
Building Central Applications with Components

Trademarks

1 Step RoboPDF, ActiveEdit, ActiveTest, Authorware, Blue Sky Software, Blue Sky, Breeze, Breezo, Captivate, Central,
ColdFusion, Contribute, Database Explorer, Director, Dreamweaver, Fireworks, Flash, FlashCast, FlashHelp, Flash Lite,
FlashPaper, Flex, Flex Builder, Fontographer, FreeHand, Generator, HomeSite, JRun, MacRecorder, Macromedia, MXML,
RoboEngine, RoboHelp, RoboInfo, RoboPDF, Roundtrip, Roundtrip HTML, Shockwave, SoundEdit, Studio MX, UltraDev,
and WebHelp are either registered trademarks or trademarks of Macromedia, Inc. and may be registered in the United States or
in other jurisdictions including internationally. Other product names, logos, designs, titles, words, or phrases mentioned within
this publication may be trademarks, service marks, or trade names of Macromedia, Inc. or other entities and may be registered in
certain jurisdictions including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

Copyright © 1997-2005 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without written approval from
Macromedia, Inc. Notwithstanding the foregoing, the owner or authorized user of a valid copy of the software with which
this manual was provided may print out one copy of this manual from an electronic version of this manual for the sole
purpose of such owner or authorized user learning to use such software, provided that no part of this manual may be
printed out, reproduced, distributed, resold, or transmitted for any other purposes, including, without limitation,
commercial purposes, such as selling copies of this documentation or providing paid-for support services.

Acknowledgments

Project Management: JuLee Burdekin

Writing: Jay Armstrong, Jody Bleyle, Alec Flett, David Jacowitz, Shimi Rahim

Editing Management: Rosana Francescato

Editing: Mary Ferguson, Mary Kraemer, Noreen Maher, Antonio Padial, Lisa Stanziano

Production Management: Patrice O’Neill

Media Design and Production: Adam Barnett, Christopher Basmajian, Aaron Begley, John Francis

Special thanks to the Macromedia Central QA and Development teams, Randy Nielsen, Vijay Shah

Third Edition: January 2005

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

CONTENTS
INTRODUCTION: About This Guide . 5

System requirements . 5
Installing Macromedia Central components . 5
Guide to instructional media. 6

CHAPTER 1: Using Macromedia Central Components . 7

Component changes in the Macromedia Central SDK . 8
Migrating from previous versions of Central . 9
Design considerations . 9
Macromedia Central artwork . 10
Coding considerations. 11
About accessibility . 11
Testing components in your application . 11
Writing event listeners for components . 11

CHAPTER 2: Components Reference . 15

Accordion component . 17
AccordionTab component . 36
Alert component . 53
Button component . 69
CheckBox component . 83
CloseButton component . 95
ComboBox component . 96
DataGrid component . 132
DateChooser component . 171
DateField component . 186
DialogBox component . 207
ExpandingPod component . 222
FocusManager class . 231
IconButton component . 242
IconMenu component. 246
Label component. 271
List component . 277
Loader component . 311
Menu component . 324
MenuBar component . 359
3

NumericStepper component . 373
ProgressBar component . 385
RadioButton component. 402
RoundIconButton component . 416
ScrollPane component . 421
SimpleButton class . 439
TextInput component . 445
TextArea component . 459
TossButton component . 476
Tree component . 477
Window component . 505
UIComponent class. 521
UIEventDispatcher class . 530
UIObject class . 536
UIScrollBar component. 557
4 Contents

INTRODUCTION
About This Guide
The Macromedia Central SDK includes new versions of selected user interface components and
several new components to help you create distinctive, elegant interfaces for your rich Internet
applications. This guide includes usage scenarios and procedural samples for using the Central
components, as well as descriptions of the component methods in alphabetical order.

This guide is intended to be used with the Central SDK and Macromedia Flash MX,
Macromedia Flash MX 2004, or Macromedia Flash MX Professional 2004. It helps you create
applications that are consistent with the Macromedia Central environment.

This guide assumes that you have installed Flash MX, Flash MX 2004, or Flash MX Professional
2004 and know how to use it and know how to use components. You should already be familiar
with developing applications with components in Flash MX or Flash MX 2004, writing
ActionScript, and using Flash Player. Before using Macromedia Central components, read
Developing Central Applications.

For basic information about components, see the help system in your Flash authoring tool. Also,
make sure you frequently check the Macromedia Central DevNet website at
www.macromedia.com/go/central_dev_center for articles about components and developing for
Macromedia Central in general.

System requirements

The system requirements for using Macromedia Central components are the same as for the
authoring tool.

You can use Macromedia Central components with Flash MX, Flash MX 2004, or Flash MX
Professional 2004, in Windows or on the Macintosh.

Installing Macromedia Central components

Use the Extensions Manager in your Flash authoring tool to download and install the
Macromedia Central Components MXP file.
5

http://www.macromedia.com/go/central_dev_center

To install Macromedia Central components:

1. Start the Flash authoring tool.

2. Select Help > Manage Extensions.

The Macromedia Extensions Manager opens.
3. In the Macromedia Extensions Manager, select File > Install Extension.

4. Browse to the Central Components MXP file in the Components folder in the Macromedia
Central SDK folder and click Install.

After the component is installed, you are asked to exit and restart the Flash authoring tool.
5. Start the Flash authoring tool again.

6. Open the Components panel.

7. Click the options menu icon and select Central Components.

The Central components appear in the Components panel.

Guide to instructional media

The documentation for Macromedia Central includes the following items:

• This book, Building Central Applications with Components.
• Developing Central Applications, a guide that describes the Central architecture, the application

development workflow, and the elements that make up a Central application. It explains how
you use those elements, and it includes samples and information about testing and deploying
applications and information about security.

• Using Macromedia Central Help, an online help system for users of Central and Central
applications. It includes detailed information on the features and functions of the Central
interface. You can access the help system from the Help menu.

Typographical conventions

The following typographical conventions are used in this book:

• Code font indicates ActionScript statements, XML tag and attribute names, and literal text
used in examples.

• Italic indicates placeholder elements in code or paths. For example, \settings\myPrinter\ means
that you should specify your own location for myPrinter.

Additional resources

The following additional resources are important sources of information before, during, and after
development of Macromedia Central applications:

• The Macromedia Central DevNet website at www.macromedia.com/go/central_dev_center is
an excellent resource for information about developing for Macromedia Central.

• The Macromedia Central Support Center at www.macromedia.com/go/central_support
provides information on new features, contains tech notes documenting technical issues, and
lets you search the Support Center database.
6 Introduction: About This Guide

http://www.macromedia.com/go/central_support
http://www.macromedia.com/go/central_dev_center

CHAPTER 1
Using Macromedia Central Components
The Macromedia Central Software Development Kit (SDK) supports some version 2
components from the Macromedia Flash MX 2004 Authoring tool, as well as several Central-
specific UI components.

You can use Flash MX 2004 or Flash MX Professional 2004 to develop Macromedia Central
applications.

Although a wide range of developers can create Central applications, all Central applications
reside in the Central environment. You can use components shipped with the authoring tool in
Central applications, but Macromedia recommends that you use the Central version of a
component in your Central applications when a Central version is available. For example, if you
want a data grid in your Central application, use the Central DataGrid component rather than
the version of the DataGrid component shipped with the authoring tool.

Using the Central components ensures that your application can take advantage of new, powerful
functionality and performance optimizations introduced with the Central SDK. Because Central
components are linked to http://download.macromedia.com, your total application size is smaller
when you use the Central components. Finally, using the Central components helps to ensure
that your application has a recognizable look and feel that is similar to other applications that run
in Central. A standard application design that follows Macromedia guidelines provides
consistency for users and helps make Central applications easy to use.

To achieve further consistency, Macromedia encourages developers to follow design guidelines
outlined in this book and in the articles on the Macromedia Central DevNet website at
www.macromedia.com/go/central_dev_center.
7

http://www.macromedia.com/go/central_dev_center

Component changes in the Macromedia Central SDK

The Macromedia Central SDK contains a number of components that are specific to Central.
Central 1.5 updates some version 1.0 components, deprecates some Central 1.0 components, and
introduces many new version 2 components.

Updated version 1 components

The following table lists the Central 1.0 components that have been updated for this release, and
provides a reference to the documentation later in this book.

Deprecated component classes

The following table lists the deprecated Central 1.0 components, and provides a reference to an
alternative component described later in this book:

Central 1.0 class Updated component class

MAccordionTab See the “AccordionTab component” on page 36.

MCloseButton See the “Button component” on page 69.

MDialogBox See the “DialogBox component” on page 207.

MExpandingPod See the “ExpandingPod component” on page 222.

MIconButton See the “IconButton component” on page 242, which contains new icons for
buttons in your application: Close, Print, Toss, Add to Favorites, Remove from
Favorites, and Set Notices.

MRoundIconButton See the “RoundIconButton component” on page 416.

MTossButton See the “TossButton component” on page 476.

Deprecated class Alternative component class

MCalendar See the “DateChooser component” on page 171.

MCheckBox See the “CheckBox component” on page 83.

MComboBox See the “ComboBox component” on page 96.

MDataGrid See the “DataGrid component” on page 132.

MListBox See the “List component” on page 277.

MProgressBar See the “ProgressBar component” on page 385.

MPushButton See the “Button component” on page 69.

MRadioButton See the “RadioButton component” on page 402.

MScrollBar See the “UIScrollBar component” on page 557.

MScrollPane See the “ScrollPane component” on page 421.

MTextInputField See the “TextInput component” on page 445.
8 Chapter 1: Using Macromedia Central Components

Migrating from previous versions of Central

The new version 2 components provided in the Macromedia Central SDK have new methods
and properties and class names that are incompatible with previous components. When you
update an application to use the new version 2 components, refer to the Component Dictionary
to learn about the new methods and properties.

The version 2 components have a fundamentally different architecture and API than previous
versions of the components. The following are some of the primary differences:

Direct access to properties Component properties are now directly accessible using properties
rather than methods. For example, to set the label property of a button, you write button.label
= "Submit" rather than button.setLabel("Submit").

New event model Event listeners should be used to handle events such as mouse clicks and
keyboard entry. Use the addEventListener() method on most Components instead of calling
setChangeHandler().

Intrinsic classes ActionScript 2.0 requires intrinsic classes to be installed in order for the
compiler to be able to enforce strict types. In previous versions of the components, class names
were usually the component name prefixed with the letter M, such as MCheckBox. In version 2
of the components, the letter M prefix has been removed from the class names. For example,
MCheckBox has been replaced by CheckBox. Some Central components retained the M prefix.

New component names Many of the components have changed names in addition to the
removal of the M prefix. For example, MPushButton is now Button. Other components have
been replaced. The MCalendar component has been split into DateField and DateChooser.

To upgrade a component from previous versions to version 2, perform the following steps for
each instance of the component:

1. Select the old component on the stage. Make note of the instance name, the X and Y positions,
the width and height, and any properties that you may have changed for your application.

2. Drag the new version of the component onto the stage, near the old component.

3. Set the instance name of the new component to be the same as the old component, and update
any properties that you changed in the old component.

4. Delete the old component.

5. Set the X and Y positions, the height, and width of your new component.

After you have updated the component on the stage, search for references to that component in
your ActionScript and update API calls and event handling as appropriate.

Design considerations

The Central components provide an updated look and feel and ensure consistency between
different Central applications. The Central SDK allows for brand differentiation in other aspects
of application design, such as the use of your own logo and colors. In addition to components,
new artwork for your applications is included (see “Macromedia Central artwork” on page 10).
Design considerations 9

Unlike other Flash user interface components, Central components cannot be reskinned, and the
use of styles is not supported. Using the same components across different Central applications
makes it easier for users to learn how to use Central applications, and ensures that users have a
consistent experience interacting with Central applications.

However, you can customize the look of most components in several ways:

• You can set text font and size.
To provide maximum consistency across Central applications, Macromedia strongly
recommends that you use the default font settings, which are Verdana 10-point font, text color
#2B333C, and disabled text color #AAB3B3. You can also use Trebuchet MS for titles or
headings. The component descriptions include information about exceptions.

• You can customize the size of many components so they fit best in your application.

When you design the interface for your applications, keep in mind that many components have
a colored border or outline around them during certain states, to indicate the status for the user.
A green border indicates focus, selection, emphasis, or pressed states, and a red border indicates
errors. For example, when a user moves the mouse over a PushButton component instance, the
green border appears.

Macromedia Central artwork

The Macromedia Central SDK contains artwork that you can use in your applications. Access the
artwork in the Components panel or Components inspector, depending on your version of Flash.
These images do not support an ActionScript interface.

The Central environment and applications developed by Macromedia use these images for certain
functions. You can use these images in your own applications to speed development and to
maintain consistency with other Central applications:

• Progress animation arrow An animated circular arrow that shows that a task is in progress.
You can display the progress animation arrow when data is loading or when lengthy processing
occurs, and remove it when the data has finished loading or the processing task is complete.
Your pods can use the progress animation arrow to show progress within a pod, where a
progress bar would not fit. You can also use the progress animation arrow anywhere to indicate
progress in a limited space.

• Disclosure triangle A solid triangle used to expand or collapse an area of content. Use this
triangle to expand or collapse the pod viewers in the Console. Use the standard icon for the
expanded state. Rotate the triangle 90 degrees counterclockwise for the collapsed state.

• Favorites symbol A green bookmark ribbon to indicate a location where cached information
is stored. Add this symbol to a Favorites tab or the tab that displays information saved by the
user. Variations of this bookmark ribbon can be displayed on the IconButton component. For
more information, see “IconButton component” on page 242.

• Gradients Various images you can use in your applications to duplicate the subtle color or
grayscale gradients that are found in the interface of the Central environment.

Additional images might have been added to the Central Artwork MXP file; for more
information, see the Release Notes.
10 Chapter 1: Using Macromedia Central Components

Coding considerations

Component methods do not perform error checking for type as other native ActionScript objects
and actions do. Therefore, Macromedia recommends that you validate parameters before passing
them to methods.

You do not need to use a constructor to access the methods of components.

Certain tasks cannot be performed during clip initialization (#initclip). You should set
properties or call methods of components after the #endinitclip line in your code.

About accessibility

Central components do not support accessibility features and do not provide support for screen
readers. However, users can navigate through the components on a basic level using some
keyboard keys. For example, they can use arrow keys to scroll through items in a list, menu, or
data grid.

Testing components in your application

Because of an issue with how the Flash authoring tool handles remote shared libraries, you cannot
test the Central components in the Flash authoring environment. That is, you cannot publish a
test application that uses Central components and view the application outside of Central. You
must test Central components in the Central environment.

For more information, see “Testing and debugging your application within Central” in
Developing Central Applications.

