defined parameter. Unlike
mod.Scan1() this function is accessed via the pysces.Scanner class that is instantiated
with a loaded PySCeS model object:

>>> sc1 = pysces.Scanner(mod)
>>> sc1.addScanParameter(’x3’, 1, 10, 11)
>>> sc1.addScanParameter(’k2’, 0.1, 1000, 5, log=True)
>>> sc1.addScanParameter(’k4’, 0.1, 1000, 5, log=True, slave=True)
>>> sc1.addUserOutput(’J_R1’, ’s1_ss’)
>>> sc1.Run()

... scan: 55 states analysed

>>> sc1_res = sc1.getResultMatrix()
>>> print sc1_res[0]
array([1., 0.1, 0.1, 97.94286647, 49.1380999])

>>> print sc1_res[-1]
array([1.0e+01, 1.0e+03, 1.0e+03, -3.32564878e+00, 3.84227702e-03])

In this scan we define two independent (x3, k2) and one dependent (k3) scan parameters
and track the changes in the steady state variables J_R1 and s1_ss. Note that k2 and k4 use
a logarithmic scale. Once run the input parameters cannot be altered, however, the output can
be changed and the scan rerun.

• sc1.addScanParameter(name, start, end, points, log, slave)
where name is the input parameter (as a string), start and end define the range
with the required number of points. While log and slave are boolean arguments
indicating the point distribution and whether the axis is independent or not.

• sc1.addUserOutput(*args) an arbitrary number of model attributes to be output
can be added (this method automatically tries to determine the level of analysis neces-
sary) e.g. addUserOutput(’J_R1’, ’ecR1_k2’)

• sc1.Run() run the scan, if subsequent runs are required after changing output parame-
ters use sc1.RunAgain(). Note that it is not possible to change the input parameters

33

PySCeS User Guide, Release 0.7.0

once a scan has been run, if this is required a new Scanner object should be created.

• sc1.getResultMatrix(stst=False) return the scan results as an ar-
ray containing both input and output if stst = True append the steady-state
fluxes and concentrations to the user output so that output has dimensions
[scan_parameters]+[state_species+state_flux]+[Useroutput] otherwise return the default
[scan_parameters]+[Useroutput].

• sc1.UserOutputList the list of output names

• sc1.UserOutputResults an array containing only the output

• sc1.ScanSpace the generated list of input parameters.

34 Chapter 11. Multi-dimension parameter scans

Part V

Plotting

35

PySCeS User Guide, Release 0.7.0

The PySCeS plotting interface has been completely rewritten to facilitate the use of multiple
plotting back-ends via a Unified Plotting Interface (UPI). Using the UPI we ensure that a spec-
ified subset of plotting methods is back-end independent (although the UPI can be extended
with back-end specific methods). So far Matplotlib (default) and GnuPlot back-ends have been
implemented.

The common UPI functionality is accessible as pysces.plt.*while back-end specific func-
tionality is available as pysces.plt.m (Matplotlib) and pysces.plt.g (GnuPlot).

While the Matplotlib is activated by default GnuPlot needs to be en-
abled (see Configuring PySCeS section) and then activated using
pysces.plt.p_activateInterface(’gnuplot’). All installed interfaces
can be activated or deactivated as required:

>>> pysces.plt.p_activateInterface(interface)
>>> pysces.plt.p_deactivateInterface(interface)

where interface is either ‘matplotlib’ or ‘gnuplot’. The PySCeS UPI defines currently has the
following methods:

plot(data, x, y, title=”, format=”) plot a single line data[y] vs data[x]

• data the data array

• x x column index

• y y column index

• title is the line key

• format is the backend format string (default=’‘)

plotLines(data, x, y=[], titles=[], formats=[”]) plot multiple lines i.e.
data[y1, y2,] vs data[x]

• data the data array

• x x column index

• y is a list of line indexes, if empty all of y not including x is plotted

• titles a list of line keys, if empty Line1, Line2, etc is used

• formats a list (per line) of format strings, if formats only contains a single item, this
format is used for all lines.

splot(data, x, y, z, title=”, format=”) plot a surface i.e. data[z] vs data[y]
vs data[x]

• data the data array

• x x column index

37

PySCeS User Guide, Release 0.7.0

• y y column index

• z z column index

• title the surface key

• format a format string (default=’‘)

splotSurfaces(data, x, y, z=[], titles=[], formats=[”]) plot multi-
ple surfaces i.e. data[z1, z2,] vs data[y] vs data[x]

• data the data array

• x x column index

• y y column index

• z a list of z column indexes, if empty all data not including x, y are plotted

• titles a list of surface keys, if empty Surf1, Surf2 etc. is used

• formats is a list (per line) of format strings (default=’‘)

If formats only contains a single item, this format is used for all surfaces.

replot() replot the current figure using all active interfaces (useful with GnuPlot type inter-
faces)

save(name, directory=None, dfmt=’\%.8e’) save the plot data and (if possible)
the back-end specific format file

• filename the filename

• directory optional (default = current working directory)

• dfmt the data format string (default=’%.8e’)

export(name, directory=None, type=’png’) export the current plot as a <for-
mat> file (currently only PNG is guaranteed to be available on all back-ends).

• filename the filename

• directory optional (default = current working directory)

• type the file format (default=’png’).

setGraphTitle(title=’PySCeS Plot’) set the graph title, unset if title=None

• title (string, default=’PySCeS Plot’) the graph title

setAxisLabel(axis, label=”) sets one or more axis label

• axis x, y, z, xy, xz, yz, zyx

38

PySCeS User Guide, Release 0.7.0

• label label string (default=None)

Called with only the axis argument clears that axis’ label.

setKey(value=False) enable or disable the current plot key, no arguments removes key.

• value boolean (default = False)

setLogScale(axis) set axis to log scale

• axis is one of x, y, z, xy, xz, yz, zyx

setNoLogScale(axis) set axis to a linear scale

• axis is one of x, y, z, xy, xz, yz, zyx

setRange(axis, min=None, max=None) set one or more axis range

• axis is one of x, y, z, xy, xz, yz, zyx

• min is the range(s) lower bound (default=None, back-end auto-scales)

• max range(s) upper bound (default=None, back-end auto-scales)

setGrid(value) enable or disable the graph grid

• value (boolean) True (on) or False (off)

plt.closeAll() Close all active Matplolib figures

39

PySCeS User Guide, Release 0.7.0

40

Part VI

Displaying data

41

CHAPTER

TWELVE

Displaying/saving model attributes

All of the showX() methods, with the exception of mod.showModel() operate in exactly
the same way. If called without an argument, they display the relevant information to the screen.
Alternatively, if given an open, writable (ASCII mode) file object as an argument, they write
the requested information to the open file. This allows the generation of customised reports
containing only information relevant to the model.

• mod.showSpecies() prints the current value of the model species (mod.M).

• mod.showSpeciesI() prints the initial, parsed in, value of the model species
(mod.Mi).

• mod.showPar() prints the current value of the model parameters.

• mod.showState() prints the current steady-state fluxes and species.

• mod.showConserved() prints any moiety conserved relationships (if present).

• mod.showFluxRelationships() shows the relationships between dependent and
independent fluxes at steady state

• mod.showRateEq() prints the reaction stoichiometry and rate equations.

• mod.showODE() prints the differential equations.

Please note that the mod.showModel() method is not recommended for saving models as
a PySCeS input file instead use the Core2 based pysces.interface.writeMod2PSC
method instead:

>>> pysces.interface.writeMod2PSC(mod, filename, directory, iValues=True, getstrbuf=False)

• filename: writes <filename>.psc or <model_name>.psc if None

• directory: (optional) an output directory

• iValues: if True (default) then the models initial values are used (or the current values if
False).

• getstrbuf : if True a StringIO buffer is returned instead of writing to disk

43

PySCeS User Guide, Release 0.7.0

Assuming you have loaded a model and run mod.doState() the following code opens a
Python file object (rFile), writes the steady-state results to the file associated with the file
object (results.txt) and then closes it again:

>>> rFile = file(’results.txt’,’w’)
>>> mod.showState() # print the results to screen
>>> mod.showState(rFile) # write the results to the file results.txt
>>> rFile.close()

44 Chapter 12. Displaying/saving model attributes

CHAPTER

THIRTEEN

Writing formatted arrays

The showX() methods described in the previous sections allow the user a convenient way
to write the predefined matrices either to screen or file. However, for maximum flexibility,
PySCeS includes a suite of array writers that enable one to easily write, in a variety of formats
any array to a file. Unlike the showX()methods, the Write_arraymethods are specifically
designed to write to data to a file.

In most modelling situations it is rare that an array needs to be stored or displayed that does not
have specific labels for its rows or columns. Therefore, all the Write_array methods take
list arguments that can contain either the row or column labels. Obviously, these lists should
be equal in length to the matrix dimension they describe and in the correct order.

There are currently three custom array writing methods that work either with a 1D (vector)
or 2D arrays (matrices). To allow an easy comparison of the output of these methods, all the
following sections use the same example array as input.

13.1 Write_array()

The basic array writer is the Write_array() method. Using the default settings this method
writes a ‘tab delimited’ array to a file. It is trivial to change this to a ‘comma delimited’ format
by using the separator = ’ ’ argument. Numbers in the array are formatted using the
global number format.

If column headings are supplied using the Col = [] argument they are written above the
relevant column and if necessary truncated to fit the column width. If a column name is trun-
cated it is marked with a * and the full length name is written as a comment after the array
data. Similarly row data can be supplied using the Row = [] argument in which case the row
names are displayed as a comment which is written after the array data.

Finally, if the close_file argument is enabled the supplied file object is automatically
closed after writing the array. The full call to the method is:

>>> mod.Write_array(input, File=None, Row=None, Col=None, separator=’ ’)

which generates the array

Write_array_linear1_11:12:23
#s0 s1 s2

45

PySCeS User Guide, Release 0.7.0

-3.0043e-001 0.0000e+000 0.0000e+000
1.5022e+000 -5.0217e-001 0.0000e+000
0.0000e+000 1.5065e+000 -5.0650e-001
0.0000e+000 0.0000e+000 1.0130e+000
Row: R1 R2 R3 R4

By default, each time an array is written, PySCeS includes an array header consisting of the
model name and the time the array was written. This behaviour can be disabled by setting:
mod.write_array_header = 0

13.2 Write_array_latex()

The Write_array_latex() method functions similarly to the generic Write_array()
method except that it generates a formatted array that can be included directly in a LaTeXdocu-
ment. Additionally, there is no separator argument, column headings are not truncated and row
labels appear to the left of the matrix.

>>> mod.Write_array_latex(input, File=None, Row=None, Col=None)

which generates

%% Write_array_latex_linear1_11:45:03
\[
\begin{array}{r|rrr}

& $\small{s0}$ & $\small{s1}$ & $\small{s2}$ \\ \hline
$\small{R1}$ &-0.3004 & 0.0000 & 0.0000 \\
$\small{R2}$ & 1.5022 &-0.5022 & 0.0000 \\
$\small{R3}$ & 0.0000 & 1.5065 &-0.5065 \\
$\small{R4}$ & 0.0000 & 0.0000 & 1.0130 \\
\end{array}
\]

and in a typeset document appears as:

s0 s1 s2
R1 -0.3004 0.0000 0.0000
R2 1.5022 -0.5022 0.0000
R3 0.0000 1.5065 -0.5065
R4 0.0000 0.0000 1.0130

46 Chapter 13. Writing formatted arrays

Part VII

Installing and configuring

47

PySCeS User Guide, Release 0.7.0

Before installing or building PySCeS the following software is required:

• Python 2.5 (or 2.4 plus the Elementree/cElementree packages)

• Numpy 1.2+

• SciPy 0.7.0 (0.6.x will work with NumPy > 1.0.5)

• GCC 4.2+ on Linux or MinGW GCC 3.4.5 on Windows is required for building PySCeS
from source only

• Matplotlib 0.98.3 with the TkAgg backend (this is the default, but optional, plotting
package but can be replaced with GnuPlot)

optional, but highly recommended, packages:

• libSBML 3.x install with the Python bindings for SBML support

• GnuPlot alternative plotting back-end

• iPython highly recommended for interactive modelling sessions

• SciTE editor for editing and running PySCeS based modelling programs

This software stack provides a powerful scientific programming platform which is used by
PySCeS to provide a flexible Systems Biology Modelling environment.

PySCeS 0.7.0 itself has been modularised into a main package and a (growing) number of
support modules which extends its core functionality. The most important of these is the
advanced simulation support added by installing PySundials (http://pysundials.sf.net). Linux
users should build and install the SUNDIALS library and PySundials (build instructions on the
PySundials web site). Windows users can simply download and install the pysces_pysundials
module.

• pysces_pysundials a binary port of SUNDIALS+PySundials for Windows

• pysces_metatool adds elementary mode support to PySCeS using MetaTool

• pysces_mariner SOAP based web services gateway, including a PySCeS server and re-
mote client

• pysces_kraken (coming soon) PySCeS distributed processing module (currently dis-
tributed with PySCeS)

PySCeS and its extension modules use either the Python distutils or the Numpy distutils exten-
sions. Assuming you have working versions of NumPy and SciPy on a Linux type operating
systems building PySCeS is as easy as:

python setup.py install

On Windows (with MinGW) depending on your system configuration this becomes:

49

http://pysundials.sf.net

PySCeS User Guide, Release 0.7.0

python setup.py config --compiler=mingw32 build --compiler=mingw32 install

In this release we have started prototyping Python egg support (currently only for windows)
which is implemented via the setupegg.py build scripts.

By default PySCeS installs with a version of ZIB’s NLEQ2 non-linear solver. This software
is distributed under its own non-commercial licence. Please see the README.txt document
provided with this PySCeS installation for details.

50

CHAPTER

FOURTEEN

Configuring

PySCeS has two configuration (*.ini) files that allows one to specify global (per installation)
and local (per user options). Currently the multiuser options are only fully realised on Linux
based systems. Global options are stored in the pyscfg.ini file which is created in your PySCeS
installation directory (this is a Windows version with the Linux defaults indicated with in
value):

[Pysces]
install_dir = c:\python25\lib\site-packages\pysces
gnuplot_dir = c:\model\gnuplot\binaries
model_dir = os.path.join(os.getenv(’HOMEDRIVE’)+os.path.sep,’Pysces’,’psc’)
output_dir = os.path.join(os.getenv(’HOMEDRIVE’)+os.path.sep,’Pysces’)

model_dir = os.path.join(os.path.expanduser(’~’),’Pysces’,’psc’)
output_dir = os.path.join(os.path.expanduser(’~’),’Pysces’)

The [Pysces] section contains information on the installation directory, the directory where the
GnuPlot executable(s) can be found and the default model file and output directories. As we
shall see some of these defaults can be overruled by the local configuration options:

[ExternalModules]
nleq2 = True

[PyscesModules]
pitcon = True

These sections define whether 3rd party algorithms (e.g. NLEQ2) are available for use, while
the last section allows the alternate plotting backends to be enabled or disabled:

[PyscesConfig]
gnuplot = True
matplotlib = True

The user configuration files (pys_usercfg.ini) are created when PySCeS is imported/run for
the first time. On Windows this is in <HOMEDRIVE>\Pysces while on Linux this is in
$HOME\Pysces. Once created the user configuration files can be edited and will be used for
every subsequent PySCeS session:

51

PySCeS User Guide, Release 0.7.0

[Pysces]
output_dir = C:\mypysces
model_dir = C:\mypysces\pscmodels
gnuplot = False

Here I have customised my default model and output directories and disabled GnuPlot (enabled
above). If required gnuplot_dir can also be set to point to an alternate location on a per user
basis. Once you have PySCeS configured to your personal requirements you are ready to begin
modelling.

52 Chapter 14. Configuring

Part VIII

References

53

PySCeS User Guide, Release 0.7.0

1Hofmeyr, J.-H.S. (2001) Metabolic control analysis in a nutshell, in T.-M. Yi, M. Hucka, M. Morohashi, and
H. Kitano, eds, Proceedings of the 2nd International Conference on Systems Biology, pp. 291-300.

2Kacser, H. and Burns, J. A. (1973), The control of flux, Symp. Soc. Exp. Biol. 32, 65-104.
3Heinrich and Rappoport (1974), A linear steady-state treatment of enzymatic chains: General properties,

control and effector strength, Eur. J. Biochem. 42, 89-95.

55

PySCeS User Guide, Release 0.7.0

56

Part IX

The PySCeS Model Description Language

57

PySCeS User Guide, Release 0.7.0

PySCeS: the Python Simulator for Cellular Systems is an extendable toolkit for the
analysis and investigation of cellular systems. It is available for download from:
http://pysces.sf.net

PySCeS uses an ASCII text based input file to describe a cellular system in terms of it’s stoi-
chiometry, kinetics, compartments and parameters. Input files may have any filename with the
single restriction that, for cross platform compatibility, they must end with the extension .psc.
In this document we describe the PySCeS Model Description Language (MDL) which has been
updated and extended for the PySCeS 0.7.x release.

PySCeS is distributed under the PySCeS (BSD style) license and is made freely
available as Open Source software. See LICENCE.txt for details.

We hope that you will enjoy using our software. If, however, you find any unexpected fea-
tures (i.e. bugs) or have any suggestions on how we can improve PySCeS and specifically the
PySCeS MDL please let us know.

59

http://pysces.sf.net

PySCeS User Guide, Release 0.7.0

60

CHAPTER

FIFTEEN

Defining a PySCeS model

15.1 A kinetic model

The basic description of a kinetic model in the PySCeS MDL contains the following informa-
tion:

• whether any fixed (boundary) species are present

• the reaction network stoichiometry

• rate equations for each reaction step

• parameter and boundary species initial values

• the initial values of the variable species

Although it is in principle possible to define an ODE based model without reactions or free
species, for practical purposes PySCeS requires a minimum of a single reaction. Once this
information is obtained it can be organised and written as a PySCeS input file. While this list
is the minimum information required for a PySCeS input file the MDL allows the definition of
advanced models that contain compartments, global units, functions, rate and assignment rules.

15.2 Model keywords

In PySCeS 0.7.x it is now possible to define keywords that specify model information. Key-
words have the general form

<keyword>: <value>

The Modelname (optional) keyword, containing only alphanumeric characters (or _), describes
the model filename (typically used when the model is exported via the PySCeS interface mod-
ule) while the Description keyword is a (short) single line model description.

Modelname: rohwer_sucrose1
Description: Sucrose metabolism in sugar cane (Johann M. Rohwer)

61

PySCeS User Guide, Release 0.7.0

Two keywords are available for use (optional) with models that have one or more compartments
defined. Both take a boolean (True/False) as their value:

• Species_In_Conc specifies whether the species symbols used in the rate equations repre-
sent a concentration (True, default) or an amount (False).

• Output_In_Conc tells PySCeS to output the results of numerical operations in concentra-
tions (True, default) or in amounts (False).

Species_In_Conc: True
Output_In_Conc: False

More information on the effect these keywords have on the analysis of a model can be found in
the PySCeS Reference Manual.

15.3 Global unit definition

PySCeS 0.7 supports the (optional) definition of a set of global units. In doing so we have
chosen to follow the general approach used in the Systems Biology Modelling Language
(SBML L2V3) specification. The general definition of a PySCeS unit is: ‘<UnitType>:
<kind>, <multiplier>, <scale>, <exponent>‘ where kind is a string describ-
ing the base unit (for SBML compatibility this should be an SI unit) e.g. mole, litre, second
or metre. The base unit is modified by the multiplier, scale and index using the following re-
lationship: <multiplier> * (<kind> * 10**<scale>)**<index>. The default unit definitions
are:

UnitSubstance: mole, 1, 0, 1
UnitVolume: litre, 1, 0, 1
UnitTime: second, 1, 0, 1
UnitLength: metre, 1, 0, 1
UnitArea: metre, 1, 0, 2

Please note that defining these values does not affect the numerical analysis of the model in any
way.

15.4 Symbol names and comments

Symbol names (i.e. reaction, species, compartment, function, rule and parameter names etc.)
must start with either an underscore or letter and be followed by any combination of alpha-
numeric characters or an underscore. Like all other elements of the input file names are case
sensitive:

R1
_subA
par1b
ext_1

62 Chapter 15. Defining a PySCeS model

PySCeS User Guide, Release 0.7.0

Explicit access to the “current” time in a time simulation is provided by the special symbol
TIME. This is useful in the definition of events and rules (see chapter on advanced model
construction for more details).

Comments can be placed anywhere in the input file in one of two ways, as single line comment
starting with a # or as a multi-line triple quoted comment “”“<comment>”“”:

everything after this is ignored

"""
This is a comment
spread over a
few lines.
"""

15.5 Compartment definition

By default (as is the case in all PySCeS versions < 0.7) PySCeS assumes that the model exists
in a single unit volume compartment. In this case it is not necessary to define a compartment
and the ODE’s therefore describe changes in concentration per time. However, if a compart-
ment is defined, PySCeS assumes that the ODE’s describe changes in substance amount per
time. Doing this affects how the model is defined in the input file (especially with respect
to the definitions of rate equations and species) and the user is strongly advised to read the
Users Guide before building models in this way. The compartment definition is as follows
Compartment: <name>, <size>, <dimensions>, where <name> is the unique
compartment id, <size> is the size of the compartment (i.e. length, volume or area) defined by
the number of <dimensions> (e.g. 1,2,3):

Compartment: Cell, 2.0, 3
Compartment: Memb, 1.0, 2

15.6 Function definitions

A new addition to the PySCeS MDL is the ability to define SBML styled functions. Simply put
these are code substitutions that can be used in rate equation definitions to, for example, sim-
plify the kinetic law. The general syntax for a function is Function: <name>, <args>
{<formula>} where <name> is the unique function id, <arglist> is one or more comma
separated function arguments. The <formula> field, enclosed in curly brackets, may only
make use of arguments listed in the <arglist> and therefore cannot reference model attributes
directly. If this functionality is required a forcing function (assignment rule) may be what you
are looking for.

Function: rmm_num, Vf, s, p, Keq {
Vf*(s - p/Keq)
}

15.5. Compartment definition 63

PySCeS User Guide, Release 0.7.0

Function: rmm_den, s, p, Ks, Kp {
s + Ks*(1.0 + p/Kp)
}

The syntax for function definitions has been adapted from Frank Bergmann and Herbert Sauro’s
“Human Readable Model Definition Language” (Draft 1).

15.7 Defining fixed species

Boundary species, also known as fixed or external species, are a special class of parameter used
when modelling biological systems. The PySCeS MDL fixed species are declared on a single
line as FIX: <fixedlist>. The <fixedlist> is a space separated list of symbol names
which should be initialised like any other species or parameter:

FIX: Fru_ex Glc_ex ATP ADP UDP phos glycolysis Suc_vac

If no fixed species are present in the model then this declaration should be omitted entirely.

15.8 Reaction stoichiometry and rate equations

The reaction stoichiometry and rate equation are defined together as a single reaction step.
Each step in the system is defined as having a name (identifier), a stoichiometry (substrates are
converted to products) and rate equation (the catalytic activity, described in terms of species
and parameters). All reaction definitions should be separated by an empty line. The general
format of a reaction in a model with no compartments is:

<name>:
<stoichiometry>
<rate equation>

The <name> argument follows the syntax as discussed in a previous section, however, when
more than one compartment has been defined it is important to locate the reaction in its specific
compartment. This is done using the @ operator:

<name>@<compartment>:
<stoichiometry>
<rate equation>

Where <compartment> is a valid compartment name. In either case this then followed either
directly (or on the next line) by the reaction stoichiometry.

Each <stoichiometry> argument is defined in terms of reaction substrates, appearing on the left
hand side and products on the right hand side of an identifier which labels the reaction as either
reversible (=) or irreversible (>). If required each reagent’s stoichiometric coefficient (PySCeS

64 Chapter 15. Defining a PySCeS model

PySCeS User Guide, Release 0.7.0

accepts both integer and floating point) should be included in curly braces {} immediately
preceding the reagent name. If these are omitted a coefficient of one is assumed:

{2.0}Hex_P = Suc6P + UDP # reversible reaction
Fru_ex > Fru # irreversible reaction
species_5 > $pool # a reaction to a sink

The PySCeS MDL also allows the use of the $pool token that represents a placeholder reagent
for reactions that have no net substrate or product. Reversibility of a reaction is only used when
exporting the model to other formats (such as SBML) and in the calculation of elementary
modes. It does not affect the numerical evaluation of the rate equations in any way.

Central to any reaction definition is the <rate equation> (SBML kinetic law). This should be
written as valid Python expression and may fall across more than one line. Standard Python
operators + - * / ** are supported (note the Python power e.g. 2^4 is written as 2**4).
There is no shorthand for multiplication with a bracket so -2(a+b)^h would be written as -
2*(a+b)**h} and normal operator precedence applies:

+, - addition, subtraction
*, / multiplication, division
+x,-x positive, negative
** exponentiation

Operator precedence increase from top to bottom and left to right (adapted from the Python
Reference Manual).

The PySCeS MDL parser has been developed to parse and translate different styles of infix into
Python/Numpy based expressions, the following functions are supported in any mathematical
expression:

• log, log10, ln, abs

• pow, exp, root, sqrt

• sin, cos, tan, sinh, cosh, tanh

• arccos, arccosh, arcsin, arcsinh, arctan, arctanh

• floor, ceil, ceiling, piecewise

• notanumber, pi, infinity, exponentiale

Logical operators are supported in rules, events etc but not in rate equation definitions. The
PySCeS parser understands Python infix as well as libSBML and NumPy prefix notation.

• and or xor not

• > gt(x,y) greater(x,y)

• < lt(x,y) less(x,y)

• >= ge(x,y) geq(x,y) greater_equal(x,y)

15.8. Reaction stoichiometry and rate equations 65

PySCeS User Guide, Release 0.7.0

• <= le(x,y) leq(x,y) less_equal(x,y)

• == eq(x,y) equal(x,y)

• != neq(x,y) not_equal(x,y)

Note that currently the MathML delay and factorial functions are not supported. Delay is
handled by simply removing it from any expression, e.g. delay(f(x), delay) would be parsed
as f(x). Support for piecewise has been recently added to PySCeS and will be discussed in the
advanced features section.