Writing event listeners for components

Each version 2 component has a set of events that occur when a user interacts with it. Each
component has a method called addEventListener that allows code to be executed when such
an event occurs.

You can write event listeners in a variety of ways. It is good coding practice to create just one event
listener for each component in your document. This ensures that conflicting actions are not
assigned, and makes it easier to update and change the code. An event listener always accepts one
parameter, which is an object that represents the event when the instance of the component has
changed.

Single-selection forms

In the following example, listener.click is an event listener function specified for two
CheckBox components. The listener function accepts an event target, which holds a reference to
the target component in the target property. The function uses a series of if/else if statements
to determine which check box instance is selected, and enables either listBox1_mc or
listBox2_mc, depending on the value of the check box instance.
var listener = new Object;
listener.click = function(event)
{

Writing event listeners for components 11

var component = event.target;
if (component._name=="check1") {

listBox1_mc.enabled = component.selected;
} else if (component._name=="check2") {

listBox2_mc.enabled = component.selected;
}

}

// connect the event listener to the component
check1.addEventListener("change", listener);
check2.addEventListener("change", listener);

Another way of accomplishing the same thing is to specify an event listener function for each
CheckBox component, as the following example shows.

For the check1 instance, add the listener1 object as the event listener. If the user selects the
check1 instance of the check box, the list box instance listBox1 is enabled.
var listener1 = new Object;
listener1.click = function(event)
{

var component = event.target;
listBox1_mc.enabled = component.selected;

}

// connect the event listener to the component
check1.addEventListener("change", listener1);

For the check box instance check2, add the listener2 object as the event listener. If the user
selects the check2 instance of the check box, the list box instance listBox2 is enabled.
var listener2 = new Object;
listener2.click = function(event)
{

var component = event.target;
listBox2_mc.enabled = component.selected;

}

// connect the event listener to the component
check2.addEventListener("change", listener2);

Multiple-selection forms

In a form where the user makes multiple inputs or selections using various components and then
submits the completed form, you only need to specify an event listener for the component
responsible for submitting the form data and exiting the form. The event listener needs to create
an object with properties for storing the data, specify actions for gathering the data from all of the
components in the form, and then perform an output, submit, or exit page action.

The following example is a click event listener specified for a Submit button on a form that has a
check box, a group of radio buttons, and a list box. The user makes choices before pressing the
Submit button to submit the form. The labels of the selected components are written to the
Output panel.
12 Chapter 1: Using Macromedia Central Components

listener.click =function(event) {
var component = event.target;
if (component._name == "submit"){

// create the object to store values
formData = new Object();

// gather the data
formData.checkValue = checkBox_mc.selected;
formData.radioValue = radioButton1.selected;
formData.listValue = listBox_mc.selectedIndex;

// output the results
trace(formData.listValue);
trace(formData.radioValue);
trace(formData.checkValue);
}

}

Writing event listeners for components 13

14 Chapter 1: Using Macromedia Central Components

CHAPTER 2
Components Reference
The following components/classes are included with the Central SDK (for a summary of
deprecated components, see “Component changes in the Macromedia Central SDK” on page 8):

Component/class name Description

Accordion component A navigator that contains a sequence of children that it displays one
at a time.

AccordionTab component A tab with an area for content and animation for switching among
tabs.

Alert component Lets you display a window that presents the user with a message
and response buttons.

Button component A resizable rectangular user interface button.

CheckBox component A box that lets users select a true or false option.

CloseButton component A close button for use in dialog boxes and pods.

ComboBox component A text field combined with a pop-up menu that lets users select an
option or enter a value.

DataGrid component A combination of elements used to present tabular data.

DateChooser component A calendar that allows users to select a date.

DateField component A pop-up calendar that lets users quickly select dates.

DialogBox component A simple window.

ExpandingPod component A box for text and images that presents a partial view or highlight of
information and lets users quickly open a larger, detailed view.

FocusManager class The Focus Manager allows you to specify the order in which
components receive focus when a user presses the Tab key, or set a
button reaction when the user presses Enter (Windows) or Return
(Macintosh).

IconButton component A button you can customize with an icon of your choice.

IconMenu component A button you can customize with an icon of your choice, which
opens a pop-up menu to let users select an option.

Label component A label component is a single line of text.
15

List component A box that lets users select options from a scrollable list.

Loader component A container that can display a SWF or JPEG file.

Menu component A pop-up menu that lets a user select an item.

MenuBar component A horizontal menu bar with pop-up menus and commands

NumericStepper component Allows a user to step through an ordered set of numbers

ProgressBar component A box with a bar that shows the progress of a current activity.

RadioButton component A round button that lets users select exclusively that option in a
group of choices.

RoundIconButton component A round button that you can customize with an icon of your choice.

ScrollPane component A container for movie clips, bitmaps, or SWF files, typically used to
display large forms or images in a limited area, using horizontal or
vertical scroll bars.

SimpleButton class Allows you to determine the state of a button.

TextInput component A single-line text component that is a wrapper for the native
ActionScript TextField object.

TextArea component Wraps the native ActionScript TextField object.

TossButton component A button that you can use in your pod to send data to the parent
application.

Tree component A hierarchical view of data.

UIComponent class The UIComponent class does not represent a visual component; it
contains methods, properties, and events that allow Macromedia
components to share some common behavior.

UIEventDispatcher class The UIEventDispatcher class is mixed in to the UIComponent class
and allows components to emit certain events.

UIObject class UIObject is the base class for all version 2 components; it is not a
visual component.

UIScrollBar component A control that lets users move through a display of information
vertically or horizontally when the amount of information exceeds
the display area

Window component A pop-up dialog box that also offers selectable options, which can
provide a single interface for multiple related user tasks, such as
setting different categories of preferences for an application.

Component/class name Description
16 Chapter 2: Components Reference

Accordion component

The Accordion component is a navigator that contains a sequence of children that it displays one
at a time. The children must be objects that inherit from the UIObject class (which includes all
components and screens built with version 2 of the Macromedia Component Architecture); most
often, children are a subclass of the View class. This includes movie clips assigned to the class
mx.core.View. To maintain tabbing order in an accordion’s children, the children must also be
instances of the View class.

An accordion creates and manages header buttons that a user can click to navigate between the
accordion’s children. An accordion has a vertical layout with header buttons that span the width
of the component. One header is associated with each child, and each header belongs to the
accordion—not to the child. When a user clicks a header, the associated child is displayed below
that header. The transition to the new child uses a transition animation.

An accordion with children accepts focus, and changes the appearance of its headers to display
focus. When a user tabs into an accordion, the selected header displays the focus indicator. An
accordion with no children does not accept focus. Clicking components that can take focus
within the selected child gives them focus. When an Accordion instance has focus, you can use
the following keys to control it:

The Accordion component cannot be made accessible to screen readers.

Key Description

Down Arrow, Right
Arrow

Moves focus to the next child header. Focus cycles from last to first
without changing the selected child.

Up Arrow, Left Arrow Moves focus to the previous child header. Focus cycles from first to last
without changing the selected child.

End Selects the last child.

Enter/Space Selects the child associated with the header that has focus.

Home Selects the first child.

Page Down Selects the next child. Selection cycles from the last child to the first child.

Page Up Selects the previous child. Selection cycles from the first child to the
last child.

Shift+Tab Moves focus to the previous component. This component may be inside
the selected child, or outside the accordion; it is never another header in
the same accordion.

Tab Moves focus to the next component. This component may be inside the
selected child, or outside the accordion; it is never another header in the
same accordion.
Accordion component 17

Using the Accordion component

You can use the Accordion component to present multipart forms. For example, a three-child
accordion might present forms where the user fills out her shipping address, billing address, and
payment information for an e-commerce transaction. Using an accordion instead of multiple web
pages minimizes server traffic and allows the user to maintain a better sense of progress and
context in an application.

Accordion parameters

You can set the following authoring parameters for each Accordion component instance in the
Property inspector or in the Component inspector:

childSymbols is an array that specifies the linkage identifiers of the library symbols to be used to
create the accordion’s children. The default value is [] (an empty array).

childNames is an array that specifies the instance names of the accordion’s children. The values
you enter will be the instance names for the child symbols you specify in the childSymbols
parameter. The default value is [] (an empty array).

childLabels is an array that specifies the text labels to use on the accordion’s headers. The default
value is [] (an empty array).

childIcons is an array that specifies the linkage identifiers of the library symbols to be used as the
icons on the accordion’s headers. The default value is [] (an empty array).

You can write ActionScript to control additional options for the Accordion component using its
properties, methods, and events. For more information, see “Accordion class” on page 26.

Creating an application with the Accordion component

In this example, an application developer is building the checkout section of an online store. The
design calls for an accordion with three forms in which a user enters a shipping address, a billing
address, and payment information. The shipping address and billing address forms are identical.

To use screens to add an Accordion component to an application:

1. In Flash, select File > New and select Flash Form Application.

2. Double-click the text Form1, and enter the name addressForm.

Although it doesn’t appear in the library, the addressForm screen is a symbol of the Screen
class. Because the Screen class is a subclass of the View class, an accordion can use it as a child.

3. With the form selected, in the Property inspector, set the form’s visible property to false.

This hides the contents of the form in the application; the form only appears in the accordion.
4. Drag components such as Label and TextInput from the Components panel onto the form to

create a mock address form; arrange them, and set their properties in the Parameters tab of the
Component inspector.

Position the form elements in the upper left corner of the form. This corner of the form is
placed in the upper left corner of the accordion.

5. Repeat steps 2-4 to create a screen named checkoutForm.
18 Chapter 2: Components Reference

6. Create a new screen named accordionForm.

7. Drag an Accordion component from the Components panel to the accordionForm form, and
name it myAccordion.

8. With myAccordion selected, in the Property inspector, do the following:

■ For the childSymbols property, enter addressForm, addressForm, and checkoutForm.
These strings specify the names of the screens used to create the accordion’s children.

Note: The first two children are instances of the same screen, because the shipping address
form and the billing address form are identical.

■ For the childNames property, enter shippingAddress, billingAddress, and checkout.
These strings are the ActionScript names of the accordion’s children.

■ For the childLabels property, enter Shipping Address, Billing Address, and Checkout.
These strings are the text labels on the accordion headers.

9. Select Control > Test Movie.

To add an Accordion component to an application:

1. Select File > New and create a new Flash document.

2. Select Insert > New Symbol and name it AddressForm.

3. In the Create New Symbol dialog box, click the Advanced button and select Export for
ActionScript. In the AS 2.0 Class field, enter mx.core.View.

To maintain tabbing order in an accordion’s children, the children must also be instances of the
View class.

4. Drag components such as Label and TextInput from the Components panel onto the Stage to
create a mock address form; arrange them, and set their properties in the Parameters tab of the
Component inspector.

Position the form elements in relation to 0,0 (the middle) on the Stage. The 0,0 coordinate of
the movie clip is placed in the upper left corner of the accordion.

5. Select Edit > Edit Document to return to the main Timeline.

6. Repeat steps 2-5 to create a movie clip named CheckoutForm.

7. Drag an Accordion component from the Components panel to add it to the Stage on the
main Timeline.

8. In the Property inspector, do the following:

■ Enter the instance name myAccordion.
■ For the childSymbols property, enter AddressForm, AddressForm, and CheckoutForm.

These strings specify the names of the movie clips used to create the accordion’s children.

Note: The first two children are instances of the same movie clip, because the shipping address
form and the billing address form are identical.

■ For the childNames property, enter shippingAddress, billingAddress, and checkout.
These strings are the ActionScript names of the accordion’s children.
Accordion component 19

■ For the childLabels property, enter Shipping Address, Billing Address, and Checkout.
These strings are the text labels on the accordion headers.

■ For the childIcons property, enter AddressIcon, AddressIcon, and CheckoutIcon.
These strings specify the linkage identifiers of the movie clip symbols that are used as the
icons on the accordion headers. You must create these movie clip symbols if you want icons
in the headers.

9. Select Control > Test Movie.

To use ActionScript to add children to an Accordion component:

1. Select File > New and create a Flash document.

2. Drag an Accordion component from the Components panel to the Stage.

3. In the Property inspector, enter the instance name myAccordion.

4. Drag a TextInput component to the Stage and delete it.

This adds the component to the library so that you can dynamically instantiate it in step 6.
5. In the Actions panel on Frame 1 of the Timeline, enter the following:
myAccordion.createChild("View", "shippingAddress", {label: "Shipping

Address"});
myAccordion.createChild("View", "billingAddress", {label: "Billing

Address"});
myAccordion.createChild("View", "payment", {label: "Payment"});

This code calls the createChild() method to create its child views.
6. In the Actions panel on Frame 1, below the code you entered in step 5, enter the following code:
var o = myAccordion.shippingAddress.createChild("TextInput", "firstName");
o.move(20, 38);
o.setSize(116, 20);
o = myAccordion.shippingAddress.createChild("TextInput", "lastName");
o.move(175, 38);
o.setSize(145, 20);

This code adds component instances (two TextInput components) to the accordion’s children.

Customizing the Accordion component

You can transform an Accordion component horizontally and vertically during authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()).

The setSize() method and the Transform tool change only the width of the accordion’s headers
and the width and height of its content area. The height of the headers and the width and height
of the children are not affected. Calling the setSize() method is the only way to change the
bounding rectangle of an accordion.

If the headers are too small to contain their label text, the labels are clipped. If the content area of
an accordion is smaller than a child, the child is clipped.
20 Chapter 2: Components Reference

Using styles with the Accordion component

You can set style properties to change the appearance of the border and background of an
Accordion component.

If the name of a style property ends in “Color”, it is a color style property and behaves differently
than noncolor style properties. For more information, see “Using styles to customize component
color and text” in Flash Help.

An Accordion component uses the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. This is the only color style
that doesn’t inherit its value. Possible values are "haloGreen",
"haloBlue", and "haloOrange".

backgroundColor Both The background color. The default color is white.

border styles Both The Accordion component uses a RectBorder instance as its border
and responds to the styles defined on that class. See “RectBorder
class” in Flash Help.

The Accordion component’s default border style value is "solid".

headerHeight Both The height of the header buttons, in pixels. The default value is 22.

color Both The text color. The default value is 0x0B333C for the Halo theme
and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The default color
is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to true if
fontFamily refers to an embedded font. Otherwise, the embedded
font will not be used. If this style is set to true and fontFamily does
not refer to an embedded font, no text will be displayed. The default
value is false.

fontFamily Both The font name for the header labels. The default value is "_sans".

fontSize Both The point size for the font of the header labels. The default value is
10.

fontStyle Both The font style for the header labels; either "normal" or "italic". The
default value is "normal".

fontWeight Both The font weight for the header labels; either "none" or "bold". The
default value is "none".