A reaction definition when no compartments are defined:

R5: Fru + ATP = Hex_P + ADP
Fru/Ki5_Fru)*(Fru/Km5_Fru)*(ATP/Km5_ATP)/(1 +
Vmax5/(1 + Fru/Ki5_Fru)*(Fru/Km5_Fru)*(ATP/Km5_ATP)/(1 +
Fru/Km5_Fru + ATP/Km5_ATP + Fru*ATP/(Km5_Fru*Km5_ATP) +
ADP/Ki5_ADP)

and using the previously defined functions:

R6:
A = B
rmm_num(V2,A,B,Keq2)/rmm_den(A,B,K2A,K2B)

When compartments are defined note how now the reaction is now given a location and that
because the ODE’s formed from these reactions must be in changes in substance per time the
rate equation is multiplied by its compartment size. In this particular example the species
symbols represent concentrations (Species_In_Conc: True):

R1@Cell:
s1 = s2
Cell*(Vf1*(s1 - s2/Keq1)/(s1 + KS1*(1 + s2/KP1)))

If Species_In_Conc: True the location of the species is defined when it is initialised and will
be explained later in this manual. The following example shows the species symbols explicitly
defined as amounts (Species_In_Conc: False):

R4@Memb: s3 = s4
Memb*(Vf4*((s3/Memb) - (s4/Cell)/Keq4)/((s3/Memb)
+ KS4*(1 + (s4/Cell)/KP4)))

Please note that at this time we are not certain if this form of rate equation is translatable into
valid SBML in a way that is interoperable with other software.

15.9 Species and parameter initialisation

The general form of any species (fixed, free) and parameter is simply:

66 Chapter 15. Defining a PySCeS model

PySCeS User Guide, Release 0.7.0

property = value

Initialisations can be written in any order anywhere in the input file but for human readability
purposes these are usually placed after the reaction that uses them or grouped at the end of the
input file. Both decimal and scientific notation is allowed with the following provisions that
neither floating point (1.) nor scientific shorthand (1.e-3) syntax should be used, instead use
the full form (1.0e-3), (0.001) or (1.0).

Variable or free species are initialised differently depending on whether compartments are
present in the model. While in essence the variables are set by the system parameters the

Although the variable species concentrations are determined by the parameters of the sys-
tem, their initial values are used in various places, calculating total moiety concentrations (if
present), time simulation initial values (e.g. time=zero) and as initial guesses for the steady-
state algorithms. If an empty initial species pool is required it is not recommended to initialise
these values to zero (in order to prevent potential divide-by-zero errors) but rather to a small
value (e.g. 10**-8).

For a model with no compartments these initial values assumed to be concentrations:

NADH = 0.001
ATP = 2.3e-3
sucrose = 1

In a model with compartments it is expected that the species are located in a compartment (even
if Species_In_Conc: False) this is done useing the @ symbol:

s1@Memb = 0.01
s2@Cell = 2.0e-4

A word of warning, the user is responsible for making sure that the units of the initialised
species match those of the model. Please keep in mind that all species (and anything that
depends on them) is defined in terms of the Species_In_Conc keyword. For example, if the
preceding initialisations were for R1 (see Reaction section) then they would be concentrations
(as Species_In_Conc: True). However, in the next example, we are initialising species for R4
and they are therefore in amounts (Species_In_Conc: False):

s3@Memb = 1.0
s4@Cell = 2.0

Fixed species are defined in a similar way and although technically a parameter, they should be
given a location in compartmental models:

InitExt
X0 = 10.0
X4@Cell = 1.0

However, fixed species are true parameters in the sense that their associated compartment size
does not affect their value when it changes size. If compartment size dependent behaviour is
required an assignment or rate rule should be considered.

15.9. Species and parameter initialisation 67

PySCeS User Guide, Release 0.7.0

Finally, the parameters should be initialised. PySCeS checks if a parameter is defined that is
not present in the rate equations and if such parameter initialisations are detected a harmless
warning is generated. If, on the other hand, an uninitialised parameter is detected a warning is
generated and a value of 1.0 assigned:

InitPar
Vf2 = 10.0
Ks4 = 1.0

68 Chapter 15. Defining a PySCeS model

CHAPTER

SIXTEEN

Advanced model construction

16.1 Assignment rules

Assignment rules or forcing functions are used to set the value of a model attribute before the
ODE’s are evaluated. This model attribute can either be a parameter used in the rate equa-
tions (this is traditionally used to describe an equilibrium block) a compartment or an arbitrary
parameter (commonly used to define some sort of tracking function). Assignment rules can
access other model attributes directly and have the generic form !F <par> = <formula>.
Where <par> is the parameter assigned the result of <formula>. Assignment rules can be
defined anywhere in the input file:

!F S_V_Ratio = Mem_Area/Vcyt
!F sigma_test = sigma_P*Pmem + sigma_L*Lmem

These rules would set the value of <par> which whose value can be followed with using the
simulation and steady state extra_data functionality.

16.2 Rate rules

PySCeS now includes support for rate rules which are essentially directly encoded ODE’s
which are evaluated after the ODE’s defined by the model stoichiometry and rate equations.
Unlike the SBML rate rule, PySCeS allows one to access a reaction symbol in the rate rules
(this is automatically expanded when the model is exported to SBML). The general form of a
rate rule is RateRule: <par> {<function>}. Where <name> is the model attribute
(e.g. compartment or parameter) whose rate of change is described by the <formula>. It may
also be defined anywhere in the input file:

RateRule: Mem_Area {
(sigma_P)*(Mem_Area*k4*(P)) + (sigma_L)*(Mem_Area*k5*(L))
}

RateRule: Vcyt {(1.0/Co)*(R1()+(1-m1)*R2()+(1-m2)*R3()-R4()-R5())}

Remember to initialise any new parameters used in the rate rules.

69

PySCeS User Guide, Release 0.7.0

16.3 Events

Time dependant events may now be defined whose definition follows the event framework
described in the SBML L2V1 specification. The general form of an event is Event: <name>,
<trigger>, <delay> { <assignments> }. As can be seen an event consists of essentially three
parts, a conditional <trigger>, a set of one or more <assignments> and a <delay> between
when the trigger is fired (and the assignments are evaluated) and the eventual assignment to the
model. Assignments have the general form <par> = <formula>. Events have access to the
“current” simulation time using the _TIME_ symbol:

Event: event1, _TIME_ > 10 and A > 150.0, 0 {
V1 = V1*vfact
V2 = V2*vfact
}

The following event illustrates the use of a delay of ten time units as well as the prefix notation
(used by libSBML) for the trigger (PySCeS understands both notations):

Event: event2, geq(_TIME_, 15.0), 10 {
V3 = V3*vfact2
}

Note: in order for PySCeS to handle events it is necessary to have the PySundials installed

16.4 Piecewise

Although technically an operator piecewise functions are sufficiently complicated to warrant
their own section. A piecewise operator is essentially an if, elif, ..., else logical operator that
can be used to conditionally “set” the value of some model attribute. Currently piecewise is
supported in rule constructs and has not been tested directly in rate equation definitions. The
piecewise function’s most basic incarnation is piecewise(<val1>, <cond>, <val2>) which is
evaluated as:

if <cond>:
return <val1>

else:
return <val2>

alternatively, piecewise(<val1>, <cond1>, <val2>, <cond2>, <val3>, <cond3>):

if <cond1>:
return <val1>

elif <cond2>:
return <val1>

elif <cond3>:
return <val3>

70 Chapter 16. Advanced model construction

PySCeS User Guide, Release 0.7.0

or piecewise(<val1>, <cond1>, <val2>, <cond2>, <val3>, <cond3>, <val4>):

if <cond1>:
return <val1>

elif <cond2>:
return <val2>

elif <cond3>:
return <val3>

else:
return <val4>

can also be used. A “real-life” example of an assignment rule with a piecewise function:

!F Ca2plus=piecewise(0.1, lt(_TIME_,60), 0.1, gt(_TIME_,66.0115), 1)

In principle there is no limit on the amount of conditional statements present in a piecewise
function, the condition can be a compound statements a or b and c and may include the _TIME_
symbol.

16.4. Piecewise 71

PySCeS User Guide, Release 0.7.0

72 Chapter 16. Advanced model construction

CHAPTER

SEVENTEEN

Example PySCeS input files

17.1 Basic model definition

PySCeS test model pysces_test_linear1.psc:

FIX: x0 x3

R1: x0 = s0
k1*x0 - k2*s0

R2: s0 = s1
k3*s0 - k4*s1

R3: s1 = s2
k5*s1 - k6*s2

R4: s2 = x3
k7*s2 - k8*x3

InitExt
x0 = 10.0
x3 = 1.0
InitPar
k1 = 10.0
k2 = 1.0
k3 = 5.0
k4 = 1.0
k5 = 3.0
k6 = 1.0
k7 = 2.0
k8 = 1.0
InitVar
s0 = 1.0
s1 = 1.0
s2 = 1.0

73

PySCeS User Guide, Release 0.7.0

17.2 Advanced example

This model includes the use of Compartments, KeyWords, Units and Rules:

Modelname: MWC_wholecell2c
Description: Surovtsev whole cell model using J-HS Hofmeyr’s framework

Species_In_Conc: True
Output_In_Conc: True

Global unit definition
UnitVolume: litre, 1.0, -3, 1
UnitSubstance: mole, 1.0, -6, 1
UnitTime: second, 60, 0, 1

Compartment definition
Compartment: Vcyt, 1.0, 3
Compartment: Vout, 1.0, 3
Compartment: Mem_Area, 5.15898, 2

FIX: N

R1@Mem_Area: N = M
Mem_Area*k1*(Pmem)*(N/Vout)

R2@Vcyt: {244}M = P # m1
Vcyt*k2*(M)

R3@Vcyt: {42}M = L # m2
Vcyt*k3*(M)*(P)**2

R4@Mem_Area: P = Pmem
Mem_Area*k4*(P)

R5@Mem_Area: L = Lmem
Mem_Area*k5*(L)

Rate rule definition
RateRule: Vcyt {(1.0/Co)*(R1()+(1-m1)*R2()+(1-m2)*R3()-R4()-R5())}
RateRule: Mem_Area {(sigma_P)*R4() + (sigma_L)*R5()}

Rate rule initialisation
Co = 3.07e5 # uM p_env/(R*T)
m1 = 244
m2 = 42
sigma_P = 0.00069714285714285711
sigma_L = 0.00012

Assignment rule definition
!F S_V_Ratio = Mem_Area/Vcyt

74 Chapter 17. Example PySCeS input files

PySCeS User Guide, Release 0.7.0

!F Mconc = (M)/M_init
!F Lconc = (L)/L_init
!F Pconc = (P)/P_init

Assignment rule initialisations
M_init = 199693.0
L_init = 102004
P_init = 5303
Mconc = 1.0
Lconc = 1.0
Pconc = 1.0

Species initialisations
N@Vout = 3.07e5
Pmem@Mem_Area = 37.38415
Lmem@Mem_Area = 8291.2350678770199
M@Vcyt = 199693.0
L@Vcyt = 102004
P@Vcyt = 5303

Parameter initialisations
k1 = 0.00089709
k2 = 0.000182027
k3 = 1.7539e-010
k4 = 5.0072346e-005
k5 = 0.000574507164

"""
Simulate this model to 200 for maximum happiness and
watch the surface to volume ratio and scaled concentrations.
"""

This example illustrates almost all the new features included in the PySCeS MDL. Although
it may be slightly more complicated than the basic model described above it is still, by our
definition, certainly human readable.

17.2. Advanced example 75

PySCeS User Guide, Release 0.7.0

76 Chapter 17. Example PySCeS input files

Part X

PySCeS Module documentation

77

CHAPTER

EIGHTEEN

PyscesPlot2

PyscesPlot2 is a new graphics susbsystem for PySCeS which will include a Unified Plotting
Interface which can take advantage of different plotting backends via a common user interface.

class FIFOBuffer(size)
Simple fixed size FIFO buffer.

add(x)

get()

class GnuPlotUPI(work_dir=None, gnuplot_dir=None)
PySCeS/GnuPlot is reborn, leaner and meaner than ever before. This class enables plot-
ting with GnuPlot via a subprocess link:

•work_dir optional argument setting directory for dat file(s)

•gnuplot_dir optional argument specifying the location of pgnuplot.exe (win32) or
gnuplot

GnuPlot backend to the Unified Plotting Interface.

export(name, directory=None, type=’png’)
Export the current plot as a <format> file.

•filename the filename
•directory optional (default = current working directory)
•type the file format (default=’png’).

Currently only PNG is guaranteed to be available in all interfaces.

g_file_write_array(arr, dfmt=None)
Write a normal (2D) dataset to temp file. Dumps the array to file using the format:

•arr the array (r>0, c>1)
•fmt default ‘%.8e’

g_file_write_array3D(arr, yaxis=1, dfmt=None)
Write a GnuPlot format 3D dataset. The yaxis argument specifies the column that
should be used to split the dataset into GnuPlot slices.

•arr the array (r>1, c>2)
•fmt default ‘%.8e’
•yaxis default 1

79

PySCeS User Guide, Release 0.7.0

g_pause()
A small pause defined by self.PAUSE_TIME (multiplied by 2 when in multiplot).

g_write(cmd)
Write a command to the GnuPlot interpreter

•cmd the GnuPlot command

plot(data, x, y, title=”, format=’w l’)
Plot a single line data[y] vs data[x] where:

•data the data array
•x x column index
•y y column index
•title is the line key
•format is the GnuPlot format string (default=’w l’)

Format can also be the CommonStyle ‘lines’ or ‘points’.

plotLines(data, x, y=, [], titles=, [], formats=, [’w l’])
Plot a multiple lines data[y1, y2,] vs data[x] where:

•data the data array
•x x column index
•y is a list of line indexes, if empty all of y not including x is plotted
•titles is a list of line keys if empty Line1, Line2, Line3 is used
•formats is a list (per line) of GnuPlot format strings (default=’w l’).

If formats only contains a single item, this format is used for all lines and can also
be the CommonStyle ‘lines’ or ‘points’.

replot()
Replot the current GnuPlot plot

replotAndWait(seconds=0.5)
Replot the current GnuPlot plot and wait default (seconds = 0.5) or until enter is
pressed (seconds = -1)

save(name, directory=None, dfmt=None)
Save the last plot as a GnuPlot file name.plt which references name.dat.

•name the name of the GnuPlot plt and and datafile
•directory (optional) the directory to use (defaults to working directory)
•dfmt is ignored and uses the value of self.DATF_FORMAT

set(key, value=”)
Send set <key> or optionally set <key> <value> to GnuPlot.

setAxisLabel(axis, label=”)
Set the axis label:

•axis = x, y, z, xy, xz, yz, zyx
•label = string (default=’‘)

Called with only the axis argument clears the axis label.

setDataFileNumberFormat(format=’%.8e’)
Sets the format string for data written to file

80 Chapter 18. PyscesPlot2

PySCeS User Guide, Release 0.7.0

•format format string (default=’%.8e’)

setGraphTitle(title=’PySCeS Plot’)
Set the graph title, unset if title argument is None

•title (string, default=’PySCeS Plot’) the graph title

setGrid(value)
Display or remove graph grid.

•value (boolean) True (on) or False (off)

setKey(value=False)
Enable or disable the current plot key, no arguments removes key.

•value boolean (default = False)

setLogScale(axis)
Set axis to logscale where:

•axis = x, y, z, xy, xz, yz, zyx

setMultiplot()
Begin a multiplot session

setNoLogScale(axis)
Set axis to a linear scale where:

•axis = x, y, z, xy, xz, yz, zyx

setOrigin(xpos=0, ypos=0)
Set the origin (lower left corner) of the next plot. Uses GnuPlot screen coordinates.
If no arguments are supplied reset origin to 0,0.

•xpos of next plot (default = 0)
•ypos of next plot (default = 0)

setRange(axis, min=None, max=None)
Set axis range where:

•axis = x, y, z, xy, xz, yz, zyx
•min = range(s) lower bound (default=None) autoscale
•max = range(s) upper bound (default=None) autoscale

If only the axis argument is provided, GnuPlot will autoscale the ranges to the data.

setSize(width=1.0, height=1.0)
Set the size of the next plot relative to the GnuPlot canvas (e.g. screen) size which
is defined to be 1. For example if width = height = 0.5 the plot is 1/4 the
size of the viewable canvas. If no arguments are supplied reset size to 1,1.

•width of next plot (default = 1.0)
•height of next plot (default = 1.0)

setSizeAndOrigin(width=1, height=1, xpos=0, ypos=0)
Set the size and origin of the next plot. If no arguments are supplied, reset the size
to 1,1 and origin to 0.0

•width of next plot (default = 1.0)
•height of next plot (default = 1.0)
•xpos of next plot (default = 0)

81

PySCeS User Guide, Release 0.7.0

•ypos of next plot (default = 0)

setTerminal(name, options=”)
Sets the terminal, gnuplot: set terminal name options

splot(data, x, y, z, title=”, format=’w l’)
Plot a surface data[z] vs data[y] vs data[x] where:

•data the data array
•x x column index
•y y column index
•z z column index
•title is the surface key
•format is the GnuPlot format string (default=’w l’)

Format can also be the CommonStyle ‘lines’ or ‘points’.

splotSurfaces(data, x, y, z=, [], titles=, [], formats=, [’w l’])
Plot data[z1, z2,] vs data[y] vs data[x] where:

•data the data array
•x x column index
•y y column index
•z list of z column indexes, if empty all of z not including x, y are plotted
•titles is a list of surface keys, if empty Surf1, Surf2, Surf3 is used
•formats is a list (per line) of GnuPlot format strings (default=’w l’).

If formats only contains a single item, this format is used for all surface and can
also be the CommonStyle ‘lines’ or ‘points’.

unset(key, value=”)
Send unset <key> or optionally unset <key> <value> to GnuPlot.

unsetMultiplot()
End a multiplot session.

class MatplotlibUPI(work_dir=None)
Refactored Matplotlib backend to the Unified Plotting Interface

•work_dir (optional) working directory

closeAll()
Close all open matplotlib figures.

export(name, directory=None, type=’png’)
Export the current plot as a <format> file.

•filename the filename
•directory optional (default = current working directory)
•type the file format (default=’png’).

Currently only PNG is guaranteed to be available in all interfaces.

hold(hold=False)
Enable plot holding where each new graph is plotted on top of the previous one.

•hold boolean (default = False)

82 Chapter 18. PyscesPlot2

PySCeS User Guide, Release 0.7.0

plot(data, x, y, title=”, format=’-’)
Plot a single line data[y] vs data[x] where:

•data the data array
•x x column index
•y y column index
•title is the line key
•format is the Matplotlib format string (default=’-‘)

Format can also be the CommonStyle ‘lines’ or ‘points’.

plotLines(data, x, y=, [], titles=, [], formats=, [’-’])
Plot a multiple lines data[y1, y2,] vs data[x] where:

•data the data array
•x x column index
•y is a list of line indexes
•titles is a list of line keys
•formats is a list (per line) of Matplotlib format strings.

If formats only contains a single item, this format is used for all lines and can also
be the CommonStyle ‘lines’ or ‘points’.

save(name, directory=None, dfmt=’%.8e’)
Save the plot data to

•filename the filename
•directory optional (default = current working directory)
•dfmt the data format string (default=’%.8e’)

setAxisLabel(axis, label=”)
Set the axis label:

•axis = x, y, z, xy, xz, yz, zyx
•label = string (default=’‘)

Called with only the axis argument clears the axis label.

setGraphTitle(title=’PySCeS Plot’)
Set the graph title, unset if title=None

•title (string, default=’PySCeS Plot’) the graph title

setGrid(value)
Display or remove graph grid.

•value (boolean) True (on) or False (off)

setKey(value=False)
Enable or disable the current plot key, no arguments removes key.

•value boolean (default = False)

setLineWidth(width=1)
Sets the line width for current axis

•width the line width

setLogScale(axis)
Set axis to logscale where:

83

PySCeS User Guide, Release 0.7.0

•axis = x, y, z, xy, xz, yz, zyx

setNoLogScale(axis)
Set axis to a linear scale where:

•axis = x, y, z, xy, xz, yz, zyx

setRange(axis, min=None, max=None)
Set axis range where

•axis = x, y, z, xy, xz, yz, zyx
•min = range(s) lower bound (default=None) autoscale
•max = range(s) upper bound (default=None) autoscale

class PlotBase()
Abstract class defining the Unified Plotting Interface methods. These methods should be
overridden and the class extended by interface specific subclasses.

axisInputStringToList(input)
Extracts axis information from a string input, returns a boolean triple representing
(x=True/False, y=True/False, z=True/False).

•input the input string

export(name, directory=None, type=’png’)
Export the current plot as a <format> file.

•filename the filename
•directory optional (default = current working directory)
•type the file format (default=’png’).

Currently only PNG is guaranteed to be available in all interfaces.

plot(data, x, y, title=”, format=”)
Plot a single line data[y] vs data[x] where:

•data the data array
•x x column index
•y y column index
•title is the line key
•format is the XXX format string (default=’‘)

Format can also be the CommonStyle ‘lines’ or ‘points’

plotLines(data, x, y=, [], titles=, [], formats=, [”])
Plot a multiple lines data[y1, y2,] vs data[x] where:

•data the data array
•x x column index
•y is a list of line indexes, if empty all of y not including x is plotted
•titles is a list of line keys, if empty Line1,Line2,Line3 is used
•formats is a list (per line) of XXX format strings.

If formats only contains a single item, this format is used for all lines and can also
be the CommonStyle ‘lines’ or ‘points’.

save(name, directory=None, dfmt=’%.8e’)
Save the plot data and (optionally) XXX format file

84 Chapter 18. PyscesPlot2

PySCeS User Guide, Release 0.7.0

•filename the filename
•directory optional (default = current working directory)
•dfmt the data format string (default=’%.8e’)

setAxisLabel(axis, label=”)
Set the axis label:

•axis = x, y, z, xy, xz, yz, zyx
•label = string (default=’‘)

Called with only the axis argument clears the axis label.

setGraphTitle(title=’PySCeS Plot’)
Set the graph title, unset if title=None

•title (string, default=’PySCeS Plot’) the graph title

setGrid(value)
Display or remove graph grid.

•value (boolean) True (on) or False (off)

setKey(value=False)
Enable or disable the current plot key, no arguments removes key.

•value boolean (default = False)

setLogScale(axis)
Set axis to logscale where:

•axis = x, y, z, xy, xz, yz, zyx

setNoLogScale(axis)
Set axis to a linear scale where:

•axis = x, y, z, xy, xz, yz, zyx

setRange(axis, min=None, max=None)
Set axis range where

•axis = x, y, z, xy, xz, yz, zyx
•min = range(s) lower bound (default=None) autoscale
•max = range(s) upper bound (default=None) autoscale

splot(data, x, y, z, title=”, format=”)
Plot a surface data[z] vs data[y] vs data[x] where:

•data the data array
•x x column index
•y y column index
•z z column index
•title is the surface key
•format is the XXX format string (default=’‘)

Format can also be the CommonStyle ‘lines’ or ‘points’.

splotSurfaces(data, x, y, z=, [], titles=, [], formats=, [”])
Plot data[z1, z2,] vs data[y] vs data[x] where:

•data the data array

85

PySCeS User Guide, Release 0.7.0

•x x column index
•y y column index
•z list of z column indexes, if empty all of z not including x, y are plotted
•titles is a list of surface keys, if empty Surf1, Surf2, Surf3 is used
•formats is a list (per line) of XXX format strings (default=’‘).

If formats only contains a single item, this format is used for all surfaces and can
also be the CommonStyle ‘lines’ or ‘points’.

wait(seconds=3)
Wait seconds (default = 3) or until enter is pressed (seconds = -1)

class PyscesUPI()
This is the frontend to the PySCeS Unified Plotting Interface (pysces.plt.*) that allows
one to specify which backend should be used to plot when a UPI method is called. More
than one interface can be active at the same time and so far the Matplotlib and GnuPlot
backends are available for use.

This is an experiment which must be refactored into a more general way of doing things.
Basically, I want an instance of the abstract plotting class which will plot to one, any or
all currently available backends. If anybody has an idea how I can generate this class
automatically please let me know ;-)

closeAll()
Close all active Matplolib figures

export(name, directory=None, type=’png’)
Export the current plot as a <format> file.

•filename the filename
•directory optional (default = current working directory)
•type the file format (default=’png’).

Currently only PNG is guaranteed to be available in all interfaces.

p_activateInterface(interface)
Activate an interface that has been set with p_setInterface() but deactivated with
p_deactivateInterface

•interface one of [’matplotlib’,’gnuplot’]

p_deactivateInterface(interface)
Deactivate the interface. This does not delete the interface and it is possible to
reactivate the deactivated interface with p_activateInterface.

•interface one of [’matplotlib’,’gnuplot’]

p_setInterface(name, instance)
Add an interface to the backend selector

•name the interface name currently one of [’matplotlib’,’gnuplot’]
•instance an instance of a PlotBase derived (UPI) interface

plot(data, x, y, title=”, format=”)
Plot a single line data[y] vs data[x] where:

•data the data array
•x x column index

86 Chapter 18. PyscesPlot2

PySCeS User Guide, Release 0.7.0

•y y column index
•title is the line key
•format is the backend format string (default=’‘)

plotLines(data, x, y=, [], titles=, [], formats=, [”])
Plot a multiple lines data[y1, y2,] vs data[x] where:

•data the data array
•x x column index
•y is a list of line indexes, if empty all of y not including x is plotted
•titles is a list of line keys, if empty Line1,Line2,Line3 is used
•formats is a list (per line) of XXX format strings.