All components can also accept the value "normal" in place of
"none" during a setStyle() call, but subsequent calls to getStyle()
will return "none".

textDecoration Both The text decoration; either "none" or "underline".
Accordion component 21

Using skins with the Accordion component

The Accordion component uses skins to represent the visual states of its header buttons. To skin
the buttons and title bar while authoring, modify skin symbols in the Flash UI Components 2/
Themes/MMDefault/Accordion Assets skins states folder in the library of one of the themes FLA
files. For more information, see “About skinning components” in Flash Help.

An Accordion component is composed of its border, background, header buttons, and children.
The border and background are provided by the RectBorder class by default. For information see
“RectBorder class” in Flash Help. You can skin the headers with the skins listed below.

Using ActionScript to draw the Accordion header

The default headers in both the Halo and Sample themes use the same skin element for all states
and draw the actual graphics through ActionScript. The Halo implementation uses an extension
of the RectBorder class and custom drawing API code to draw the states. The Sample
implementation uses the same skin and the same ActionScript class as the Button skin.

openDuration Both The duration, in milliseconds, of the transition animation.

openEasing Both A reference to a tweening function that controls the animation.
Defaults to sine in/out. For more information, see “Customizing
component animations” in Flash Help.

Property Description Default value

falseUpSkin The up (normal) state of the header above all
collapsed children.

accordionHeaderSkin

falseDownSkin The pressed state of the header above all collapsed
children.

accordionHeaderSkin

falseOverSkin The rolled-over state of the header above all collapsed
children.

accordionHeaderSkin

falseDisabled The disabled state of the header above all collapsed
children.

accordionHeaderSkin

trueUpSkin The up (normal) state of the header above the
expanded child.

accordionHeaderSkin

trueDownSkin The pressed state of the header above the expanded
child.

accordionHeaderSkin

trueOverSkin The rolled-over state of the header above the
expanded child.

accordionHeaderSkin

trueDisabledSkin The disabled state of the header above the expanded
child.

accordionHeaderSkin

Style Theme Description
22 Chapter 2: Components Reference

To create an ActionScript class to use as the skin and provide different states, the skin can read the
borderStyle style property of the skin to determine the state. The following table shows the
border style that is set for each skin:

To create an ActionScript customized Accordion header skin:

1. Create a new ActionScript class file.

For this example, name the file RedGreenBlueHeader.as.
2. Copy the following ActionScript to the file:
import mx.skins.RectBorder;
import mx.core.ext.UIObjectExtensions;

class RedGreenBlueHeader extends RectBorder
{

static var symbolName:String = "RedGreenBlueHeader";
static var symbolOwner:Object = RedGreenBlueHeader;

function size():Void
{

var c:Number; // color
var borderStyle:String = getStyle("borderStyle");

switch (borderStyle) {
case "falseup":
case "falserollover":
case "falsedisabled":

c = 0x7777FF;
break;

case "falsedown":
c = 0x77FF77;
break;

case "trueup":
case "truedown":
case "truerollover":
case "truedisabled":

c = 0xFF7777;
break;

}

Property Border style

falseUpSkin falseup

falseDownSkin falsedown

falseOverSkin falserollover

falseDisabled falsedisabled

trueUpSkin trueup

trueDownSkin truedown

trueOverSkin truerollover

trueDisabledSkin truedisabled
Accordion component 23

clear();
lineStyle(0, 0, 100);
beginFill(c, 100);
drawRect(0, 0, __width, __height);
endFill();

}

// required for skins
static function classConstruct():Boolean
{

UIObjectExtensions.Extensions();
_global.skinRegistry["AccordionHeaderSkin"] = true;
return true;

}
static var classConstructed:Boolean = classConstruct();
static var UIObjectExtensionsDependency = UIObjectExtensions;

}

This class creates a square box based on the border style: a blue box for the false up, rollover,
and disabled states; a green box for the normal pressed state; and a red box for the expanded
child.

3. Save the file.

4. Create a new FLA file.

5. Save the FLA file in the same folder as the AS file.

6. Create a new symbol by selecting Insert > New Symbol.

7. Set the name to AccordionHeaderSkin.

8. If the advanced view is not displayed, click the Advanced button.

9. Select Export for ActionScript.

The identifier will be automatically filled out with AccordionHeaderSkin.
10. Set the AS 2.0 class to RedGreenBlueHeader.

11. Ensure that Export in First Frame is already selected, and click OK.

12. Drag an Accordion component to the Stage.

13. Set the Accordion properties so that they display several children.

For example, set the childLabels to an array of [One,Two,Three] and childNames to an
array of [one,two,three].

14. Select Control > Test Movie.

Using movie clips to customize the Accordion header skin

The above example demonstrates how to use an ActionScript class to customize the Accordion
header skin, which is the method used by the skins provided in both the Halo and Sample
themes. However, because the example uses simple colored boxes, it is simpler in this case to use
different movie clip symbols as header skins.
24 Chapter 2: Components Reference

To create movie clip symbols for Accordion header skins:

1. Create a new FLA file.

2. Create a new symbol by selecting Insert > New Symbol.

3. Set the name to RedAccordionHeaderSkin.

4. If the advanced view is not displayed, click the Advanced button.

5. Select Export for ActionScript.

The identifier will be automatically filled out with RedAccordionHeaderSkin.
6. Leave the AS 2.0 Class text box blank.

7. Ensure that Export in First Frame is already selected, and click OK.

8. Open the new symbol for editing.

9. Use the drawing tools to create a box with a red fill and black line.

10. Set the border style to hairline.

11. Set the box, including the border, so that it is positioned at (0,0) and has a width and height of
100.

The ActionScript code will size the skin as needed.
12. Repeat steps 2-11 and create green and blue skins, named accordingly.

13. Click the Back button to return to the main Timeline.

14. Drag an Accordion component to the stage.

15. Set the Accordion properties so that they display several children.

For example, set childLabels to an array of [One,Two,Three] and childNames to an array
of [one,two,three].

16. Copy the following ActionScript code to the Actions panel with the Accordion instance
selected:
onClipEvent(initialize) {

falseUpSkin = "RedAccordionHeaderSkin";
falseDownSkin = "GreenAccordionHeaderSkin";
falseOverSkin = "RedAccordionHeaderSkin";
falseDisabled = "RedAccordionHeaderSkin";
trueUpSkin = "BlueAccordionHeaderSkin";
trueDownSkin = "BlueAccordionHeaderSkin";
trueOverSkin = "BlueAccordionHeaderSkin";
trueDisabledSkin = "BlueAccordionHeaderSkin";

}

17. Select Control > Test Movie.
Accordion component 25

Accordion class

Inheritance MovieClip > UIObject class > UIComponent class > View > Accordion

ActionScript Class Name mx.containers.Accordion

An Accordion component contains children that are displayed one at a time. Each child has a
corresponding header button that is created when the child is created. A child must be an instance
of UIObject.

A movie clip symbol automatically becomes an instance of the UIObject class when it becomes a
child of an accordion. However, to maintain tabbing order in an accordion’s children, the children
must also be instances of the View class. If you use a movie clip symbol as a child, set its AS 2.0
Class field to mx.core.View so that it inherits from the View class.

Setting a property of the Accordion class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component inspector.

Each component class has a version property that is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.containers.Accordion.version);

Note: The code trace(myAccordionInstance.version); returns undefined.

Method summary for the Accordion class

The following table lists methods of the Accordion class.

Methods inherited from the UIObject class

The following table lists the methods the Accordion class inherits from the UIObject class. When
calling these methods from the Accordion object, use the form
accordionInstance.methodName.

Method Description

Accordion.createChild() Creates a child for an Accordion instance.

Accordion.createSegment() Creates a child for an Accordion instance. The parameters for this
method are different from those of the createChild() method.

Accordion.destroyChildAt() Destroys a child at a specified index position.

Accordion.getChildAt() Gets a reference to a child at a specified index position.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.
26 Chapter 2: Components Reference

Methods inherited from UIComponent class

The following table lists the methods the Accordion class inherits from the UIComponent class.
When calling these methods from the Accordion object, use the form
accordionInstance.methodName.

Property summary for the Accordion class

The following table lists properties of the Accordion class.

Properties inherited from the UIObject class

The following table lists the properties the Accordion class inherits from the UIObject class.
When accessing these properties, use the form accordionInstance.propertyName.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

Accordion.numChildren The number of children of an Accordion instance.

Accordion.selectedChild A reference to the selected child.

Accordion.selectedIndex The index position of the selected child.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

Method Description
Accordion component 27

Properties inherited from the UIComponent class

The following table lists the properties the Accordion class inherits from the UIComponent class.
When accessing these properties, use the form accordionInstance.propertyName.

Event summary for the Accordion class

The following table lists an event of the Accordion class.

Events inherited from the UIObject class

The following table lists the events the Accordion class inherits from the UIObject class.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event Description

Accordion.change Broadcast to all registered listeners when the selectedIndex and
selectedChild properties of an accordion change because of a
user’s mouse click or keypress.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Property Description
28 Chapter 2: Components Reference

Events inherited from the UIComponent class

The following table lists the events the Accordion class inherits from the UIComponent class.

Accordion.change

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.change = function(eventObject){

// insert your code here
}
myAccordionInstance.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners when the selectedIndex and selectedChild
properties of an accordion change. This event is broadcast only when a user’s mouse click or
keypress changes the value of selectedChild or selectedIndex—not when the value is
changed with ActionScript. This event is broadcast before the transition animation occurs.

Version 2 components use a dispatcher/listener event model. The Accordion component
dispatches a change event when one of its buttons is clicked and the event is handled by a
function (also called a handler) on a listener object (listenerObject) that you create. You call
the addEventListener() method and pass it a reference to the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. For more information, see
“UIEventDispatcher class” on page 530.

The Accordion change event also contains two unique event object properties:

• newValue Number; the index of the child that is about to be selected.
• prevValue Number; the index of the child that was previously selected.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
Accordion component 29

Example

In the following example, a handler called myAccordionListener is defined and passed to the
myAccordion.addEventListener() method as the second parameter. The event object is
captured by the change handler in the eventObject parameter. When the change event is
broadcast, a trace statement is sent to the Output panel.
myAccordionListener = new Object();
myAccordionListener.change = function(){

trace("Changed to different view");
}
myAccordion.addEventListener("change", myAccordionListener);

Accordion.createChild()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myAccordion.createChild(classOrSymbolName, instanceName[, initialProperties])

Parameters

classOrSymbolName Either the constructor function for the class of the UIObject to be
instantiated, or the linkage name (a reference to the symbol to be instantiated). The class must be
UIObject or a subclass of UIObject, but most often it is View object or a subclass of View.

instanceName The instance name of the new instance.

initialProperties An optional parameter that specifies initial properties for the new
instance. You can use the following properties:

• label A string that specifies the text label that the new child instance uses on its header.
• icon A string that specifies the linkage identifier of the library symbol that the child uses for

the icon on its header.

Returns

A reference to an instance of the UIObject that is the newly created child.

Description

Method (inherited from View); creates a child for the accordion. The newly created child is added
to the end of the list of children owned by the accordion. Use this method to place views inside
the accordion. The created child is an instance of the class or movie clip symbol specified in the
classOrSymbolName parameter. You can use the label and icon properties to specify a text label
and an icon for the associated accordion header for each child in the initialProperties
parameter.

When each child is created, it is assigned an index number in the order of creation and the
numChildren property is increased by 1.
30 Chapter 2: Components Reference

Example

The following code creates an instance of the PaymentForm movie clip symbol named payment as
the last child of myAccordion:
var child = myAccordion.createChild("PaymentForm", "payment", {label:

"Payment", Icon: "payIcon"});
child.cardType.text = "Visa";
child.cardNumber.text = "1234567887654321";

The following code creates a child that is an instance of the View class:
var child = myAccordion.createChild(mx.core.View, "payment", {label:

"Payment", Icon: "payIcon"});
child.cardType.text = "Visa";
child.cardNumber.text = "1234567887654321";

The following code also creates a child that is an instance of the View class, but it uses import to
reference the constructor for the View class:
import mx.core.View
var child = myAccordion.createChild(View, "payment", {label: "Payment", Icon:

"payIcon"});
child.cardType.text = "Visa";
child.cardNumber.text = "1234567887654321";

Accordion.createSegment()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myAccordion.createSegment(classOrSymbolName, instanceName[, label[, icon]])

Parameters

classOrSymbolName Either a reference to the constructor function for the class of the
UIObject to be instantiated, or the linkage name of the symbol to be instantiated. The class must
be UIObject or a subclass of UIObject, but most often it is View or a subclass of View.

instanceName The instance name of the new instance.

label A string that specifies the text label that the new child instance uses on its header. This
parameter is optional.

icon A string reference to the linkage identifier of the library symbol that the child uses for the
icon on its header. This parameter is optional.

Returns

A reference to the newly created UIObject instance.
Accordion component 31

Description

Method; creates a child for the accordion. The newly created child is added to the end of the list
of children owned by the accordion. Use this method to place views inside the accordion. The
created child is an instance of the class or movie clip symbol specified in the classOrSymbolName
parameter. You can use the label and icon parameters to specify a text label and an icon for the
associated accordion header for each child.

The createSegment() method differs from the createChild() method in that label and icon
are passed directly as parameters, not as properties of an initalProperties parameter.

When each child is created, it is assigned an index number in the order of creation, and the
numChildren property is increased by 1.

Example

The following example creates an instance of the PaymentForm movie clip symbol named
payment as the last child of myAccordion:
var child = myAccordion.createSegment("PaymentForm", "payment", "Payment",

"payIcon");
child.cardType.text = "Visa";
child.cardNumber.text = "1234567887654321";

The following code creates a child that is an instance of the View class:
var child = myAccordion.createSegment(mx.core.View, "payment", {label:

"Payment", Icon: "payIcon"});
child.cardType.text = "Visa";
child.cardNumber.text = "1234567887654321";

The following code also creates a child that is an instance of the View class, but it uses import to
reference the constructor for the View class:
import mx.core.View
var child = myAccordion.createSegment(View, "payment", {label: "Payment",

Icon: "payIcon"});
child.cardType.text = "Visa";
child.cardNumber.text = "1234567887654321";

Accordion.destroyChildAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myAccordion.destroyChildAt(index)

Parameters

index The index number of the accordion child to destroy. Each child of an accordion is
assigned a zero-based index number in the order in which it was created.
32 Chapter 2: Components Reference

Returns

Nothing.

Description

Method (inherited from View); destroys one of the accordion’s children. The child to be
destroyed is specified by its index, which is passed to the method in the index parameter. Calling
this method destroys the corresponding header as well.

If the destroyed child is selected, a new selected child is chosen. If there is a next child, it is
selected. If there is no next child, the previous child is selected. If there is no previous child, the
selection is undefined.

Note: Calling destroyChildAt() decreases the numChildren property by 1.

Example

The following code destroys the last child of myAccordion:
myAccordion.destroyChildAt(myAccordion.numChildren - 1);

See also

Accordion.createChild()

Accordion.getChildAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myAccordion.getChildAt(index)

Parameters

index The index number of an accordion child. Each child of an accordion is assigned a
zero-based index in the order in which it was created.

Returns

A reference to the instance of the UIObject at the specified index.

Description

Method; returns a reference to the child at the specified index. Each accordion child is given an
index number for its position. This index number is zero-based, so the first child is 0, the second
child is 1, and so on.

Example

The following code gets a reference to the last child of myAccordion:
var lastChild:UIObject = myAccordion.getChildAt(myAccordion.numChildren - 1);
Accordion component 33

Accordion.numChildren

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myAccordion.numChildren

Description

Property (inherited from View); indicates the number of children (of type UIObject) in an
Accordion instance. Headers are not counted as children.

Each accordion child is given an index number for its position. This index number is zero-based,
so the first child is 0, the second child is 1, and so on. The code myAccordion.numChild - 1
always refers to the last child added to an accordion. For example, if there were seven children in
an accordion, the last child would have the index 6. The numChildren property is not zero-based,
so the value of myAccordion.numChildren would be 7. The result of 7 - 1 is 6, which is the
index number of the last child.

Example

The following example selects the last child:
myAccordion.selectedIndex = myAccordion.numChildren - 1;

Accordion.selectedChild

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myAccordion.selectedChild

Description

Property; the selected child (of type UIObject) if one or more children exist; undefined if no
children exist.

If the accordion has children, the code myAccordion.selectedChild is equivalent to the code
myAccordion.getChildAt(myAccordion.selectedIndex).

Setting this property to a child causes the accordion to begin the transition animation to display
the specified child.

Changing the value of selectedChild also changes the value of selectedIndex.
34 Chapter 2: Components Reference

The default value is myAccordion.getChildAt(0) if the accordion has children. If the accordion
doesn’t have children, the default value is undefined.

Example

The following example retrieves the label of the selected child view:
var selectedLabel = myAccordion.selectedChild.label;

The following example sets the payment form to be the selected child view:
myAccordion.selectedChild = myAccordion.payment;

See also

Accordion.selectedIndex

Accordion.selectedIndex

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myAccordion.selectedIndex

Description

Property; the zero-based index of the selected child in an accordion with one or more children.
For an accordion with no child views, the only valid value is undefined.

Each accordion child is given an index number for its position. This index number is zero-based,
so the first child is 0, the second child is 1, and so on. The valid values of selectedIndex are 0,
1, 2, ... , n - 1, where n is the number of children.

Setting this property to a child causes the accordion to begin the transition animation to display
the specified child.

Changing the value of selectedIndex also changes the value of selectedChild.

Example

The following example remembers the index of the selected child:
var oldSelectedIndex = myAccordion.selectedIndex;

The following example selects the last child:
myAccordion.selectedIndex = myAccordion.numChildren - 1;

See also

Accordion.numChildren, Accordion.selectedChild
Accordion component 35

AccordionTab component

The AccordionTab component lets you create multiple tabs, each with an associated area, that
allow the display of large amounts of information in a relatively small space. Each tab contains a
label and icon, if desired, and an associated area for content. Users click a tab to switch among
tabs. The component uses animation to switch from one tab to another, in an accordion-like
fashion, thus giving this component its name.

The following image shows an example of how the AccordionTab component can be used to
create three tabs: At a Glance, Find a Movie, and Favorites. Note that the Favorites tab contains
the Favorites icon.

Using the AccordionTab component

To use the AccordionTab component, specify a label for each tab and a data provider for the
content area. The component sends callback functions that you can use to hide or show different
data on the screen, depending on the selected index of the component. You cannot put a movie
clip into the content area, so instead, you must listen for the tab-switching animation to start and
finish and swap in your movie clip. The component has two events that you can listen for:
onAnimationStart and onAnimationDone. For more information, see “AccordionTab examples”
on page 37.

The MAccordionTab.setDataProvider() method lets you set a data provider for the accordion
tabs. A data provider can be an array or an instance of the DataProvider class. For more
information about the DataProvider class, see Developing Macromedia Central Applications.

When it is appropriate to your application design, Macromedia recommends that your Central
application contain a tab, such as a Favorites tab, to display information that the application has
cached for offline viewing. Users add information they want to save to the Favorites tab by
clicking a button in your application, such as an Add to Favorites button. Users can then
effectively use your application offline. See Macromedia applications in the Macromedia Central
SDK for an example of this implementation.
36 Chapter 2: Components Reference

The Favorites tab should contain the Favorites symbol; the Favorites symbol is also on the Add to
Favorites button and Remove from Favorites buttons, which you can use to add data to and
remove data from the Favorites tab. To set the Favorites icon in a tab in your AccordionTab
instance, specify the icon property for the favorites element in the data provider (dp) for the
AccordionTab instance. The following example uses a data provider named dp:
dp.addItem({label:"Favorites", data:"FavoritesSymbol",

icon:"MAccordionTabFavoritesFlag"});

For information about the Add to Favorites or Remove from Favorites buttons, see “Using the
IconButton component” on page 242.

AccordionTab parameters

You can set the following parameters for the each instance of the AccordionTab component:

Labels sets the text for each tab in an array.

Base Color is the base color set for this accordion tab instance. The component automatically
selects this base color or appropriate hues of the base color for different elements of the
component, such as the color for the tab text in the selected state.

Change Handler is the name of the function that you call when the user selects a tab. You must
define this function in the same Timeline as the instance of the AccordionTab. This parameter is
optional and must be specified only if you want an action to occur when the user selects a tab. For
more information, see “Writing event listeners for components” on page 11.

About AccordionTab states

Each tab of the AccordionTab component has selected and unselected states and animates
between them. In the unselected state, a tab is the color set using the setBaseColor method.
When a user selects the tab, the tab color changes to white and the tab text color takes on the
color set using the setBaseColor method. The tab animates so it appears that the content area
opens while the other tabs slide over. This component has no border color for the selected state.

AccordionTab examples

The following code provides examples of how to set up an AccordionTab component in your
application. Both examples create an AccordionTab instance for an address book application with
three tabs: Add Contacts, Find A Contact, and Favorites. To have a movie clip show in the
AccordionTab component’s content area, the code listens for onAnimationStart and
onAnimationDone, passes a reference to itself as the only parameter, and swaps out the movie clip
that should appear on top of the instance of the AccordionTab component, using the
attachMovie() method.
AccordionTab component 37

AccordionTab example one

The following code example is a simple implementation of setting up an AccordionTab
component. When the user clicks a tab, the tab animates to a selected state, and the previously
selected tab animates to an unselected state. When the animation starts, the previous contents of
the tab are cleared. When the animation ends, the contents of the new tab are revealed. The
following code demonstrates how to listen and respond to the onAnimationStart and
onAnimationDone events:
//---
// Set up the Tab menu with data
this.configureMenu = function(menu)
{

this.nextLevel = 100;
var dp = new mx.central.data.DataProviderClass();
dp.addItem({label:"Add Contacts", data: "AddressBookSymbol"});
dp.addItem({label:"Find A Contact", data: "FindAContactSymbol"});
dp.addItem({label:"Favorites", data:"FavoritesSymbol",
icon:"MAccordionTabFavoritesFlag"});
menu.setDataProvider(dp);
menu.addListener(this);
menu.setSelectedIndex(0);

}
//---
// Triggered from the Tabs whenever the change is begun
this.onAnimationStart = function(menu)
{

trace(">> Tab is beginning to change - hide the current section now");
this.currentView.deActivate(); // Custom Method in the current view clip...

}
//---
// Triggered from the Tabs whenever the change is complete -
this.onAnimationDone = function(menu)
{

var sel = menu.getSelectedItem().data;
trace(">> Tab is finished changing - show the new section [" + sel + "]");
if(this.currentView instanceof MovieClip) {

this.currentView.removeMovieClip();
}
this[sel] = this.attachMovie(sel, sel+"_mc", this.nextLevel++,
{controller:this});
this.currentView = this[sel];

}
//---
// The instance name of the component is tabs_mc.
this.configureMenu(this.tabs_mc);

AccordionTab example two

The following example shows a slightly more complex, but thorough, method of setting up an
AccordionTab component:
//---
// Set up the Tab menu with data
38 Chapter 2: Components Reference

this.configureMenu = function(menu)
{

this.nextLevel = 100;
var dp = new mx.central.data.DataProviderClass();
dp.addItem({label:"At-A-Glance", data: "AtAGlanceSymbol"});
dp.addItem({label:"Find A Restaurant", data: "FindARestaurantSymbol"});
dp.addItem({label:"Favorites", data:"FavoritesSymbol",
icon:"MAccordionTabFavoritesFlag"});
menu.setDataProvider(dp);
menu.addListener(this);
menu.setSelectedIndex(0);

}
//---
// Triggered from the Tabs whenever the change is begun -
this.onAnimationStart = function(menu)
{

trace(">> Tab is beginning to change - hide the current section now");
this.currentView.deActivate(); // Custom Method in the current view clip...

}
//---
// Triggered from the Tabs whenever the change is complete -
this.onAnimationDone = function(menu)
{

var sel = menu.getSelectedItem().data;
trace(">> Tab is finished changing - show the new section [" + sel + "]");
this.setCurrentView(sel);

}
//---
// Attach the view if it doesn't yet exist
// call it's custom .activate function if it does...
// This postpones intensive instantiation until absolutely necessary,
// and the use of activate/deActivate prevents additional/unnecessary
// instantiation...

this.setCurrentView = function(str)
{

// Set the linkage to the library path of your views.
var linkage = "com.yourDomain.app.views." + str;

// If the currentView has been previously set,
// This means that the user is currently viewing
// something... so we should hide it first...

if (this.currentView instanceof MovieClip) {
this.currentView._visible = 0;

}
// Determine whether or not the currently selected
// content movie is already attached-
// if so - simply show it...
// if not - attach it...
// NOTE: Rather than setting a content movie’s
// _visible property - you should call some
// custom methods - like activate/deActivate...
// That would not only hide but also clean up
// any listeners or other cpu-intensive assets...
AccordionTab component 39

// and may also accept params like current height / width data...

if (this[str] == undefined) {
var lvl = this.nextLevel++;
this[str] = this.attachMovie(linkage, str + "_mc", lvl, {controller:this});
} else {

this[str]._visible = 1;
}

this.currentView = this[str];
this.persistCurrentView(str); // Some Method that will store the current
view for next session...

}
//---
// Should retrieve the contentWidth prop - which should be managed
// with the onResize event...
this.getContentWidth = function()
{

return this.contentWidth;
}
//---
// Should retrieve the contentHeight prop - which should be managed
// with the onResize event...
this.getContentHeight = function()
{

return this.contentHeight;
}
//---
// The instance name of the component is tabs_mc.
this.configureMenu(this.tabs_mc);

Method summary for the MAccordionTab component

The following table summarizes the methods for the MAccordionTab component:

Method Description

MAccordionTab.addItem() Appends an item to the data provider.

MAccordionTab.addItemAt() Adds an item at the specified index in the data provider.

MAccordionTab.getBaseColor() Returns the base color of the component in decimal format.

MAccordionTab.getContentBounds() Returns an object containing four points—xMin, xMax, yMin, and
yMax—which represent coordinates in the component’s
_parent coordinate system. These coordinates are the corners
of the white content area of the component.

MAccordionTab.getDataProvider() Returns the data provider for the component.

MAccordionTab.getItemAt() Returns an object containing the label and data properties for
the tab at the specified index.

MAccordionTab.getLength() Gets the number of tabs.

MAccordionTab.getSelectedIndex() Returns the index of the selected tab.
40 Chapter 2: Components Reference

MAccordionTab.addItem()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.addItem(label, data)

Parameters

label A string for the label for the tab.

data The data provider for the content area. This can be an array or an object of the
DataProvider class.

Returns

Nothing.

Description

Method; appends a tab to the end of the tab group with a content area. You specify a label and
data for the tab. You can use this method or MAccordionTab.addItemAt() with the
MAccordionTab.setDataProvider() method to populate all the tabs.

MAccordionTab.getSelectedItem() Returns an object containing the label and data properties for
the selected tab.

MAccordionTab.getValue() Returns an object representing the currently selected tab.
The object contains label and data properties with an optional
icon property.

MAccordionTab.removeAll() Removes all the tabs.

MAccordionTab.removeItemAt() Removes the specified item in the data provider and in the
content area of the tabs.

MAccordionTab.replaceItemAt() Replaces the tab at the specified index with the new data.

MAccordionTab.setBaseColor() Assigns the base color for the component.

MAccordionTab.setChangeHandler() Assigns a change handler that gets called when the user
selects a tab with the mouse.

MAccordionTab.setDataProvider() Sets the data provider for the tabs. The component looks for
three specific properties in the data provider elements: a label,
data, and an optional icon property that points to an item in
the library.

MAccordionTab.setSelectedIndex() Sets the selected tab for the component.

MAccordionTab.setSize() Sets the width and height of the component.

Method Description
AccordionTab component 41

If you add only one item to the component instance, it doesn’t appear as a colored tab and appears
as a title in the content area. You need a minimum of two items to have differentiated tabs visible
to the user.

Example

The following example creates three tabs, labeled Section 1, Section 2, and Section 3, with
content from an object of the DataProvider class. The code then gets a reference to the third item
and traces its label.
myAccordionTab.addItem("Section 1","section1");
myAccordionTab.addItem("Section 2","section2");
myAccordionTab.addItem("Section 3","section3");
var item = myAccordionTab.getValue();
trace(item.label) // traces "Section 3"

MAccordionTab.addItemAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.addItemAt(index, label, data)

Parameters

index An integer indicating the index where the item is added.

label A string for the tab’s label.

data The data provider for the content area. This can be an array or an object of the
DataProvider class.

Returns

Nothing.

Description

Method; adds a tab at the specified index in the tab group. For each tab in the AccordionTab
component, use either this method or addItem(), or use the setDataProvider method to populate
all the tabs.

Example

The following example creates tabs labeled Section 2 and Section 3, and then adds another tab at
the beginning of the tab group:
myAccordionTab.addItem("Section 2","section2data");
myAccordionTab.addItem("Section 3","section3data");
myAccordionTab.addItemAt(0, "Section 1","section3");
42 Chapter 2: Components Reference

MAccordionTab.getBaseColor()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.getBaseColor()

Parameters

None.

Returns

Returns the base color of the component in decimal format.

Description

Method; gets the base color of the component in decimal format.