If formats only contains a single item, this format is used for all lines.

replot()
Replot the current figure for all active interfaces

save(name, directory=None, dfmt=’%.8e’)
Save the plot data and (optionally) XXX format file

•filename the filename
•directory optional (default = current working directory)
•dfmt the data format string (default=’%.8e’)

setAxisLabel(axis, label=”)
Set the axis label:

•axis = x, y, z, xy, xz, yz, zyx
•label = string (default=None)

Called with only the axis argument clears the axis label.

setGraphTitle(title=’PySCeS Plot’)
Set the graph title, unset if title=None

•title (string, default=’PySCeS Plot’) the graph title

setGrid(value)
Display or remove graph grid.

•value (boolean) True (on) or False (off)

setKey(value=False)
Enable or disable the current plot key, no arguments removes key.

•value boolean (default = False)

setLogScale(axis)
Set axis to logscale where:

•axis = x, y, z, xy, xz, yz, zyx

setNoLogScale(axis)
Set axis to a linear scale where:

•axis = x, y, z, xy, xz, yz, zyx

setRange(axis, min=None, max=None)
Set axis range where

87

PySCeS User Guide, Release 0.7.0

•axis = x, y, z, xy, xz, yz, zyx
•min = range(s) lower bound (default=None) autoscale
•max = range(s) upper bound (default=None) autoscale

splot(data, x, y, z, title=”, format=”)
Plot a surface data[z] vs data[y] vs data[x] where:

•data the data array
•x x column index
•y y column index
•z z column index
•title is the surface key
•format is the XXX format string (default=’‘)

splotSurfaces(data, x, y, z=, [], titles=, [], formats=, [”])
Plot data[z1, z2,] vs data[y] vs data[x] where:

•data the data array
•x x column index
•y y column index
•z list of z column indexes, if empty all of z not including x, y are plotted
•titles is a list of surface keys, if empty Surf1, Surf2, Surf3 is used
•formats is a list (per line) of XXX format strings (default=’‘).

If formats only contains a single item, this format is used for all surfaces.

88 Chapter 18. PyscesPlot2

CHAPTER

NINETEEN

PyscesModel

This module contains the core PySCeS classes which create the model and associated data
objects

class BagOfStuff(matrix, row, col)
A collection of attributes defined by row and column lists used by Response coefficients
etc matrix is an array of values while row/col are lists of row colummn name strings

get(attr1, attr2)
Returns a single attribute “attr1_attr2” or None

list()
Return all attributes as a attr:val dictionary

load()

select(attr, search=’a’)
Return a dictionary of <attr>_<name>, <name>_<attr> : val or {} if none If attr
exists as an index for both left and right attr then: search=’a’ : both left and right
attributes (default) search=’l’ : left attributes only search=’r’ : right attributes

class Event(name, mod)
Event’s have triggers and fire EventAssignments when required. Ported from Core2.

reset()

setAssignment(var, formula)

setTrigger(formula, delay=0.0)

class EventAssignment(name, mod)
Event assignments are actions that are triggered by an event. Ported from Core2 to build
an event handling framework fro PySCeS

evaluateAssignment()

setFormula(formula)

setVariable(var)

class Function(name, mod)
Function class ported from Core2 to enable the use of functions in PySCeS.

addFormula(formula)

setArg(var, value=None)

89

PySCeS User Guide, Release 0.7.0

class IntegrationDataObj()
This class is specifically designed to store the results of a time simulation It has methods
for setting the Time, Labels, Species and Rate data and getting Time, Species and Rate
(including time) arrays. However, of more use:

•getOutput(*args) feed this method species/rate labels and it will return an array of
[time, sp1, r1,]

•getDataAtTime(time) the data generated at time point “time”.

•getDataInTimeInterval(time, bounds=None) more intelligent version of the above
returns an array of all data points where: time-bounds <= time <= time+bounds

getAllSimData(lbls=False)
Return all available data as time+species+rates+rules if lbls=True returns (ar-
ray,lables) else just array

getDataAtTime(time)
Return all data generated at “time”

getDataInTimeInterval(time, bounds=None)
getDataInTimeInterval(time, bounds=None) returns an array of all data points
where: time-bounds <= time <= time+bounds where bound defaults to stepsize

getOutput(*args)
Old alias for getSimData() getOutput(*args) feed this method species/rate labels
and it will return an array of [time, sp1, r1,]

getRates(lbls=False)
return time+rate array

getRules(lbls=False)
Return time+rule array

getSimData(*args, **kwargs)
getSimData(*args) feed this method species/rate labels and it will return an array of
[time, sp1, r1,]

getSpecies(lbls=False)
return time+species array

getTime(lbls=False)
return the time vector

getXData(lbls=False)
Return time+xdata array

setLabels(species=None, rates=None, rules=None)
set the species, rate and rule label lists

setRates(rates, lbls=None)
set the rate array

setRules(rules, lbls=None)
Set the results of rate rules

setSpecies(species, lbls=None)
Set the species array

90 Chapter 19. PyscesModel

PySCeS User Guide, Release 0.7.0

setTime(time, lbl=None)
Set the time vector

setXData(xdata, lbls=None)
Sets extra simulation data

class NewCoreBase()
Core2 base class, needed here as we use Core2 derived classes in PySCes

get(attr)
Return an attribute whose name is str(attr)

getName()

setName(name)

class NumberBase()
Derived Core2 number class.

getValue()

setValue(v)

class PieceWise(pwd, mod)
Generic piecewise class adapted from Core2 that generates a compiled Python code block
that allows evaluation of arbitrary length piecewise functions. Piecewise statements
should be defined in assignment rules as piecewise(<Piece>, <Conditional>, <Other-
Value>) where there can be an arbitrary number of <Piece>, <Conditional> pairs.

•args a dictionary of piecewise information generated by the InfixParser as Infix-
Parser.piecewises

class PysMod(File=None, dir=None, loader=’file’, fString=None)
This is the PySCeS Core class, a.k.a. pysces.model()

CVODE(initial)
CVODE(initial)
PySCeS interface to the CVODE integration algorithm.
Arguments: initial: vector containing initial species concentrations

CVODE_EVENTS(t, svec, eout, f_data)

CVODE_VPYTHON(s)
Future VPython hook for CVODE

EvalCC()
EvalCC()
Calculate the MCA control coefficients using the current steady-state solution.
mod.__settings__[”mca_ccj_upsymb”] = 1 attach the flux control coefficients to the
model instance mod.__settings__[”mca_ccs_upsymb”] = 1 attach the concentration
control coefficients to the model instance
Arguments: None

EvalEigen()
EvalEigen()
Calculate the eigenvalues or vectors of the unscaled Jacobian matrix and thereby
analyse the stability of a system
Arguments: None

91

PySCeS User Guide, Release 0.7.0

EvalEpar(input=None, input2=None)
EvalEpar(input=None,input2=None)
Calculate reaction elasticities towards the parameters.
Both inputs (input1=species,input2=rates) should be valid (steady state for MCA)
solutions and given in the correct order for them to be used. If either or both are
missing the last state values are used automatically. Elasticities are scaled using
input 1 and 2.
mod.__settings__[”elas_epar_upsymb”] = 1 attach individual elasticity symbols to
model instance
Arguments:
input [default=None]: species concentration vector input2 [default=None]: reaction
rate vector

EvalEvar(input=None, input2=None)
EvalEvar(input=None,input2=None)
Calculate reaction elasticities towards the variable species.
Both inputs (input1=species,input2=rates) should be valid (steady state for MCA)
solutions and given in the correct order for them to be used. If either or both are
missing the last state values are used automatically. Elasticities are scaled using in-
put 1 and 2. mod.__settings__[”elas_evar_upsymb”] = 1 attach individual elasticity
symbols to model instance
Arguments:
input [default=None]: species concentration vector input2 [default=None]: reaction
rate vector

EvalRC()
EvalRC()
Calculate the MCA response coefficients using the current steady-state solution.
Arguments: None

FINTSLV(initial)
FINTSLV(initial)
Forward integration steady-state solver. Finds a steady state when the maxi-
mum change in species concentration falls within a specified tolerance. Returns
the steady-state solution and a error flag. Algorithm controls are available as
mod.fintslv_<control>
Arguments:
initial: vector of initial concentrations

Fix_S_fullinput(s_vec, amounts=True)
Fix_S_fullinput(s_vec)
Using the full concentration vector evaluate the dependent species
Arguments:
s_vec: a full length concentration vector

Fix_S_indinput(s_vec, amounts=True)
Fix_S_indinput(s_vec, amounts=True) whether to use self.__tvec_a__ (default) or
self.__tvec_c__

92 Chapter 19. PyscesModel

PySCeS User Guide, Release 0.7.0

Given a vector of independent species evaluate and return a full concentration vec-
tor.
Arguments:
s_vec: vector of independent species

Fix_Sim(metab, flux=0, par=0)
Deprecated

FluxGenSim(s)
Deprecated

Forcing_Function()
Forcing_Function()
User defined forcing function either defined in the PSC input file as !F or by over-
writing this method. This method is evaluated prior to every rate equation evalua-
tion.
Arguments: None

HYBRD(initial)
HYBRD(initial)
PySCeS interface to the HYBRD solver. Returns a steady-state solution and
error flag. Good general purpose solver. Algorithm controls are available as
mod.hybrd_<control>
Arguments:
initial: vector of initial species concentrations

InitialiseCompartments()

InitialiseEvents()

InitialiseFunctions()

InitialiseInputFile()
InitialiseInputFile()
Parse the input file associated with the PySCeS model instance and assign the basic
model attributes
Arguments: None

InitialiseModel()
InitialiseModel()
Initialise and set up dynamic model attributes and methods using the model defined
in the associated PSC file
Arguments: None

InitialiseOldFunctions()
InitialiseOldFunctions()
Parse and initialise user defined functions specified by !T !U in the PSC input file
Arguments: None

InitialiseRuleChecks()

InitialiseRules()

93

PySCeS User Guide, Release 0.7.0

LSODA(initial)
LSODA(initial)
PySCeS interface to the LSODA integration algorithm. Given a set of initial condi-
tions LSODA returns an array of species concentrations and a status flag. LSODA
controls are accessible as mod.lsoda_<control>
Arguments:
initial: vector containing initial species concentrations

LoadFromFile(File=None, dir=None)
__init__(File=None,dir=None)
Initialise a PySCeS model object with PSC file that can be found in optional di-
rectory. If a a filename is not supplied the pysces.model_dir directory contents is
displayed and the model name can be entered at the promp (<ctrl>+C exits the
loading process).
Arguments:
File [default=None]: the name of the PySCeS input file dir [de-
fault=pysces.model_dir]: the optional directory where the PSC file can be
found

LoadFromString(File=None, fString=None)
Docstring required

NLEQ2(initial)
NLEQ2(initial)
PySCeS interface to the (optional) NLEQ2 algorithm. This is a powerful steady-
state solver that can usually find a solution for when HYBRD() fails. Algorithm
controls are available as: mod.nleq2_<control> Returns as steady-state solution and
error flag.
Arguments:
initial: vector of initial species concentrations

PITCON(scanpar, scanpar3d=None)
PITCON(scanpar,scanpar3d=None)
PySCeS interface to the PITCON continuation algorithm. Single parameter con-
tinuation has been implemented as a “scan” with the continuation being initialised
in mod.pitcon_par_space. The second argument does not affect the continuation
but can be used to insert a third axis parameter into the results. Returns an array
containing the results. Algorithm controls are available as mod.pitcon_<control>
Arguments:
scanpar: the model parameter to scan (x5) scanpar3d [default=None]: additional
output parameter for 3D plots

ParGenSim()
Deprecated

ReloadInitFunc()
ReloadInitFunc()
Recompile and execute the user initialisations (!I) as defined in the PSC input file.
and in mod.__InitFuncs__
Arguments: None

94 Chapter 19. PyscesModel

PySCeS User Guide, Release 0.7.0

ReloadUserFunc()
ReloadUserFunc()
Recompile and execute the user function (!U) from the input file.
Arguments: None

ResetNumberFormat()
ResetNumberFormat()
Reset PySCeS default number format stored as mod.mode_number format to %2.4e
Arguments: None

ScaleKL(input, input2)
ScaleKL(input,input2)
Scale the K and L matrices with current steady state (if either input1 or 2 == None)
or user input.
Arguments:
input: vector of species concentrations input2: vector of reaction rates

Scan1(range1=, [], runUF=0)
Scan1(range1=[],runUF=0)
Perform a single dimension parameter scan using the steady-state solvers. The
parameter to be scanned is defined (as a model attribute “P”) in mod.scan_in while
the required output is entered into the list mod.scan_out. Results of a parameter
scan can be easilly viewed with Scan1Plot().
mod.scan_in - a model attribute written as in the input file (eg. P, Vmax1 etc)
mod.scan_out - a list of required output [’A’,’T2’, ...] mod.scan_res - the results of
a parameter scan mod.__settings__[”scan1_mca_mode”] - force the scan algorithm
to evaluate the elasticities (1) and control coefficients (2) (this should also be auto-
detected by the Scan1 method).
Arguments:
range1 [default=[]]: a predefined range over which to scan. runUF [default=0]: run
(1) the user defined function mod.User_Function (!U) before evaluating the steady
state.