Example

The following example gets the base color and traces it:
var color = myAccordionTab.getBaseColor();
trace(“Color is: ”+color);

MAccordionTab.getContentBounds()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.getContentBounds()

Parameters

None.

Returns

An object containing the coordinates of the content area.

Description

Method; gets an object containing four points: xMin, xMax, yMin, and yMax. These points
represent coordinates in the component’s parent coordinate system and represent the boundary
corners of the content area. This method is useful to get the size of the component’s content area.
AccordionTab component 43

Example

The following example traces the boundary corners of the myAccordionTab instance:
trace("bounds");
var bounds = myAccordionTab.getContentBounds();
for (var prop in bounds) {
trace("bounds[" + prop + "] = " + bounds[prop]);
}

MAccordionTab.getDataProvider()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.getDataProvider()

Parameters

None.

Returns

The data provider that is used to populate the tabs—either an array or a DataProvider object.

Description

Method; gets the array or DataProvider object being used to populate the accordion tab. If a
DataProvider object is returned, it should have the following fields: label, data, and an optional
icon field that points to an icon in the library.

Example

The following example gets the data provider for the myTabs instance:
trace(myTabs.getDataProvider());

MAccordionTab.getItemAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.getItemAt(index)

Parameters

index An integer representing the index of the item.
44 Chapter 2: Components Reference

Returns

Gets an object containing the data and label properties for the tab at the specified index.

Description

Method; gets an object containing the data and label properties for the tab at the specified index.

Example

The following code adds four tabs to the component and then gets the item at index 2 and traces
its label:
var tabs = ["tab 1","tab 2","tab 3","tab 4"];
myAccordionTab.setDataProvider(tabs);
var item = myAccordionTab.getItemAt(2);
// traces "Item Label: Section 3"
trace("Item Label: "+item.label);

MAccordionTab.getLength()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.getLength()

Parameters

None.

Returns

Gets the length of the tab.

Description

Method; gets the length of the tab.

Example

The following code gets the length of the tab:
myAccordionTab.getLength();

MAccordionTab.getSelectedIndex()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.
AccordionTab component 45

Usage

myComponent.getSelectedIndex()

Parameters

None.

Returns

An integer indicating the index of the currently selected tab of the component.

Description

Method; gets an integer indicating the index of the currently selected tab.

Example

The following example adds four tabs to the component, sets the selected index 2, and then
retrieves information from the currently selected section:
var sections = ["Section 1","Section 2","Section 3","Section 4"];
myAccordionTab.setDataProvider(sections); myAccordionTab.setSelectedIndex(2);
var index = myAccordionTab.getSelectedIndex();
// traces "Index: 2"
trace("Index: "+index);

MAccordionTab.getSelectedItem()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.getSelectedItem()

Parameters

None.

Returns

Gets an object representing the currently selected item. The object has two properties, label and
data, which contain information about the specified tab item.

Description

Method; gets an object representing the currently selected item.

Example

The following example adds four tabs to the AccordionTab component, sets the selected item to
the third item, and then traces its label:
var sections = ["Tab 1","Tab 2","Tab 3","Tab 4"];
myAccordionTab.setDataProvider(sections);
46 Chapter 2: Components Reference

myAccordionTab.setSelectedIndex(2);

var item = myAccordionTab.getSelectedItem();
// traces "Selected Item: Tab 3"
trace("Selected Item: "+item.label);

MAccordionTab.getValue()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.getValue()

Parameters

None.

Returns

Gets an object representing the currently selected tab. The object has label and data properties,
with an optional icon property.

Description

Method; gets an object representing the currently selected tab. The object has label and data
properties, with an optional icon property, that provide information about the tab.

Example

The following example adds four tabs to the component, sets the selected index to 2, and then
retrieves the label for the currently selected tab:
var sections = ["Tab 1","Tab 2","Tab 3","Tab 4"];
myAccordionTab.setDataProvider(sections);
myAccordionTab.setSelectedIndex(2);
var item = myAccordionTab.getValue();
// traces "Selected Item: Tab 3"
trace("Selected Item: "+item.label);

MAccordionTab.removeAll()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.removeAll()
AccordionTab component 47

Parameters

None.

Returns

Nothing.

Description

Method; removes all the tabs. Any data associated with the tabs is lost.

Example

The following example removes all the tabs for the myAccordionTab instance:
myAccordionTab.removeAll();

MAccordionTab.removeItemAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.removeItemAt(index)

Parameters

index An integer representing the index of the tab to be removed.

Returns

Nothing.

Description

Method; removes the tab at the specified index. Any data associated with the tab is also removed
from the data provider. Any items above the remove index have their index decremented.

Example

The following code adds four tabs to the component, removes the tab at index 2, and then traces
the label of the new tab at index 2:
var tabs = ["tab 1","tab 2","tab 3","tab 4"];
myAccordionTab.setDataProvider(tabs);
myAccordionTab.removeItemAt(2);
var item = myAccordionTab.getItemAt(2);
// traces "Item Label: Section 4"
trace("Item Label: "+item.label);
48 Chapter 2: Components Reference

MAccordionTab.replaceItemAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.replaceItemAt(index, data, label)

Parameters

index An integer indicating the index of the item.

data The new data for the item.

label The new label for the item.

Returns

Nothing.

Description

Method; replaces the tab at the specified index with new data and label.

Example

The following example replaces the label of the third tab with the text “Favorites”:
myAccordionTab.replaceItemAt(2, "dp", "Favorites");

MAccordionTab.setBaseColor()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.setBaseColor(color)

Parameters

color The color, in hexadecimal format.

Returns

Nothing.

Description

Method; sets the base color for the tab component. The component automatically uses the base
color or determines shades of the selected base color for other elements in the component.
AccordionTab component 49

The default color for the text labels of the tabs is white in the unselected state and the base color
in the selected state. Be sure to set a base color that is dark enough to show white text. For
example, do not use a pale color or the white text labels might be unreadable.

This method will not work if you call the method on the instance of the AccordionTab
component before the first frame has been drawn. To set the base color of your instance of the
AccordionTab component:

• If the component is placed on the Stage in authoring, set the base color of the component in
the Properties pane.

• If the component is added dynamically with ActionScript, pass in the Base Color parameter as
an initial parameter.

• Set the base color using the Base Color parameter in the authoring tool instead of in
ActionScript.

Example

The following example sets the base color to sky blue (#3399FF):
myAccordionTab.setBaseColor(#3399FF);

MAccordionTab.setChangeHandler()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.setChangeHandler(handler[, scope])

Parameters

handler A string specifying the function that should be called when the selected section of the
component changes.

scope An object in which the specified function is called.

Returns

Nothing.

Description

Method; specifies the function to be called when the user clicks the a tab. If scope is specified, the
function is called within the scope of that object. Otherwise, _parent is used.

Example

The following code adds four sections to the component and then defines a change handler that is
called when the selected section of the component changes:
var tabs = ["Tab 1","Tab 2","Tab 3","Tab 4"];
50 Chapter 2: Components Reference

myAccordionTab.setDataProvider(tabs);
myAccordionTab.setChangeHandler("onTabSelect");
// traces "Selected Index: 2";
function onTabSelect(tab){

trace("Selected Index: "+tab.getSelectedIndex());
}

myAccordionTab.setSelectedIndex(2);

MAccordionTab.setDataProvider()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.setDataProvider(dataProvider)

Parameters

dataProvider A data provider that is used to create and populate tabs. It can be an array or an
object of the DataProvider class.

Returns

Nothing.

Description

Method; sets up the data provider for the tabs. The MAccordionTab component looks for three
specific properties in the data provider elements: label, data, and an optional icon property that
points to an item in the library.

To have the Favorites bookmark show up on a tab in the AccordionTab component, specify the
icon property for the Favorites element, as shown in the following example:
dp.addItem({label:"Favorites", data:"FavoritesSymbol",

icon:"MAccordionTabFavoritesFlag"});

The DataProvider class included with the Macromedia Central SDK contains new methods. For
more information about the DataProvider class and its methods, see “Central.DataProviderClass
object” in Developing Central Applications.

Example

The following code creates a data provider instance that is an array and uses it to configure and
populate the component:
var tabs = ["tab 1","tab 2","tab 3","tab 4"];
myAccordionTab.setDataProvider(tabs);

var item = myAccordionTab.getItemAt(2);
// traces "Item Label: Section 3"
trace("Item Label: "+item.label);
AccordionTab component 51

MAccordionTab.setSelectedIndex()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.setSelectedIndex(index)

Parameters

index The index of the tab to set as selected.

Returns

Nothing.

Description

Method; sets tab specified in index as selected.

Example

The following example adds four tabs to the AccordionTab component, sets the selected index to
the third item, and then traces its label:
var sections = ["Tab 1","Tab 2","Tab 3","Tab 4"];
myAccordionTab.setDataProvider(sections);
myAccordionTab.setSelectedIndex(2);

var index = myAccordionTab.getSelectedIndex();
//traces "Selected index: 2"
trace("Selected index: "+index);

MAccordionTab.setSize()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.setSize(width, height)

Parameters

width The new width in pixels.

height The new height in pixels.

Returns

Nothing.
52 Chapter 2: Components Reference

Description

Method; lets you specify the width and height (in pixels) of the component’s content area.

Example

The following example sets the size to 200 pixels wide and 400 pixels high:
myAccordionTab.setSize(200,400);

Alert component

The Alert component lets you display a window that presents the user with a message and
response buttons. The window has a title bar that you can fill with text, a message that you can
customize, and buttons whose labels you can change. An Alert window can have any combination
of Yes, No, OK, and Cancel buttons, and you can change the button labels by using the
Alert.yesLabel, Alert.click, Alert.okLabel, and Alert.cancelLabel properties. You
cannot change the order of the buttons in an Alert window; the button order is always OK, Yes,
No, Cancel. An Alert window closes when a user clicks any of its buttons.

To display an Alert window, call the Alert.show() method. In order to call the method
successfully, the Alert component must be in the library. By dragging the Alert component from
the Components panel to the Stage and then deleting the component, you add the component to
the library without making it visible in the document.

The live preview for the Alert component is an empty window.

When you add an Alert component to an application, you can use the Accessibility panel to make
the component’s text and buttons accessible to screen readers. First, add the following line of code
to enable accessibility:
mx.accessibility.AlertAccImpl.enableAccessibility();

Note: You enable accessibility for a component only once, regardless of how many instances you
have of the component.

Using the Alert component

You can use an Alert component whenever you want to announce something to a user. For
example, you could display an alert when a user doesn’t fill out a form properly, when a stock hits
a certain price, or when a user quits an application without saving the session.

Alert parameters

The Alert component has no authoring parameters. You must call the ActionScript
Alert.show() method to display an Alert window. You can use other ActionScript properties to
modify the Alert window in an application. For more information, see “Alert class” on page 58.

Creating an application with the Alert component

The following procedure explains how to add an Alert component to an application while
authoring. In this example, the Alert component appears when a stock hits a certain price.
Alert component 53

To create an application with the Alert component:

1. Double-click the Alert component in the Components panel to add it to the Stage.

2. Press Backspace (Windows) or Delete (Macintosh) to delete the component from the Stage.

This adds the component to the library, but doesn’t make it visible in the application.
3. In the Actions panel, enter the following code on Frame 1 of the Timeline to define an event

handler for the click event:
import mx.controls.Alert;
myClickHandler = function (evt){

if (evt.detail == Alert.OK){
trace("start stock app");
// startStockApplication();

}
}
Alert.show("Launch Stock Application?", "Stock Price Alert", Alert.OK |

Alert.CANCEL, this, myClickHandler, "stockIcon", Alert.OK);

This code creates an Alert window with OK and Cancel buttons. When the user clicks either
button, Flash calls the myClickHandler function. But when the user clicks the OK button,
Flash calls the startStockApplication() function.

Note: The Alert.show() method includes an optional parameter that displays an icon in the Alert
window (in this example, an icon with the linkage identifier “stockIcon”). To include this icon in your
test example, create a symbol named stockIcon and set it to Export for ActionScript in the Linkage
Properties dialog box or the Create New Symbol dialog box.

4. Select Control > Test Movie.

Customizing the Alert component

The Alert component positions itself in the center of the component that was passed as its parent
parameter. The parent must be a UIComponent object. If it is a movie clip, you can register the
clip as mx.core.View so that it inherits from UIComponent.

The Alert window automatically stretches horizontally to fit the message text or any buttons that
are displayed. If you want to display large amounts of text, include line breaks in the text.

The Alert component does not respond to the setSize() method.

Using styles with the Alert component

You can set style properties to change the appearance of an Alert component. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than noncolor
style properties.
54 Chapter 2: Components Reference

An Alert component supports the following styles:

The Alert component includes three different categories of text. Setting the text properties for the
Alert component itself provides default values for all three categories, as shown here:
import mx.controls.Alert;
_global.styles.Alert.setStyle("color", 0x000099);
Alert.show("This is a test alert", "Title");

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values are
"haloGreen", "haloBlue", and "haloOrange". The default value
is "haloGreen".

backgroundColor Both The background color. The default color is white for the Halo
theme and 0xEFEBEF (light gray) for the Sample theme.

border styles Both The Alert component uses a RectBorder instance as its
border and responds to the styles defined on that class. See
“RectBorder class” in Flash Help.

The Alert component has a component-specific borderStyle
setting of “alert” with the Halo theme and “outset” with the
Sample theme.

color Both The text color. The default value is 0x0B333C for the Halo
theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The default
color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to
true if fontFamily refers to an embedded font. Otherwise, the
embedded font will not be used. If this style is set to true and
fontFamily does not refer to an embedded font, no text will be
displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bold". The default value
is "none". All components can also accept the value "normal"
in place of "none" during a setStyle() call, but subsequent
calls to getStyle() will return "none".

textAlign Both The text alignment: either "left", "right", or "center". The
default value is "left".

textDecoration Both The text decoration: either "none" or "underline". The default
value is "none".

textIndent Both A number indicating the text indent. The default value is 0.
Alert component 55

To set the text styles for one category individually, the Alert component provides static properties
that are references to a CSSStyleDeclaration instance.

The following example demonstrates how to set the title of an Alert component to be italicized:
import mx.controls.Alert;
import mx.styles.CSSStyleDeclaration;

var titleStyles = new CSSStyleDeclaration();
titleStyles.setStyle("fontWeight", "bold");
titleStyles.setStyle("fontStyle", "italic");

Alert.titleStyleDeclaration = titleStyles;

Alert.show("Name is a required field", "Validation Error");

The default title style declarations set fontWeight to "bold". When you override the
titleStyleDeclaration property, this default is also overridden, so you must explicitly set
fontWeight to "bold" if that setting is desired.

Note: Text styles set on an Alert component provide default text styles to its components through
style inheritance.

Using skins with the Alert component

The Alert component extends the Window component and uses its title background skin for the
title background, a RectBorder class instance for its border, and Button skins for the visual states
of its buttons. To skin the buttons and title bar while authoring, modify the Flash UI
Components 2/Themes/MMDefault/Window Assets/Elements/TitleBackground and Flash UI
Components 2/Themes/MMDefault/Button Assets/ButtonSkin symbols. For more information,
see “About skinning components” in Flash Help. The border and background are provided by the
RectBorder class by default. For information on skinning the RectBorder class, see “RectBorder
class” in Flash Help.

An Alert component uses the following skin properties to dynamically skin the buttons and
title bar:

Static property Text affected

buttonStyleDeclaration Button

messageStyleDeclaration Message

titleStyleDeclaration Title

Property Description Default value

buttonUp The up state of the buttons. ButtonSkin

buttonUpEmphasized The up state of the default button. ButtonSkin

buttonDown The pressed state of the buttons. ButtonSkin

buttonDownEmphasized The pressed state of the default button. ButtonSkin

buttonOver The rolled-over state of the buttons. ButtonSkin
56 Chapter 2: Components Reference

To set the title of an Alert component to a custom movie clip symbol:

1. Create a new FLA file.

2. Create a new symbol by selecting Insert > New Symbol.

3. Set the name to TitleBackground.

4. If the advanced view is not displayed, click the Advanced button.

5. Select Export for ActionScript.

6. The identifier will be automatically filled out with TitleBackground.

7. Set the AS 2.0 class to mx.skins.SkinElement.

SkinElement is a simple class that can be used for all skin elements that don’t provide their own
ActionScript implementation. It provides movement and sizing functionality required by the
version 2 component framework.

8. Ensure that Export in First Frame is already selected.

9. Click OK.

10. Open the new symbol for editing.

11. Use the drawing tools to create a box with a red fill and black line.

12. Set the border style to hairline.

13. Set the box, including the border, so that is positioned at (0,0) and has a width of 100 and
height of 22.

The Alert component sets the proper width of the skin as needed, but it uses the existing
height as the height of the title.

14. Click the Back button to return to the main Timeline.

15. Drag an Alert component to the Stage and delete it.

This will add the Alert component to the library and available at runtime.
16. Add ActionScript code to the main Timeline to create a sample Alert instance.

import mx.controls.Alert;
Alert.show("This is a skinned Alert component","Title");

17. Select Control > Test Movie.

buttonOverEmphasized The rolled-over state of the default button. ButtonSkin

titleBackground The window title bar. TitleBackground

Property Description Default value
Alert component 57

Alert class

Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView > Window
component > Alert

ActionScript Class Name mx.controls.Alert

To use the Alert component, you drag an Alert component to the Stage and delete it so that the
component is in the document library but not visible in the application. Then you call
Alert.show() to display an Alert window. You can pass parameters to Alert.show() that add a
message, a title bar, and buttons to the Alert window.

Because ActionScript is asynchronous, the Alert component is not blocking, which means that
the lines of ActionScript code that follow the call to Alert.show() run immediately. You must
add listeners to handle the click events that are broadcast when a user clicks a button and then
continue your code after the event is broadcast.

Note: In operating environments that are blocking (for example, Microsoft Windows), a call to
Alert.show() does not return until the user has taken an action, such as clicking a button.

To understand more about the Alert class, see “Window component” on page 505 and
“PopUpManager class” in Flash Help.

Method summary for the Alert class

The following table lists the method of the Alert class.

Methods inherited from the UIObject class

The following table lists the methods the Alert class inherits from the UIObject class.

Method Description

Alert.show() Creates an Alert window with optional parameters.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.
58 Chapter 2: Components Reference

Methods inherited from the UIComponent class

The following table lists the methods the Alert class inherits from the UIComponent class.

Methods inherited from the Window class

The following table lists the methods the Alert class inherits from the Window class.

Property summary for the Alert class

The following table lists properties of the Alert class.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Method Description

Window.deletePopUp() Removes a window instance created by
PopUpManager.createPopUp().

Property Description

Alert.buttonHeight The height of each button, in pixels. The default value is 22.

Alert.buttonWidth The width of each button, in pixels. The default value is 100.

Alert.CANCEL A constant hexadecimal value indicating whether a Cancel button
should be displayed in the Alert window.

Alert.cancelLabel The label text for the Cancel button.

Alert.click The label text for the No button.

Alert.NO A constant hexadecimal value indicating whether a No button
should be displayed in the Alert window.

Alert.OK A constant hexadecimal value indicating whether an OK button
should be displayed in the Alert window.

Alert.okLabel The label text for the OK button.

Alert.YES A constant hexadecimal value indicating whether a Yes button
should be displayed in the Alert window.

Alert.yesLabel The label text for the Yes button.

Method Description
Alert component 59

Properties inherited from the UIObject class

The following table lists the properties the Alert class inherits from the UIObject class. When
calling these properties from the Alert object, use the form Alert.propertyName.

Properties inherited from the UIComponent class

The following table lists the properties the Alert class inherits from the UIComponent class.
When calling these properties from the Alert object, use the form Alert.propertyName.

Properties inherited from the Window class

The following table lists the properties the Alert class inherits from the Window class.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Property Description

Window.closeButton Indicates whether a close button is (true) or is not (false) included
on the title bar.

Window.content A reference to the content (root movie clip) of the window.

Window.contentPath Sets the name of the content to display in the window.
60 Chapter 2: Components Reference

Event summary for the Alert class

The following table lists an event of the Alert class.

Events inherited from the UIObject class

The following table lists the events the Alert class inherits from the UIObject class. When calling
these events from the Alert object, use the form Alert.eventName.

Events inherited from the UIComponent class

The following table lists the events the Alert class inherits from the UIComponent class. When
calling these events from the Alert object, use the form Alert.eventName.

Events inherited from the Window class

The following table lists the events the Alert class inherits from the Window class.

Window.title The text that appears in the title bar.

Window.titleStyleDeclaration The style declaration that formats the text in the title bar.

Event Description

Alert.click Broadcast when a button in an Alert window is clicked.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description

Window.click Broadcast when the close button is clicked (released).

Property Description
Alert component 61

Alert.buttonHeight

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Alert.buttonHeight

Description

Property (class); a class (static) property that changes the height of the buttons. The default value
is 22.

See also

Alert.buttonWidth

Alert.buttonWidth

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Alert.buttonWidth

Description

Property (class); a class (static) property that changes the width of the buttons. The default value
is 100.

See also

Alert.buttonHeight

Window.complete Broadcast when a window is created.

Window.mouseDownOutside Broadcast when the mouse is clicked (released) outside the modal
window.

Event Description
62 Chapter 2: Components Reference

Alert.CANCEL

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Alert.CANCEL

Description

Property (constant); a property with the constant hexadecimal value 0x8. This property can be
used for the flags or defaultButton parameter of the Alert.show() method. When used as a
value for the flags parameter, this property indicates that a Cancel button should be displayed in
the Alert window. When used as a value for the defaultButton parameter, the Cancel button has
initial focus and is triggered when the user presses Enter (Windows) or Return (Macintosh). If the
user tabs to another button, that button is triggered when the user presses Enter.

Example

The following example uses Alert.CANCEL and Alert.OK as values for the flags parameter and
displays an Alert component with an OK button and a Cancel button:
import mx.controls.Alert;
Alert.show("This is a generic Alert window", "Alert Test", Alert.OK |

Alert.CANCEL, this);

Alert.cancelLabel

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Alert.cancelLabel

Description

Property (class); a class (static) property that indicates the label text on the Cancel button.

Example

The following example sets the Cancel button’s label to “cancellation”:
Alert.cancelLabel = "cancellation";
Alert component 63

Alert.click

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

clickHandler = function(eventObject){
// insert code here

}
Alert.show(message[, title[, flags[, parent[, clickHandler[, icon[,

defaultButton]]]]]])

Description

Event; broadcast to the registered listener when the OK, Yes, No, or Cancel button is clicked.

Version 2 components use a dispatcher/listener event model. The Alert component dispatches a
click event when one of its buttons is clicked and the event is handled by a function, also called
a handler, on a listener object (listenerObject) that you create. You call the Alert.show()
method and pass it the name of the handler as a parameter. When a button in the Alert window is
clicked, the listener is called.

When the event occurs, it automatically passes an event object (eventObject) to the handler.
Each event object has properties that contain information about the event. You can use these
properties to write code that handles the event. The Alert.click event’s event object has an
additional detail property whose value is Alert.OK, Alert.CANCEL, Alert.YES, or Alert.NO,
depending on which button was clicked. For more information, see “UIEventDispatcher class”
on page 530.

Example

In the following example, a handler called myClickHandler is defined and passed to the
Alert.show() method as the fifth parameter. The event object is captured by myClickHandler
in the evt parameter. The detail property of the event object is then used in a trace statement
to send the name of the button that was clicked (Alert.OK or Alert.CANCEL) to the Output
panel.
import mx.controls.Alert;
myClickHandler = function(evt){

if(evt.detail == Alert.OK){
trace(Alert.okLabel);

}else if (evt.detail == Alert.CANCEL){
trace(Alert.cancelLabel);

}
}
Alert.show("This is a test of errors", "Error", Alert.OK | Alert.CANCEL, this,

myClickHandler);
64 Chapter 2: Components Reference

Alert.NO

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Alert.NO

Description

Property (constant); a property with the constant hexadecimal value 0x2. This property can be
used for the flags or defaultButton parameter of the Alert.show() method. When used as a
value for the flags parameter, this property indicates that a No button should be displayed in the
Alert window. When used as a value for the defaultButton parameter, the Cancel button has
initial focus and is triggered when the user presses Enter (Windows) or Return (Macintosh). If the
user tabs to another button, that button is triggered when the user presses Enter.

Example

The following example uses Alert.NO and Alert.YES as values for the flags parameter and
displays an Alert component with a No button and a Yes button:
import mx.controls.Alert;
Alert.show("This is a generic Alert window", "Alert Test", Alert.NO |

Alert.YES, this);

Alert.noLabel

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Alert.noLabel

Description

Property (class); a class (static) property that indicates the label text on the No button.

Example

The following example sets the No button’s label to “nyet”:
Alert.noLabel = "nyet";
Alert component 65

Alert.OK

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Alert.OK

Description

Property (constant); a property with the constant hexadecimal value 0x4. This property can be
used for the flags or defaultButton parameter of the Alert.show() method. When used as a
value for the flags parameter, this property indicates that an OK button should be displayed in
the Alert window. When used as a value for the defaultButton parameter, the OK button has
initial focus and is triggered when the user presses Enter (Windows) or Return (Macintosh). If the
user tabs to another button, that button is triggered when the user presses Enter.

Example

The following example uses Alert.OK and Alert.CANCEL as values for the flags parameter and
displays an Alert component with an OK button and a Cancel button:
import mx.controls.Alert;
Alert.show("This is a generic Alert window", "Alert Test", Alert.OK |

Alert.CANCEL, this);

Alert.okLabel

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Alert.okLabel

Description

Property (class); a class (static) property that indicates the label text on the OK button.

Example

The following example sets the OK button’s label to “okay”:
Alert.okLabel = "okay";
66 Chapter 2: Components Reference

Alert.show()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Alert.show(message[, title[, flags[, parent[, clickHandler[, icon[,
defaultButton]]]]]])

Parameters

message The message to display.

title The text in the Alert title bar. This parameter is optional; if you omit it, the title bar is
blank.

flags An optional parameter that indicates the buttons to display in the Alert window. The
default value is Alert.OK, which displays an OK button. When you use more than one value,
separate the values with a | character. Use one or more of the following values: Alert.OK,
Alert.CANCEL, Alert.YES, Alert.NO.

You can also use Alert.NONMODAL to indicate that the Alert window is nonmodal. A nonmodal
window allows a user to interact with other windows in the application.

parent The parent window for the Alert component. The Alert window centers itself in the
parent window. Use the value null or undefined to specify the _root Timeline. The parent
window must inherit from the UIComponent class. You can register the parent window with
mx.core.View to cause it to inherit from UIComponent. This parameter is optional.

clickHandler A handler for the click events broadcast when the buttons are clicked. In
addition to the standard click event object properties, there is an additional detail property,
which contains the flag value of the button that was clicked (Alert.OK, Alert.CANCEL,
Alert.YES, Alert.NO). This handler can be a function or an object. For more information, see
“Using listeners to handle events” in Flash Help.

icon A string that is the linkage identifier of a symbol in the library; this symbol is used as an
icon displayed to the left of the alert text. This parameter is optional.

defaultButton Indicates which button has initial focus and is clicked when a user presses
Enter (Windows) or Return (Macintosh). If a user tabs to another button, that button is triggered
when the Enter key is pressed.

This parameter can be one of the following values: Alert.OK, Alert.CANCEL, Alert.YES,
Alert.NO.

Returns

The Alert instance that is created.
Alert component 67

Description

Method (class); a class (static) method that displays an Alert window with a message, an optional
title, optional buttons, and an optional icon. The title of the alert appears at the top of the
window and is left-aligned. The icon appears to the left of the message text. The buttons are
centered below the message text and the icon.

Example

The following code is a simple example of a modal Alert window with an OK button:
mx.controls.Alert.show("Hello, world!");

The following code defines a click handler that sends a message to the Output panel about which
button was clicked:
import mx.controls.Alert;
myClickHandler = function(evt){

trace ("button " + evt.detail + " was clicked");
}
Alert.show("This is a test of errors", "Error", Alert.OK | Alert.CANCEL, this,

myClickHandler);

The event object’s detail property returns a number to represent each button. The OK button is
4, the Cancel button is 8, the Yes button is 1, and the No button is 2.

Note: You must have an Alert component in the library for this code to display an alert. To add the
component to the library, drag it to the Stage and then delete it.

Alert.YES

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Alert.YES

Description

Property (constant); a property with the constant hexadecimal value 0x1. This property can be
used for the flags or defaultButton parameter of the Alert.show() method. When used as a
value for the flags parameter, this property indicates that a Yes button should be displayed in the
Alert window. When used as a value for the defaultButton parameter, the Yes button has initial
focus and is triggered when the user presses Enter (Windows) or Return (Macintosh). If the user
tabs to another button, that button is triggered when the user presses Enter.
68 Chapter 2: Components Reference

Example

The following example uses Alert.NO and Alert.YES as values for the flags parameter and
displays an Alert component with a No button and a Yes button:
import mx.controls.Alert;
Alert.show("This is a generic Alert window", "Alert Test", Alert.NO |

Alert.YES, this);

Alert.yesLabel

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Alert.yesLabel

Description

Property (class); a class (static) property that indicates the label text on the Yes button.