Scan1Plot(plot=, [], title=None, log=None, format=’lines’, filename=None)
Plot the results of a parameter scan generated with Scan1()

•plot if empty mod.scan_out is used, otherwise any subset of mod.scan_out (de-
fault=[])

•filename the filename of the PNG file (default=None, no export)
•title the plot title (default=None)
•log if None a linear axis is assumed otherwise one of [’x’,’xy’,’xyz’] (de-
fault=None)

•format the backend dependent line format (default=’lines’) or the Common-
Style ‘lines’ or ‘points’.

Scan2D(p1, p2, output, log=False)
Generate a 2 dimensional parameter scan using the steady-state solvers.

•p1 is a list of [parameter1, start, end, points]
•p2 is a list of [parameter2, start, end, points]

95

PySCeS User Guide, Release 0.7.0

•output the steady-state variable e.g. ‘J_R1’ or ‘A_ss’
•log scan using log ranges for both axes

Scan2DPlot(title=None, log=None, format=’lines’, filename=None)
Plot the results of a 2D scan generated with Scan2D

•filename the filename of the PNG file (default=None, no export)
•title the plot title (default=None)
•log if None a linear axis is assumed otherwise one of [’x’,’xy’,’xyz’] (de-
fault=None)

•format the backend dependent line format (default=’lines’) or the Common-
Style ‘lines’ or ‘points’.

SerialDecode(filename)
SerialDecode(filename)
Decode and return a serialised object saved with SerialEncode.
Arguments:
filename: the filename (.pscdat is assumed)

SerialEncode(data, filename)
SerialEncode(data,filename)
Serialise and save a Python object using a binary pickle to file. The serialised object
is saved as <filename>.pscdat in the directory defined by mod.model_serial.
Arguments:
data: pickleable Python object filename: the ouput filename

SetLoud()
SetLoud()
Turn on as much solver reporting noise as possible:
mod.__settings__[’hybrd_mesg’] = 1 mod.__settings__[’nleq2_mesg’] = 1
mod.__settings__[”lsoda_mesg”] = 1 mod.__settings__[’mode_state_mesg’] = 1
mod.__settings__[’solver_switch_warning’] = True
Arguments: None

SetQuiet()
SetQuiet()
Turn off as much solver reporting noise as possible:
mod.__settings__[’hybrd_mesg’] = 0 mod.__settings__[’nleq2_mesg’] = 0
mod.__settings__[”lsoda_mesg”] = 0 mod.__settings__[’mode_state_mesg’] = 0
mod.__settings__[’solver_switch_warning’] = False
Arguments: None

SetStateSymb(flux, metab)
SetStateSymb(flux,metab)
Sets the individual steady-state flux and concentration attributes as
mod.J_<reaction> and mod.<species>_ss
Arguments:
flux: the steady-state flux array metab: the steady-state concentration array

SimPlot(plot=’species’, filename=None, title=None, log=None, format=’lines’)
Plot the simulation results, uses the new UPI pysces.plt interface:

96 Chapter 19. PyscesModel

PySCeS User Guide, Release 0.7.0

•plot: output to plot (default=’species’)

•‘all’ rates and species
•‘species’ species
•‘rates’ reaction rates
•[’S1’, ‘R1’,] a list of model attributes (species, rates)

•filename if not None file is exported to filename (default=None)
•title the plot title (default=None)
•log use log axis for ‘x’, ‘y’, ‘xy’ (default=None)
•format line format, backend dependant (default=’‘)

Simulate(userinit=0)
PySCeS integration driver routine that evolves the system over the time. Resulting
array of species concentrations is stored in the mod.data_sim object Initial concen-
trations can be selected using mod.__settings__[’mode_sim_init’] (default=0):

•0 initialise with intial concentrations
•1 initialise with a very small (close to zero) value
•2 initialise with results of previously calculated stead state
•3 initialise with final point of previous simulation

userinit values can be (default=0):

•0: initial species concentrations intitialised from (mod.S_init), time array cal-
culated from sim_start/sim_end/sim_points

•1: intial species concentrations intitialised from (mod.S_init) existing
“mod.sim_time” used directly

•2: initial species concentrations read from “mod.__inspec__”, “mod.sim_time”
used directly

State()
State()
PySCeS non-linear solver driver routine. Solve for a steady state using HY-
BRD/NLEQ2/FINTSLV algorithms. Results are stored in mod.state_species and
mod.state_flux. The results of a steady-state analysis can be viewed with the
mod.showState() method.
The solver can be initialised in 3 ways using the mode_state_init switch.
mod.mode_state_init = 0 initialize with species initial values mod.mode_state_init
= 1 initialize with small values mod.mode_state_init = 2 initialize with the final
value of a 10-logstep simulation numpy.logspace(0,5,18)
Arguments: None

Stoich_nmatrix_SetValue(species, reaction, value)
Stoich_nmatrix_SetValue(species,reaction,value)
Change a stoichiometric coefficient’s value in the N matrix. Only a coefficients
magnitude may be set, in other words a a coefficient’s value must remain nega-
tive, positive or zero. After changing a coefficient it is necessary to Reanalyse the
stoichiometry.
Arguments:
species: species name (s0) reaction: reaction name (R4) value: new coefficient
value

97

PySCeS User Guide, Release 0.7.0

Stoichiometry_Analyse(override=0, load=0)
Stoichiometry_Analyse(override=0,load=0)
Perform a structural analyses. The default behaviour is to construct and analyse
the model from the parsed model information. Overriding this behaviour analyses
the stoichiometry based on the current stoichiometric matrix. If load is specified
PySCeS tries to load a saved stoichiometry, otherwise the stoichiometric analysis is
run. The results of the analysis are checked for floating point error and nullspace
rank consistancy.
Arguments:
override [default=0]: override stoichiometric analysis intialisation from parsed data
load [default=0]: load a presaved stoichiometry

Stoichiometry_Init(nmatrix, load=0)
Stoichiometry_Init(nmatrix,load=0)
Initialize the model stoichiometry. Given a stoichiometric matrix N, this method
will return an instantiated PyscesStoich instance and status flag. Alternatively, if
load is enabled, PySCeS will attempt to load a previously saved stoichiometric
analysis (saved with Stoichiometry_Save_Serial) and test it’s correctness. The sta-
tus flag indicates 0 = reanalyse stoichiometry or 1 = complete structural analysis
preloaded.
Arguments:
nmatrix: The input stoichiometric matrix, N load [default=0]: try to load a saved
stoichiometry (1)

Stoichiometry_Load_Serial()
Stoichiometry_Load_Serial()
Load a saved stoichiometry saved with mod.Stoichiometry_Save_Serial() and re-
turn a stoichiometry instance.
Arguments: None

Stoichiometry_ReAnalyse()
Stoichiometry_ReAnalyse()
Reanalyse the stoichiometry using the current N matrix ie override=1 (for use with
mod.Stoich_matrix_SetValue)
Arguments: None

Stoichiometry_Save_Serial()
Serialize and save a Stoichiometric instance to binary pickle Stoichiome-
try_Save_Serial()
Serilaise and save the current model stoichiometry to a file with name
<model>_stoichiometry.pscdat in the mod.__settings__[’serial_dir’] directory (de-
fault: mod.model_output/pscdat)
Arguments: None

TestSimState(endTime=10000, points=101, diff=1.0000000000000001e-005)
Deprecated

User_Function()
Deprecated

98 Chapter 19. PyscesModel

PySCeS User Guide, Release 0.7.0

Write_array(input, File=None, Row=None, Col=None, close_file=0, separator=’ ’)
Write_array(input,File=None,Row=None,Col=None,close_file=0,separator=’ ‘)
Write an array to File with optional row/col labels. A ‘,’ separator can be specified
to create a CSV style file.
mod.__settings__[’write_array_header’]: add <filename> as a header line (1 = yes,
0 = no) mod.__settings__[’write_array_spacer’]: add a space after the header line
(1 = yes, 0 = no) mod.__settings__[’write_arr_lflush’]: set the flush rate for large
file writes
Arguments:
input: the array to be written File [default=None]: an open, writable Python file ob-
ject Row [default=None]: a list of row labels Col [default=None]: a list of column
labels close_file [default=0]: close the file after write (1) or leave open (0) separator
[default=’ ‘]: the column separator to use

Write_array_html(input, File=None, Row=None, Col=None, name=None,
close_file=0)

Write_array_html(input,File=None,Row=None,Col=None,name=None,close_file=0)
Write an array as an HTML table (no header/footer) or complete document. Tables
are formatted with coloured columns if they exceed a specified size.
mod.__settings__[’write_array_html_header’]: write the HTML document header
mod.__settings__[’write_array_html_footer’]: write the HTML document footer
Arguments:
input: the array to be written File [default=None]: an open, writable Python file ob-
ject Row [default=None]: a list of row labels Col [default=None]: a list of column
labels name [default=None]: an HTML table description line close_file [default=0]:
close the file after write (1) or leave open (0)

Write_array_latex(input, File=None, Row=None, Col=None, close_file=0)
Write_array_latex(input,File=None,Row=None,Col=None,close_file=0)
Write an array to an open file as a ‘LaTeX’ {array}
Arguments:
input: the array to be written File [default=None]: an open, writable Python file ob-
ject Row [default=None]: a list of row labels Col [default=None]: a list of column
labels close_file [default=0]: close the file after write (1) or leave open (0)

doEigen()
doEigen()
Calculate the eigenvalues, automatically performs a steady state and elasticity anal-
ysis.
Calls: State() EvalEvar() Evaleigen()
Arguments: None

doEigenMca()
doEigenMca()
Calculate a full Control Analysis and eigenvalues, automatically performs a steady
state, elasticity, control analysis.
Calls: State() EvalEvar() EvalCC() Evaleigen()
Arguments: None

99

PySCeS User Guide, Release 0.7.0

doEigenShow()
doEigenShow()
Calculate the eigenvalues, automatically performs a steady state and elasticity anal-
ysis and displays the results.
Calls: doEigen() showEigen()
Arguments: None

doElas()
doElas()
Calculate the model elasticities, this method automatically calculates a steady state.
Calls: State() EvalEvar() EvalEpar()
Arguments: None

doLoad(stoich_load=0)
doLoad(stoich_load=0)
Load and instantiate a PySCeS model so that it can be used for further analyses.
Calls model loading subroutines: Stoichiometry_Analyse() [over-
ride=0,load=stoich_load] InitialiseModel()
Arguments:
stoich_load [default=0]: try to load a stoichiometry saved with Stoichiome-
try_Save_Serial()

doMca()
doMca()
Perform a complete Metabolic Control Analysis on the model, automatically calcu-
lates a steady state.
Calls: State() EvalEvar() EvalEpar() EvalCC()
Arguments: None

doMcaRC()
doMca()
Perform a complete Metabolic Control Analysis on the model, automatically calcu-
lates a steady state.
Calls: State() EvalEvar() EvalEpar() EvalCC() EvalRC()
Arguments: None

doSim(end=10.0, points=21)
doSim(end=10.0,points=20.0)
Run a time simulation from t=0 to t=sim_end with sim_points.
Calls: Simulate()
Arguments:
end [default=10.0]: simulation end time points [default=20.0]: number of points in
the simulation

doSimPerturb(pl, end)
Deprecated: use events instead

doSimPlot(end=10.0, points=21, plot=’species’, fmt=’lines’, filename=None)
Run a time simulation from t=0 to t=sim_end with sim_points and plot the results.
The required output data and format can be set:

100 Chapter 19. PyscesModel

PySCeS User Guide, Release 0.7.0

•end* the end time (default=10.0)
•points the number of points in the simulation (default=20.0)
•plot (default=’species’) select output data

•‘species’
•‘rates’
•‘all’ both species and rates

•fmt plot format, UPI backend dependent (default=’‘) or the CommonStyle
‘lines’ or ‘points’.

•filename if not None (default) then the plot is exported as filename.png

Calls: - Simulate() - SimPlot()
doState()

doState()
Calculate the steady-state solution of the system.
Calls: State()
Arguments: None

doStateShow()
doStateShow()
Calculate the steady-state solution of a system and show the results.
Calls: State() showState()
Arguments: None

showCC(File=None)
showCC(File=None)
Print all control coefficients as ‘LaTex’ formatted strings to the screen or file.
Arguments:
File [default=None]: an open, writable Python file object

showConserved(File=None, screenwrite=1, fmt=’%2.3f’)
showConserved(File=None,screenwrite=1,fmt=’%2.3f’)
Print the moiety conserved cycles present in the system.
Arguments:
File [default=None]: an open writable Python file object screenwrite [default=1]:
write results to console (0 means no reponse) fmt [default=’%2.3f’]: the output
number format string

showEigen(File=None)
showEigen(File=None)
Print the eigenvalues and stability analysis of a system generated with EvalEigen()
to the screen or file.
Arguments:
File [default=None]: an open, writable Python file object

showElas(File=None)
showElas(File=None)
Print all elasticities to screen or file as ‘LaTeX’ compatible strings. Calls showE-
var() and showEpar()

101

PySCeS User Guide, Release 0.7.0

Arguments:
File [default=None]: an open writable Python file object

showEpar(File=None)
showEpar(File=None)
Write out all nonzero parameter elasticities as ‘LaTeX’ formatted strings, alterna-
tively write to file.
Arguments:
File [default=None]: an open writable Python file object

showEvar(File=None)
showEvar(File=None)
Write out all variable elasticities as ‘LaTeX’ formatted strings, alternatively write
results to a file.
Arguments:
File [default=None]: an open writable Python file object

showFluxRelationships(File=None)
showConserved(File=None)
Print the flux relationships present in the system.
Arguments:
File [default=None]: an open writable Python file object

showK(File=None, fmt=’%2.3f’)
showK(File=None,fmt=’%2.3f’)
Print the Kernel matrix (K), including row and column labels to screen or File.
Arguments:
File [default=None]: an open, writable Python file object fmt [default=’%2.3f’]:
output number format

showL(File=None, fmt=’%2.3f’)
showL(File=None,fmt=’%2.3f’)
Print the Link matrix (L), including row and column labels to screen or File.
Arguments:
File [default=None]: an open, writable Python file object fmt [default=’%2.3f’]:
output number format

showModel(filename=None, filepath=None, skipcheck=0)
showModel(filename=None,filepath=None,skipcheck=0)
The PySCeS ‘save’ command, prints the entire model to screen or File in a PSC
format. (Currently this only applies to basic model attributes, ! functions are not
saved).
Arguments:
filename [default=None]: the output PSC file filepath [default=None]: the output
directory skipcheck [default=0]: skip check to see if the file exists (1) auto-averwrite

showModifiers(File=None)
showModifiers(File=None)
Prints the current value of the model’s modifiers per reaction to screen or file.