Example

The following example sets the OK button’s label to “da”:
Alert.yesLabel = "da";

Button component

The Button component is a resizable rectangular user interface button. You can add a custom
icon to a button. You can also change the behavior of a button from push to toggle. A toggle
button stays pressed when clicked and returns to its up state when clicked again.

A button can be enabled or disabled in an application. In the disabled state, a button doesn’t
receive mouse or keyboard input. An enabled button receives focus if you click it or tab to it.
When a Button instance has focus, you can use the following keys to control it:

For more information about controlling focus, see “Creating custom focus navigation” in Flash
Help or “FocusManager class” on page 231.

A live preview of each Button instance reflects changes made to parameters in the Property
inspector or Component inspector during authoring. However, in the live preview a custom icon
is represented on the Stage by a gray square.

Key Description

Shift+Tab Moves focus to the previous object.

Spacebar Presses or releases the component and triggers the click event.

Tab Moves focus to the next object.
Button component 69

When you add the Button component to an application, you can use the Accessibility panel to
make it accessible to screen readers. First, you must add the following line of code:
mx.accessibility.ButtonAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances you have of
the component.

Using the Button component

A button is a fundamental part of any form or web application. You can use buttons wherever you
want a user to initiate an event. For example, most forms have a Submit button. You could also
add Previous and Next buttons to a presentation.

To add an icon to a button, you need to select or create a movie clip or graphic symbol to use as
the icon. The symbol should be registered at 0,0 for appropriate layout on the button. Select the
icon symbol in the Library panel, open the Linkage dialog box from the Library options menu,
and enter a linkage identifier. This is the value to enter for the icon parameter in the Property
inspector or Component inspector. You can also enter this value for the Button.icon
ActionScript property.

Note: If an icon is larger than the button, it extends beyond the button’s borders.

To designate a button as the default push button in an application (the button that receives the
click event when a user presses Enter), use FocusManager.defaultPushButton.

Button parameters

You can set the following authoring parameters for each Button component instance in the
Property inspector or in the Component inspector:

label sets the value of the text on the button; the default value is Button.

icon adds a custom icon to the button. The value is the linkage identifier of a movie clip or
graphic symbol in the library; there is no default value.

toggle turns the button into a toggle switch. If true, the button remains in the down state when
clicked and returns to the up state when clicked again. If false, the button behaves like a normal
push button; the default value is false.

selected if the toggle parameter is true, this parameter specifies whether the button is pressed
(true) or released (false). The default value is false.

labelPlacement orients the label text on the button in relation to the icon. This parameter can be
one of four values: left, right, top, or bottom; the default value is right. For more
information, see Button.labelPlacement.

You can write ActionScript to control these and additional options for the Button component
using its properties, methods, and events. For more information, see “Button class” on page 78.
70 Chapter 2: Components Reference

Creating an application with the Button component

The following procedure explains how to add a Button component to an application while
authoring. In this example, the button is a Help button with a custom icon that opens a Help
system when a user clicks it.

To create an application with the Button component:

1. Drag a Button component from the Components panel to the Stage.

2. In the Property inspector, enter the instance name helpBtn.

3. In the Property inspector, do the following:

■ Enter Help for the label parameter.
■ Enter HelpIcon for the icon parameter.

To use an icon, there must be a movie clip or graphic symbol in the library with a linkage
identifier to use as the icon parameter. In this example, the linkage identifier is HelpIcon.

■ Set the toggle property to true.
4. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
function click(evt){

clippyHelper.enabled = evt.target.selected;
}
helpBtn.addEventListener("click", this);

The last line of code adds a click event handler to the helpBtn instance. The handler enables
and disables the clippyHelper instance, which could be a Help panel of some sort.

Customizing the Button component

You can transform a Button component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()) or any applicable properties and methods of the Button class (see “Button
class” on page 78). Resizing the button does not change the size of the icon or label.

The bounding box of a Button instance is invisible and also designates the hit area for the
instance. If you increase the size of the instance, you also increase the size of the hit area. If the
bounding box is too small to fit the label, the label is clipped to fit.

If an icon is larger than the button, the icon extends beyond the button’s borders.

Using styles with the Button component

You can set style properties to change the appearance of a button instance. If the name of a style
property ends in “Color”, it is a color style property and behaves differently than noncolor style
properties. For more information, see “Using styles to customize component color and text” in
Flash Help.
Button component 71

A Button component supports the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values are
"haloGreen", "haloBlue", and "haloOrange". The default value
is "haloGreen".

backgroundColor Sample The background color. The default value is 0xEFEBEF (light
gray).

The Halo theme uses 0xF8F8F8 (very light gray) for the
button background color when the button is up and
themeColor when the button is pressed. You can only modify
the up background color in the Halo theme by skinning the
button. See “Using skins with the Button component”
on page 73.

border styles Sample The Button component uses a RectBorder instance as its
border in the Sample theme and responds to the styles
defined on that class. See “RectBorder class” in Flash Help.

With the Halo theme, the Button component uses a custom
rounded border whose colors cannot be modified except for
themeColor.

color Both The text color. The default value is 0x0B333C for the Halo
theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The default
color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to
true if fontFamily refers to an embedded font. Otherwise, the
embedded font will not be used. If this style is set to true and
fontFamily does not refer to an embedded font, no text will be
displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bold". The default value
is "none". All components can also accept the value "normal"
in place of "none" during a setStyle() call, but subsequent
calls to getStyle() will return "none".

textDecoration Both The text decoration: either "none" or "underline". The default
value is "none".
72 Chapter 2: Components Reference

Using skins with the Button component

The Button component includes 32 different skins that can be customized to correspond to the
border and icon in 16 different states. To skin the Button component while authoring, create new
movie clip symbols with the desired graphics and set the symbol linkage identifiers using
ActionScript. (See “Using ActionScript to draw Button skins” on page 75.)

The default implementation of the Button skins provided with both the Halo and Sample themes
uses the ActionScript drawing API to draw the button states, and uses a single movie clip symbol
associated with one ActionScript class to provide all skins for the Button component.

The Button component has many skins because a button has so many states, and a border and
icon for each state. The state of a Button instance is controlled by four properties and user
interaction. The properties that affect skins include the following:

If a button is enabled, it displays its over state when the pointer moves over it. The button receives
input focus and displays its down state when it’s pressed. The button returns to its over state when
the mouse is released. If the pointer moves off the button while the mouse is pressed, the button
returns to its original state and it retains input focus. If the toggle parameter is set to true, the
state of the button does not change until the mouse is released over it.

If a button is disabled, it displays its disabled state, regardless of user interaction.

A Button component supports the following skin properties:

Property Description

emphasized Provides two different looks for Button instances and is typically
used to highlight one button, such as the default button in a form.

enabled Shows whether the button allows user interaction.

toggle Toggle buttons provide a selected and unselected value and use
different skins to demonstate the current value. For a Button
instance whose toggle property is set to false, the false skins are
used. When the toggle property is true, the skin used depends on
the selected property.

selected When the toggle property is set to true, this property determines if
the Button is selected (true or false). Different skins are used to
identify the value and by default are the only way this value is
depicted on screen.

Property Description

falseUpSkin The up (normal) state.

falseDownSkin The pressed state.

falseOverSkin The over state.

falseDisabledSkin The disabled state.

trueUpSkin The toggled state.

trueDownSkin The pressed-toggled state.
Button component 73

The default value for all skin properties ending in “Skin” is ButtonSkin, and the default for all
“Icon” properties is undefined. The properties with the “Skin” suffix provide a background and
border, whereas those with the “Icon” suffix provide a small icon.

In addition to the icon skins, the Button component also supports a standard icon property. The
difference between the standard property and style property is that through the style property you
can set icons for the individual states, whereas with the standard property only one icon can be set
and it applies to all states. If a Button instance has both the icon property and icon style
properties set, the instance may not behave as anticipated.

trueOverSkin The over-toggled state.

trueDisabledSkin The disabled-toggled state.

falseUpSkinEmphasized The up (normal) state of an emphasized button.

falseDownSkinEmphasized The pressed state of an emphasized button.

falseOverSkinEmphasized The over state of an emphasized button.

falseDisabledSkinEmphasized The disabled state of an emphasized button.

trueUpSkinEmphasized The toggled state of an emphasized button.

trueDownSkinEmphasized The pressed-toggled state of an emphasized button.

trueOverSkinEmphasized The over-toggled state of an emphasized button.

trueDisabledSkinEmphasized The disabled-toggled state of an emphasized button.

falseUpIcon The icon up state.

falseDownIcon The icon pressed state.

falseOverIcon The icon over state.

falseDisabledIcon The icon disabled state.

trueUpIcon The icon toggled state.

trueOverIcon The icon over-toggled state.

trueDownIcon The icon pressed-toggled state.

trueDisabledIcon The icon disabled-toggled state.

falseUpIconEmphasized The icon up state of an emphasized button.

falseDownIconEmphasized The icon pressed state of an emphasized button.

falseOverIconEmphasized The icon over state of an emphasized button.

falseDisabledIconEmphasized The icon disabled state of an emphasized button.

trueUpIconEmphasized The icon toggled state of an emphasized button.

trueOverIconEmphasized The icon over-toggled state of an emphasized button.

trueDownIconEmphasized The icon pressed-toggled state of an emphasized button.

trueDisabledIconEmphasized The icon disabled-toggled state of an emphasized button.

Property Description
74 Chapter 2: Components Reference

To see an interactive movie demonstrating when each skin is used, see Using Components in Flash
Help.

Using ActionScript to draw Button skins

The default skins in both the Halo and Sample themes use the same skin element for all states and
draw the actual graphics through ActionScript. The Halo implementation uses an extension of
the RectBorder class and custom drawing API code to draw the states. The Sample
implementation uses the same skin and the same ActionScript class as the Button skin.

To create an ActionScript class to use as the skin and provide different states, the skin can read the
borderStyle style property of the skin and emphasized property of the parent to determine the
state. The following table shows the border style that is set for each skin:

To create an ActionScript customized Button skin:

1. Create a new ActionScript class file.

For this example, name the file RedGreenBlueSkin.as.
2. Copy the following ActionScript to the file:
import mx.skins.RectBorder;
import mx.core.ext.UIObjectExtensions;

class RedGreenBlueSkin extends RectBorder
{

static var symbolName:String = "RedGreenBlueSkin";
static var symbolOwner:Object = RedGreenBlueSkin;

function size():Void
{

var c:Number; // color
var borderStyle:String = getStyle("borderStyle");

switch (borderStyle) {
case "falseup":
case "falserollover":
case "falsedisabled":

c = 0x7777FF;
break;

Property Border style

falseUpSkin falseup

falseDownSkin falsedown

falseOverSkin falserollover

falseDisabled falsedisabled

trueUpSkin trueup

trueDownSkin truedown

trueOverSkin truerollover

trueDisabledSkin truedisabled
Button component 75

case "falsedown":
c = 0x77FF77;
break;

case "trueup":
case "truedown":
case "truerollover":
case "truedisabled":

c = 0xFF7777;
break;

}

clear();
var thickness = _parent.emphasized ? 2 : 0;
lineStyle(thickness, 0, 100);
beginFill(c, 100);
drawRect(0, 0, __width, __height);
endFill();

}

// required for skins
static function classConstruct():Boolean
{

UIObjectExtensions.Extensions();
_global.skinRegistry["ButtonSkin"] = true;
return true;

}
static var classConstructed:Boolean = classConstruct();
static var UIObjectExtensionsDependency = UIObjectExtensions;

}

This class creates a square box based on the border style: a blue box for the false up, rollover,
and disabled states; a green box for the normal pressed state; and a red box for the expanded
child. It draws a hairline border in the normal case and a thick border if the button is
emphasized.

3. Save the file.

4. Create a new FLA file.

5. Save the FLA file in the same folder as the AS file.

6. Create a new symbol by selecting Insert > New Symbol.

7. Set the name to ButtonSkin.

8. If the advanced view is not displayed, click the Advanced button.

9. Select Export for ActionScript.

The identifier will be automatically filled out with ButtonSkin.
10. Set the AS 2.0 class to RedGreenBlueSkin.

11. Ensure that Export in First Frame is already selected, and click OK.

12. Drag a Button component to the Stage.

13. Select Control > Test Movie.
76 Chapter 2: Components Reference

Using movie clips to customize Button skins

The above example demonstrates how to use an ActionScript class to customize the Button skin,
which is the method used by the skins provided in both the Halo and Sample themes. However,
because the example uses simple colored boxes, it is simpler in this case to use different movie clip
symbols as the skins.

To create movie clip symbols for Button skins:

1. Create a new FLA file.

2. Create a new symbol by selecting Insert > New Symbol.

3. Set the name to RedButtonSkin.

4. If the advanced view is not displayed, click the Advanced button.

5. Select Export for ActionScript.

The identifier will be automatically filled out with RedButtonSkin.
6. Set the AS 2.0 class to mx.skins.SkinElement.

7. Ensure that Export in First Frame is already selected, and click OK.

8. Open the new symbol for editing.

9. Use the drawing tools to create a box with a red fill and black line.

10. Set the border style to hairline.

11. Set the box, including the border, so that it is positioned at (0,0) and has a width and height of
100.

The SkinElement class resizes the content as appropriate.
12. Repeat steps 2-11 and create green and blue skins, named accordingly.

13. Click the Back button to return to the main Timeline.

14. Drag a Button component to the Stage.

15. Set the toggled property value to true to see all three skins.

16. Copy the following ActionScript code to the Actions panel with the Button instance selected.
onClipEvent(initialize) {

falseUpSkin = "BlueButtonSkin";
falseDownSkin = "GreenButtonSkin";
falseOverSkin = "BlueButtonSkin";
falseDisabledSkin = "BlueButtonSkin";
trueUpSkin = "RedButtonSkin";
trueDownSkin = "RedButtonSkin";
trueOverSkin = "RedButtonSkin";
trueDisabledSkin = "RedButtonSkin";

}

17. Select Control > Test Movie.
Button component 77

Button class

Inheritance MovieClip > UIObject class > UIComponent class > Button component > Button

ActionScript Class Name mx.controls.Button

The properties of the Button class let you do the following at runtime: add an icon to a button,
create a text label, and indicate whether the button acts as a push button or as a toggle switch.

Setting a property of the Button class with ActionScript overrides the parameter of the same name
set in the Property inspector or Component inspector.

The Button component uses the Focus Manager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For more information, see
“Creating custom focus navigation” in Flash Help.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.controls.Button.version);

Note: The code trace(myButtonInstance.version); returns undefined.

The Button component class is different from the built-in ActionScript Button object.

Method summary for the Button class

There are no methods exclusive to the Button class.