102 Chapter 19. PyscesModel

PySCeS User Guide, Release 0.7.0

Arguments:
File [default=None]: an open, writable Python file object

showN(File=None, fmt=’%2.3f’)
showN(File=None,fmt=’%2.3f’)
Print the stoichiometric matrix (N), including row and column labels to screen or
File.
Arguments:
File [default=None]: an open, writable Python file object fmt [default=’%2.3f’]:
output number format

showNr(File=None, fmt=’%2.3f’)
showNr(File=None,fmt=’%2.3f’)
Print the reduced stoichiometric matrix (Nr), including row and column labels to
screen or File.
Arguments:
File [default=None]: an open, writable Python file object fmt [default=’%2.3f’]:
output number format

showODE(File=None, fmt=’%2.3f’)
showODE(File=None,fmt=’%2.3f’)
Print a representation of the full set of ODE’s generated by PySCeS to screen or
file.
Arguments:
File [default=None]: an open, writable Python file object fmt [default=’%2.3f’]:
output number format

showODEr(File=None, fmt=’%2.3f’)
showODEr(File=None,fmt=’%2.3f’)
Print a representation of the reduced set of ODE’s generated by PySCeS to screen
or file.
Arguments:
File [default=None]: an open, writable Python file object fmt [default=’%2.3f’]:
output number format

showPar(File=None)
showPar(File=None)
Prints the current value of the model’s parameter values (mod.P) to screen or file.
Arguments:
File [default=None]: an open, writable Python file object

showRate(File=None)
Prints the current rates of all the reactions using the current parameter values and
species concentrations

•File an open, writable Python file object (default=None)
showRateEq(File=None)

showRateEq(File=None)
Prints the reaction stoichiometry and rate equations to screen or File.
Arguments:
File [default=None]: an open, writable Python file object

103

PySCeS User Guide, Release 0.7.0

showSpecies(File=None)
showSpecies(File=None)
Prints the current value of the model’s variable species (mod.X) to screen or file.
Arguments:
File [default=None]: an open, writable Python file object

showSpeciesFixed(File=None)
showSpeciesFixed(File=None)
Prints the current value of the model’s fixed species values (mod.X) to screen or
file.
Arguments:
File [default=None]: an open, writable Python file object

showSpeciesI(File=None)
showSpeciesI(File=None)
Prints the current value of the model’s variable species initial values (mod.X_init)
to screen or file.
Arguments:
File [default=None]: an open, writable Python file object

showState(File=None)
showState(File=None)
Prints the result of the last steady-state analyses. Both steady-state flux’s and
species concentrations are shown.
Arguments:
File [default=None]: an open, writable Python file object

class ReactionObj(mod, name, kl, klrepl=’self.’)
Defines a reaction with a KineticLaw kl8, *formula and name bound to a model instance,
mod.

setKineticLaw(kl, klrepl=’self.’)

class ScanDataObj(par_label)
New class used to store parameter scan data (uses StateDataObj)

addModData(mod, *args)

addPoint(ipar, ssdata)
takes a list/array of input parameter values and the associated ssdata object

closeScan()

getAllScanData(lbls=False)

getFluxes(lbls=False)

getModData(lbls=False)

getRules(lbls=False)

getScanData(*args, **kwargs)
getScanData(*args) feed this method species/flux/rule/mod labels and it will return
an array of [parameter(s), sp1, f1,]

getSpecies(lbls=False)

104 Chapter 19. PyscesModel

PySCeS User Guide, Release 0.7.0

getXData(lbls=False)

setLabels(ssdata)

class StateDataObj()
New class used to store steady-state data.

getAllStateData(lbls=False)
Return all available data as species+fluxes+rules if lbls=True returns (array,labels)
else just array

getFluxes(lbls=False)
return flux array

getRules(lbls=False)
Return rule array

getSpecies(lbls=False)
return species array

getStateData(*args, **kwargs)
getSimData(*args) feed this method species/rate labels and it will return an array of
[time, sp1, r1,]

getXData(lbls=False)
Return xdata array

setFluxes(fluxes, lbls=None)
set the flux array

setRules(rules, lbls=None)
Set the results of rate rules

setSpecies(species, lbls=None)
Set the species array

setXData(xdata, lbls=None)
Sets extra simulation data

class StructMatrix(array, ridx, cidx, row=None, col=None)
This class is specifically designed to store structural matrix information give it an array
and row/col index permutations it can generate its own row/col labels given the label src.

getByIdx(row, col)

getByName(row, col)

getColsByIdx(*args)
Return the columns referenced by index (1,3,5)

getColsByName(*args)
Return the columns referenced by label (‘s’,’x’,’d’)

getIndexes(axis=’all’)
Return the matrix indexes ([rows],[cols]) where axis=’row’/’col’/’all’

getLabels(axis=’all’)
Return the matrix labels ([rows],[cols]) where axis=’row’/’col’/’all’

getRowsByIdx(*args)
Return the rows referenced by index (1,3,5)

105

PySCeS User Guide, Release 0.7.0

getRowsByName(*args)
Return the rows referenced by label (‘s’,’x’,’d’)

setByIdx(row, col, val)

setByName(row, col, val)

setCol(src)
Assuming that the col index array is a permutation (full/subset) of a source label
array by supplying that src to setCol maps the row labels to cidx and creates self.col
(col label list)

setRow(src)
Assuming that the row index array is a permutation (full/subset) of a source label
array by supplying that source to setRow it maps the row labels to ridx and creates
self.row (row label list)

shape()

class WasteManagement()

chkmdir()
chkmdir()

Import and grab pysces.model_dir

Arguments: None

chkpsc(File)
chkpsc(File)

Chekc whether the filename “File” has a ‘.psc’ extension and adds one if not.

Arguments:

File: filename string

106 Chapter 19. PyscesModel

CHAPTER

TWENTY

PyscesScan

PySCeS classes for continuations and multi-dimensional parameter scans

class PITCONScanUtils(model)
Static Bifurcation Scanning utilities using PITCON, call with loaded model object.
Hopefully nobody else was trying to use the older class as it was horrible. This new
one is is leaner, meaner and pretty cool ;-)

analyseData(analysis=’elas’)
Performs “analysis” on the PITCON generated set of steady-state results where
analysis is:

•‘elasv’ = variable elasticities
•‘elasp’ = parameter elasticities
•‘elas’ = all elasticities
•‘mca’ = control coefficients
•‘resp’ = response coefficients
•‘eigen’ = eigen values
•‘all’ = all of the above

Higher level analysis types automatically enable the lower level analysis needed e.g.
selecting ‘mca’ implies ‘elasv’ etc. User output defined with mod.setUserOutput()
is stored in the mod.res_user array.

getArrayListAsArray(array_list)
Stack (concatenate) the list of arrays into a single array.

runContinuation(parameter, low, high, density, par3d=None)
Run the continuation using the following parameters:
Args:

•parameter = str(the parameter to be scanned)
•low = float(lower bound)
•high = float(upper bound)
•density = int(the number of initial points)
•par3d = float(extra 3d parameter to insert into the output array) this parameter
is not set ONLY used in output

After running the continuation the results are stored in numpy arrays

•mod.res_idx = scan parameter values (and optionally par3d)

107

PySCeS User Guide, Release 0.7.0

•mod.res_metab = steady-state species concentrations
•mod.res_flux = steady-state flux values

setUserOuput(*args)
Set the user output required as n string arguments.

class Scanner(mod)
Arbitrary dimension generic scanner. This class is initiated with a loaded PySCeS
model and then allows the user to define scan parameters see self.addScanParameter()
and user output see self.addUserOutput(). Steady-state results are always stored in
self.SteadyStateResults while user output can be found in self.UserOutputResults - brett
2007.

Analyze()
The analysis method, the mode is automatically set by the self.addUserOutput()
method but can be reset by the user.

Run(ReRun=False)
Run the parameter scan

RunAgain()
While it is impossible to change the generator/range structure of a scanner (just
build another one) you can ‘in principle’ change the User Output and run it again.

StoreData()
Internal function which concatenates and stores the data generated by Analyze.

addScanParameter(name, start, end, points, log=False, slave=False)
Add a parameter to scan (an axis if you like) input is:

•str(name) = model parameter name
•float(start) = lower bound of scan
•float(end) = upper bound of scan
•int(points) = number of points in scan range
•bool(log) = Use a logarithmic (base10) range
•bool(slave) = Scan parameters can be masters i.e. an independent axis or
a “slave” which moves synchronously with the previously defined parameter
range.

The first ScanParameter cannot be a slave.

addUserOutput(*kw)
Add output parameters to the scanner as a collection of one or more string argu-
ments (‘O1’,’O2’,’O3’, ‘On’). These are evaluated at each iteration of the scan-
ner and stored in the self.UserOutputResults array. The list of output is stored in
self.UserOutputList.

getOutput()
Will be the new output function.

getResultMatrix(stst=False)
Returns an array of result data. I’m keepin this for backwards compatibility but it
will be replaced by a getOutput() method when this scanner is updated to use the
new data_scan object.

•stst add steady-state data to output array

108 Chapter 20. PyscesScan

PySCeS User Guide, Release 0.7.0

If stst is True output has dimensions [scan_parameters]+[state_species+state_flux]+[Useroutput]
otherwise [scan_parameters]+[Useroutput].

makeRange(start, end, points, log)
Should be pretty self evident it defines a range:

•float(start)
•float(end)
•int(points)
•bool(log)

rangeGen(name, start, end, points, log)
This is where things get more interesting. This function creates a cycling generator
which loops over a parameter range.

•parameter name
•start value
•end value
•points
•log scale

resetInputParameters()
Just remembered what this does, I think it resets the input model parameters after a
scan run.

setModValue(name, value)
An easy one, assign value to name of the instantiated PySCeS model attribute

stepGen(offset)
Another looping generator function. The idea here is to create a set of generators for
the scan parameters. These generators then all fire together and determine whether
the range generators should advance or not. Believe it or not this dynamically cre-
ates the matrix of parameter values to be evaluated.

testInputParameter(name)
This tests whether a str(name) is an attribute of the model

109

PySCeS User Guide, Release 0.7.0

110 Chapter 20. PyscesScan

CHAPTER

TWENTYONE

PyscesInterfaces

Interfaces converting to and from PySCeS models - makes use of Brett’s Core2

class Core2interfaces()
Defines interfaces for translating PySCeS model objects into and from other formats.

convertSBML2PSC(sbmlfile, sbmldir=None, pscfile=None, pscdir=None)
Convert an SBML file to a PySCeS MDL input file.

•sbmlfile: the SBML file name
•sbmldir: the directory of SBML files (if None current working directory is
assumed)

•pscfile: the output PSC file name (if None sbmlfile.psc is used)
•pscdir: the PSC output directory (if None the pysces.model_dir is used)

readMod2Core(mod, iValues=True)
Convert a PySCeS model object to core2

•iValues: if True then the models initial values are used (or the current values if
False).

readSBMLToCore(filename, directory=None)
Reads the SBML file specified with filename and converts it into a core2 object
pysces.interface.core

•filename: the SBML file
•directory: (optional) the SBML file directory None means try the current work-
ing directory

writeCore2PSC(filename=None, directory=None, getstrbuf=False)
Writes a Core2 object to a PSC file.

•filename: writes <filename>.xml or <model_name>.xml if None
•directory: (optional) an output directory
•getstrbuf : if True a StringIO buffer is returned instead of writing to disk

writeCore2SBML(filename=None, directory=None, getdocument=False)
Writes Core2 object to an SBML file.

•filename: writes <filename>.xml or <model_name>.xml if None
•directory: (optional) an output directory
•getdocument: if True an SBML document object is returned instead of writing
to disk or

111

PySCeS User Guide, Release 0.7.0

writeMod2PSC(mod, filename=None, directory=None, iValues=True, getstrbuf=False)
Writes a PySCeS model object to a PSC file.

•filename: writes <filename>.psc or <model_name>.psc if None
•directory: (optional) an output directory
•iValues: if True then the models initial values are used (or the current values if
False).

•getstrbuf : if True a StringIO buffer is returned instead of writing to disk

writeMod2SBML(mod, filename=None, directory=None, iValues=True, getdocu-
ment=False, getstrbuf=False)

Writes a PySCeS model object to an SBML file.

•filename: writes <filename>.xml or <model_name>.xml if None
•directory: (optional) an output directory
•iValues: if True then the models initial values are used (or the current values if
False).

•getdocument: if True an SBML document object is returned instead of writing
to disk or

•getstrbuf : if True a StringIO buffer is returned instead of writing to disk

112 Chapter 21. PyscesInterfaces

CHAPTER

TWENTYTWO

PyscesStoich

PySCeS stoichiometric analysis classes.

class MathArrayFunc()
PySCeS array functions - used by Stoich

MatrixFloatFix(mat, val=1.0000000000000001e-015)
MatrixFloatFix(mat,val=1.e-15)
Clean an array removing any floating point artifacts defined as being smaller than a
specified value. Processes an array inplace
Arguments:
mat: the input 2D array val [default=1.e-15]: the threshold value (effective zero)

MatrixValueCompare(matrix)
MatrixValueCompare(matrix)
Finds the largest/smallest abs(value) > 0.0 in a matrix. Returns a tuple containing
(smallest,largest) values
Arguments:
matrix: the input 2D array

SwapCol(res_a, r1, r2)
SwapCol(res_a,r1,r2)
Swap two columns using BLAS swap, arrays can be (or are upcast to) type double
(d) or double complex (D). Returns the colswapped array
Arguments:
res_a: the input array r1: the first column to be swapped r2: the second column to
be swapped

SwapCold(res_a, c1, c2)
SwapCold(res_a,c1,c2)
Swaps two double (d) columns in an array using BLAS DSWAP. Returns the col-
swapped array.
Arguments:
res_a: input array c1: column index 1 c2: column index 2

SwapColz(res_a, c1, c2)
SwapColz(res_a,c1,c2)
Swaps two double complex (D) columns in an array using BLAS ZSWAP. Returns
the colswapped array.

113

PySCeS User Guide, Release 0.7.0

Arguments:
res_a: input array c1: column index 1 c2: column index 2

SwapElem(res_a, r1, r2)
SwapElem(res_a,r1,r2)
Swaps two elements in a 1D vector
Arguments:
res_a: the input vector r1: index 1 r2: index 2

SwapRow(res_a, r1, r2)
SwapRow(res_a,r1,r2)
Swaps two rows using BLAS swap, arrays can be (or are upcast to) type double (d)
or double complex (D). Returns the rowswapped array.
Arguments:
res_a: the input array r1: the first row index to be swapped r2: the second row index
to be swapped

SwapRowd(res_a, r1, r2)
SwapRowd(res_a,c1,c2)
Swaps two double (d) rows in an array using BLAS DSWAP. Returns the
rowswapped array.
Arguments:
res_a: input array c1: row index 1 c2: row index 2

SwapRowz(res_a, r1, r2)
SwapRowz(res_a,c1,c2)
Swaps two double complex (D) rows in an array using BLAS ZSWAP. Returns the
rowswapped array.
Arguments:
res_a: input array c1: row index 1 c2: row index 2

assertRank2(*arrays)
assertRank2(*arrays)
Check that we are using a 2D array
Arguments:
*arrays: input array(s)

castCopyAndTranspose(type, *arrays)
castCopyAndTranspose(type, *arrays)
Cast numeric arrays to required type and transpose
Arguments:
type: the required type to cast to *arrays: the arrays to be processed

commonType(*arrays)
commonType(*arrays)
Numeric detect and set array precision (will be replaced with new scipy.core com-
patible code when ready)
Arguments:
*arrays: input arrays

114 Chapter 22. PyscesStoich

PySCeS User Guide, Release 0.7.0

class Stoich(input)
PySCeS stoichiometric analysis class: initialized with a stoichiometric matrix N (input)

AnalyseK()
AnalyseK()
Evaluate the stoichiometric matrix and calculate the nullspace using LU decompo-
sition and backsubstitution . Generates the MCA K and Ko arrays and associated
row and column vectors
Arguments: None

AnalyseL()
AnalyseL()
Evaluate the stoichiometric matrix and calculate the left nullspace using LU fac-
torization and backsubstitution. Generates the MCA L, Lo, Nr and Conservation
matrix and associated row and column vectors
Arguments: None

BackSubstitution(res_a, row_vector, column_vector)
BackSubstitution(res_a,row_vector,column_vector)
Jordan reduction of a scaled upper triangular matrix. The returned array is now
in the form [I R] and can be used for nullspace determination. Modified row and
column tracking vetors are also returned.
Arguments:
res_a: unitary pivot upper triangular matrix row_vector: row tracking vector col-
umn_vector: column tracking vector

GetUpperMatrix(a)
GetUpperMatrix(a)
Core analysis algorithm; an input is preconditioned using PivotSort_initial and then
cycles of PLUfactorize and PivotSort are run until the factorization is completed.
During this process the matrix is reordered by column swaps which emulates a full
pivoting LU factorization. Returns the pivot matrix P, upper factorization U as well
as the row/col tracking vectors.
Arguments:
a: a stoichiometric matrix

GetUpperMatrixUsingQR(a)
GetUpperMatrix(a)
Core analysis algorithm; an input is preconditioned using PivotSort_initial and then
cycles of PLUfactorize and PivotSort are run until the factorization is completed.
During this process the matrix is reordered by column swaps which emulates a full
pivoting LU factorization. Returns the pivot matrix P, upper factorization U as well
as the row/col tracking vectors.
Arguments:
a: a stoichiometric matrix

K_split_R(R_a, row_vector, column_vector)
K_split_R(R_a,row_vector,column_vector)
Using the R factorized form of the stoichiometric matrix we now form the K and
Ko matrices. Returns the r_ipart,Komatrix,Krow,Kcolumn,Kmatrix,Korow,info

115

PySCeS User Guide, Release 0.7.0

Arguments:
R_a: the Gauss-Jordan reduced stoichiometric matrix row_vector: row tracking
vector column_vector: column tracking vector

L_split_R(Nfull, R_a, row_vector, column_vector)
L_split_R(Nfull,R_a,row_vector,column_vector)
Takes the Gauss-Jordan factorized N^T and extract the L, Lo, conservation (I -
Lo) and reduced stoichiometric matrices. Returns: lmatrix_col_vector, lomatrix,
lomatrix_row, lomatrix_co, nrmatrix, Nred_vector_row, Nred_vector_col, info
Arguments:
Nfull: the original stoichiometric matrix N R_a: gauss-jordan factorized form of
N^T row_vector: row tracking vector column_vector: column tracking vector

PLUfactorize(a_in)
PLUfactorize(a_in)
Performs an LU factorization using LAPACK D/ZGetrf. Returns LU - combined
factorization, IP - rowswap information and info - Getrf error control.
Arguments:
a_in: the matrix to be factorized

PivotSort(a, row_vector, column_vector)
PivotSort(a,row_vector,column_vector)
This is a sorting routine that accepts a matrix and row/colum vectors and then sorts
them so that: there are no zero rows (by swapping with first non-zero row) The
abs(largest) pivots are moved onto the diagonal to maintain numerical stability. Row
and column swaps are recorded in the tracking vectors.
Arguments:
a: the input array row_vector: row tracking vector column_vector: column tracking
vector

PivotSort_initial(a, row_vector, column_vector)
PivotSort_initial(a,row_vector,column_vector)
This is a sorting routine that accepts a matrix and row/colum vectors and then sorts
them so that: the abs(largest) pivots are moved onto the diagonal to maintain nu-
merical stability i.e. the matrix diagonal is in descending max(abs(value)). Row
and column swaps are recorded in the tracking vectors.
Arguments:
a: the input array row_vector: row tracking vector column_vector: column tracking
vector

SVD_Rank_Check(matrix=None, factor=10000.0, resultback=0)
SVD_Rank_Check(matrix=None,factor=1.0e4,resultback=0)
Calculates the dimensions of L/L0/K/K) by way of SVD and compares them to the
Guass-Jordan results. Please note that for LARGE ill conditioned matrices the SVD
can become numerically unstable when used for nullspace determinations
Arguments:
matrix [default=None]: the stoichiometric matrix default is self.Nmatrix factor [de-
fault=1.0e4]: factor used to calculate the ‘zero pivot’ mask = mach_eps*factor re-
sultback [default=0]: return the SVD results, U, S, vh

116 Chapter 22. PyscesStoich

PySCeS User Guide, Release 0.7.0

ScalePivots(a_one)
ScalePivots(a_one)
Given an upper triangular matrix U, this method scales the diagonal (pivot values)
to one.
Arguments:
a_one: an upper triangular matrix U

SplitLU(plu, row, col, t=None)
SplitLU(plu,row,col,t)
PLU takes the combined LU factorization computed by PLUfactorize and extracts
the upper matrix. Returns U.
Arguments:
plu: LU factorization row: row tracking vector col: column tracking vector t [de-
fault=None)]: typecode argument (currently not used)

117

PySCeS User Guide, Release 0.7.0

118 Chapter 22. PyscesStoich

CHAPTER

TWENTYTHREE

PyscesLink

Interfaces to external software and API’s, has replaced the PySCeS contrib classes.

class METATOOLlink(mod, __metatool_path__=None)
New interface to METATOOL binaries

doEModes()
doEModes()
Calculate the elementary modes by way of an interface to MetaTool.
METATOOL is a C program developed from 1998 to 2000 by Thomas
Pfeiffer (Berlin) in cooperation with Stefan Schuster and Ferdinand Mold-
enhauer (Berlin) and Juan Carlos Nuno (Madrid). http://www.biologie.hu-
berlin.de/biophysics/Theory/tpfeiffer/metatool.html
Arguments: None

getEModes()
getEModes()
Returns the elementary modes as a linked list of fluxes

showEModes(File=None)
showEModes(File=None)
Print the results of an elementary mode analysis, generated with doEModes(), to
screen or file.
Arguments: File [default=None]: Boolean, if True write parsed elementary modes
to file

class SBWLayoutWebLink()
Enables access to DrawNetwork and SBMLLayout web services at www.sys-bio.org

drawNetworkGetSBMLwithLayout()

drawNetworkLoadSBML()

getSBML()

getSBMLlayout()

getSVG()

getVersion()

layoutModuleGetSVG()

layoutModuleLoadSBML()

119

http://www.biologie.hu-berlin.de/biophysics/Theory/tpfeiffer/metatool.html
http://www.biologie.hu-berlin.de/biophysics/Theory/tpfeiffer/metatool.html

PySCeS User Guide, Release 0.7.0

loadSBMLFileFromDisk(File, Dir=None)

loadSBMLFromString(str)

setProxy(**kwargs)
Set as many proxy settings as you need. You may supply a user name without a
password in which case you will be prompted to enter one (once) when required
(NO guarantees, implied or otherwise, on password security AT ALL). Arguments
can be:
user = ‘daUser’, pwd = ‘daPassword’, host = ‘proxy.paranoid.net’, port = 3128

urlGET(host, urlpath)

urlPOST(host, urlpath, data)

class SBWlink()
Generic access for local SBW services using SBWPython

SBW_exposeAll(module)

SBW_getActiveModules()

SBW_loadModule(module_name)

120 Chapter 23. PyscesLink

Part XI

Indices and tables

121

PySCeS User Guide, Release 0.7.0

• Index

• Module Index

• Search Page

123

	I Introduction
	II Getting started
	Loading PySCeS
	Creating a PySCeS model object
	Advanced

	Creating a PySCeS model object
	Basic model attributes
	Advanced

	III Modelling
	Structural Analysis
	Structural Analysis - new objects
	Structural Analysis - legacy

	Time simulation
	Simulation results
	Advanced

	Steady-state analysis
	New: mod.data_sstate
	Stability

	Metabolic Control Analysis
	Elasticities
	Control coefficients
	Response coefficients

	IV Parameter scanning
	Single dimension parameter scans
	Two dimension parameter scans
	Multi-dimension parameter scans

	V Plotting
	VI Displaying data
	Displaying/saving model attributes
	Writing formatted arrays
	Write_array()
	Write_array_latex()

	VII Installing and configuring
	Configuring

	VIII References
	IX The PySCeS Model Description Language
	Defining a PySCeS model
	A kinetic model
	Model keywords
	Global unit definition
	Symbol names and comments
	Compartment definition
	Function definitions
	Defining fixed species
	Reaction stoichiometry and rate equations
	Species and parameter initialisation

	Advanced model construction
	Assignment rules
	Rate rules
	Events
	Piecewise

	Example PySCeS input files
	Basic model definition
	Advanced example

	X PySCeS Module documentation
	PyscesPlot2
	PyscesModel
	PyscesScan
	PyscesInterfaces
	PyscesStoich
	PyscesLink

	XI Indices and tables