Methods inherited from the UIObject class

The following table lists the methods the Button class inherits from the UIObject class. When
calling these methods from the Button object, use the form buttonInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.
78 Chapter 2: Components Reference

Methods inherited from the UIComponent class

The following table lists the methods the Button class inherits from the UIComponent class.
When calling these methods from the Button object, use the form
buttonInstance.methodName.

Property summary for the Button class

The following table lists properties of the Button class.

Properties inherited from the SimpleButton class

The following table lists the properties the Button class inherits from the SimpleButton class.
When accessing these properties, use the form buttonInstance.propertyName.

Properties inherited from the UIObject class

The following table lists the properties the Button class inherits from the UIObject class. When
accessing these properties from the Button object, use the form
buttonInstance.propertyName.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

Button.icon Specifies an icon for a button instance.

Button.label Specifies the text that appears in a button.

Button.labelPlacement Specifies the orientation of the label text in relation to an icon.

Property Description

SimpleButton.emphasized Indicates whether a button has the look of a default
push button.

SimpleButton.emphasizedStyleDeclaration The style declaration when the emphasized property is
set to true.

SimpleButton.selected A Boolean value indicating whether the button is
selected (true) or not (false). The default value is
false.

SimpleButton.toggle A Boolean value indicating whether the button
behaves as a toggle switch (true) or not (false). The
default value is false.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.
Button component 79

Properties inherited from the UIComponent class

The following table lists the properties the Button class inherits from the UIComponent class.
When accessing these properties from the Button object, use the form
buttonInstance.propertyName.

Event summary for the Button class

There are no events exclusive to the Button class.

Events inherited from the SimpleButton class

The following table lists the events the Button class inherits from the SimpleButton class.

Events inherited from the UIObject class

The following table lists the events the Button class inherits from the UIObject class.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Property Description

SimpleButton.click Broadcast when a button is clicked.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

Property Description
80 Chapter 2: Components Reference

Events inherited from the UIComponent class

The following table lists the events the Button class inherits from the UIComponent class.

Button.icon

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

buttonInstance.icon

Description

Property; a string that specifies the linkage identifier of a symbol in the library to be used as an
icon for a button instance. The icon can be a movie clip symbol or a graphic symbol with an
upper left registration point. You must resize the button if the icon is too large to fit; neither the
button nor the icon resizes automatically. If an icon is larger than a button, the icon extends over
the borders of the button.

To create a custom icon, create a movie clip or graphic symbol. Select the symbol on the Stage in
symbol-editing mode and enter 0 in both the X and Y boxes in the Property inspector. In the
Library panel, select the movie clip and select Linkage from the Library options menu. Select
Export for ActionScript, and enter an identifier in the Identifier text box.

The default value is an empty string (""), which indicates that there is no icon.

Use the labelPlacement property to set the position of the icon in relation to the button.

Note: The icon does not appear on the Stage in Flash. You must choose Control > Test Movie to see
the icon.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description
Button component 81

Example

The following code assigns the movie clip from the Library panel with the linkage identifier
happiness to the Button instance as an icon:
myButton.icon = "happiness"

See also

Button.labelPlacement

Button.label

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

buttonInstance.label

Description

Property; specifies the text label for a button instance. By default, the label appears centered on
the button. Calling this method overrides the label authoring parameter specified in the Property
inspector or the Component inspector. The default value is "Button".

Example

The following code sets the label to “Remove from list”:
buttonInstance.label = "Remove from list";

See also

Button.labelPlacement

Button.labelPlacement

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

buttonInstance.labelPlacement
82 Chapter 2: Components Reference

Description

Property; sets the position of the label in relation to the icon. The default value is "right". The
following are the four possible values; the icon and label are always centered vertically and
horizontally within the bounding area of the button:

• "right" The label is set to the right of the icon.
• "left" The label is set to the left of the icon.
• "bottom" The label is set below the icon.
• "top" The label is set above the icon.

Example

The following code sets the label to the left of the icon. The second line of the code sends the
value of the labelPlacement property to the Output panel:
iconInstance.labelPlacement = "left";
trace(iconInstance.labelPlacement);

CheckBox component

A check box is a square box that can be selected or deselected. When it is selected, a check mark
appears in the box. You can add a text label to a check box and place it to the left, right, top,
or bottom.

A check box can be enabled or disabled in an application. If a check box is enabled and a user
clicks it or its label, the check box receives input focus and displays its pressed appearance. If a
user moves the pointer outside the bounding area of a check box or its label while pressing the
mouse button, the component’s appearance returns to its original state and it retains input focus.
The state of a check box does not change until the mouse is released over the component.
Additionally, the check box has two disabled states, selected and deselected, which do not allow
mouse or keyboard interaction.

If a check box is disabled, it displays its disabled appearance, regardless of user interaction. In the
disabled state, a button doesn’t receive mouse or keyboard input.

A CheckBox instance receives focus if a user clicks it or tabs to it. When a CheckBox instance has
focus, you can use the following keys to control it:

For more information about controlling focus, see “Creating custom focus navigation” in Flash
Help or “FocusManager class” on page 231.

A live preview of each CheckBox instance reflects changes made to parameters in the Property
inspector or Component inspector during authoring.

Key Description

Shift+Tab Moves focus to the previous element.

Spacebar Selects or deselects the component and triggers the click event.

Tab Moves focus to the next element.
CheckBox component 83

When you add the CheckBox component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.CheckBoxAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances you have of
the component.

Using the CheckBox component

A check box is a fundamental part of any form or web application. You can use check boxes
wherever you need to gather a set of true or false values that aren’t mutually exclusive. For
example, a form collecting personal information about a customer could have a list of hobbies for
the customer to select; each hobby would have a check box beside it.

CheckBox parameters

You can set the following authoring parameters for each CheckBox component instance in the
Property inspector or in the Component inspector:

label sets the value of the text on the check box; the default value is defaultValue.

selected sets the initial value of the check box to checked (true) or unchecked (false).

labelPlacement orients the label text on the check box. This parameter can be one of four values:
left, right, top, or bottom; the default value is right. For more information, see
CheckBox.labelPlacement.

You can write ActionScript to control these and additional options for the CheckBox component
using its properties, methods, and events. For more information, see “CheckBox class”
on page 87.

Creating an application with the CheckBox component

The following procedure explains how to add a CheckBox component to an application while
authoring. The following example is a form for an online dating application. The form is a query
that searches for possible dating matches for the customer. The query form must have a check box
labeled Restrict Age that permits customers to restrict their search to a specified age group. When
the Restrict Age check box is selected, the customer can then enter the minimum and maximum
ages into two text fields. (These text fields are enabled only when the check box is selected.)

To create an application with the CheckBox component:

1. Drag two TextInput components from the Components panel to the Stage.

2. In the Property inspector, enter the instance names minimumAge and maximumAge.

3. Drag a CheckBox component from the Components panel to the Stage.

4. In the Property inspector, do the following:

■ Enter restrictAge for the instance name.
■ Enter Restrict Age for the label parameter.
84 Chapter 2: Components Reference

5. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
restrictAgeListener = new Object();
restrictAgeListener.click = function (evt){

minimumAge.enabled = evt.target.selected;
maximumAge.enabled = evt.target.selected;

}
restrictAge.addEventListener("click", restrictAgeListener);

This code creates a click event handler that enables and disables the minimumAge and
maximumAge text field components, which have already been placed on Stage. For more
information, see CheckBox.click and “TextInput component” on page 445.

Customizing the CheckBox component

You can transform a CheckBox component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method
(UIObject.setSize()) or any applicable properties and methods of the CheckBox class.
Resizing the check box does not change the size of the label or the check box icon; it only changes
the size of the bounding box.

The bounding box of a CheckBox instance is invisible and also designates the hit area for the
instance. If you increase the size of the instance, you also increase the size of the hit area. If the
bounding box is too small to fit the label, the label is clipped to fit.

Using styles with the CheckBox component

You can set style properties to change the appearance of a CheckBox instance. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than noncolor
style properties. For more information, see “Using styles to customize component color and text”
in Flash Help.

A CheckBox component supports the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible
values are "haloGreen", "haloBlue", and
"haloOrange". The default value is "haloGreen".

color Both The text color. The default value is 0x0B333C for the
Halo theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled.
The default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This
style must be set to true if fontFamily refers to an
embedded font. Otherwise, the embedded font will
not be used. If this style is set to true and fontFamily
does not refer to an embedded font, no text will be
displayed. The default value is false.
CheckBox component 85

Using skins with the CheckBox component

The CheckBox component uses symbols in the library to represent the button states. To skin the
CheckBox component while authoring, modify symbols in the Library panel. The CheckBox
component skins are located in the Flash UI Components 2/Themes/MMDefault/CheckBox
Assets/states folder in the library of either the HaloTheme.fla file or the SampleTheme.fla file. For
more information, see “About skinning components” in Flash Help.

A CheckBox component uses the following skin properties:

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default
value is "normal".

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() will return
"none".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

symbolBackgroundColor Sample The background color of the check box. The default
value is 0xFFFFFF (white).

symbolBackgroundDisabledColor Sample The background color of the check box when
disabled. The default value is 0xEFEEEF (light gray).

symbolBackgroundPressedColor Sample The background color of the check box when pressed.
The default value is 0xFFFFFF (white).

symbolColor Sample The color of the check mark. The default value is
0x000000 (black).

symbolDisabledColor Sample The color of the disabled check mark. The default
value is 0x848384 (dark gray).

Property Description

falseUpSkin The up (normal) unchecked state. The default is CheckFalseUp.

falseDownSkin The pressed unchecked state. The default is CheckFalseDown.

falseOverSkin The over unchecked state. The default is CheckFalseOver.

falseDisabledSkin The disabled unchecked state. The default is CheckFalseDisabled.

trueUpSkin The toggled checked state. The default is CheckTrueUp.

trueDownSkin The pressed checked state. The default is CheckTrueDown.

trueOverSkin The over checked state. The default is CheckTrueOver.

trueDisabledSkin The disabled checked state. The default is CheckTrueDisabled.

Style Theme Description
86 Chapter 2: Components Reference

Each of these skins corresponds to the icon indicating the CheckBox state. The CheckBox
component does not have a border or background.

To create movie clip symbols for CheckBox skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on your
operating system, see “About themes” in Flash Help.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault folder
and drag the CheckBox Assets folder to the library for your document.

4. Expand the CheckBox Assets/States folder in the library of your document.

5. Open the symbols you want to customize for editing.

For example, open the CheckFalseDisabled symbol.
6. Customize the symbol as desired.

For example, change the inner white square to a light gray.
7. Repeat steps 5-6 for all symbols you want to customize.

For example, repeat the color change for the inner box of the CheckTrueDisabled symbol.
8. Click the Back button to return to the main Timeline.

9. Drag a CheckBox component to the Stage.

For this example, drag two instances to show the two new skin symbols.
10. Set the CheckBox instance properties as desired.

For this example, set one CheckBox instance to true, and use ActionScript to set both
CheckBox instances to disabled.

11. Select Control > Test Movie.

CheckBox class

Inheritance MovieClip > UIObject class > UIComponent class > Button component > Button
component > CheckBox

ActionScript Class Name mx.controls.CheckBox

The properties of the CheckBox class let you create a text label and position it to the left, right,
top, or bottom of a check box at runtime.

Setting a property of the CheckBox class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component inspector.

The CheckBox component uses the Focus Manager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For more information, see
“Creating custom focus navigation” in Flash Help.
CheckBox component 87

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.controls.CheckBox.version);

Note: The code trace(myCheckBoxInstance.version); returns undefined.

Method summary for the CheckBox class

There are no methods exclusive to the CheckBox class.

Methods inherited from the UIObject class

The following table lists the methods the CheckBox class inherits from the UIObject class. When
calling these methods from the CheckBox object, use the form checkBoxInstance.methodName.

Methods inherited from the UIComponent class

The following table lists the methods the CheckBox class inherits from the UIComponent class.
When calling these methods from the CheckBox object, use the form
checkBoxInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.
88 Chapter 2: Components Reference

Property summary for the CheckBox class

The following table lists properties of the CheckBox class.

Properties inherited from the UIObject class

The following table lists the properties the CheckBox class inherits from the UIObject class.
When accessing these properties from the CheckBox object, use the form
checkBoxInstance.propertyName.

Property Description

CheckBox.label Specifies the text that appears next to a check box.

CheckBox.labelPlacement Specifies the orientation of the label text in relation to a check box.

CheckBox.selected Specifies whether the check box is selected (true) or
deselected (false).

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.
CheckBox component 89

Properties inherited from the UIComponent class

The following table lists the properties the CheckBox class inherits from the UIComponent class.
When accessing these properties from the CheckBox object, use the form
checkBoxInstance.propertyName.

Properties inherited from the SimpleButton class

The following table lists the properties the CheckBox class inherits from the SimpleButton class.
When accessing these properties from the CheckBox object, use the form
checkBoxInstance.propertyName.

Properties inherited from the Button class

The following table lists the properties the CheckBox class inherits from the Button class. When
accessing these properties from the CheckBox object, use the form
checkBoxInstance.propertyName.

Event summary for the CheckBox class

The following table lists an event of the CheckBox class.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Property Description

SimpleButton.emphasized Indicates whether a button has the appearance of a
default push button.

SimpleButton.emphasizedStyleDeclaration The style declaration when the emphasized property is
set to true.

SimpleButton.selected A Boolean value indicating whether the button is
selected (true) or not (false). The default value is
false.

SimpleButton.toggle A Boolean value indicating whether the button
behaves as a toggle switch (true) or not (false). The
default value is false.

Property Description

Button.label Specifies the text that appears in a button.

Button.labelPlacement Specifies the orientation of the label text in relation to an icon.

Event Description

CheckBox.click Triggered when the mouse is clicked (released) over the check box,
or if the check box has focus and the Spacebar is pressed.
90 Chapter 2: Components Reference

Events inherited from the UIObject class

The following table lists the events the CheckBox class inherits from the UIObject class.

Events inherited from the UIComponent class

The following table lists the events the CheckBox class inherits from the UIComponent class.

Events inherited from the SimpleButton class

The following table lists the event the CheckBox class inherits from the SimpleButton class.

CheckBox.click

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(click){

...
}

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description

SimpleButton.click Broadcast when a button is clicked.
CheckBox component 91

Usage 2:
listenerObject = new Object();
listenerObject.click = function(eventObject){

...
}
checkBoxInstance.addEventListener("click", listenerObject)

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the check box,
or if the check box has focus and the Spacebar is pressed.

The first usage example uses an on() handler and must be attached directly to a CheckBox
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the check box myCheckBox,
sends “_level0.myCheckBox” to the Output panel:
on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(checkBoxInstance) dispatches an event (in this case, click), and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. The event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the addEventListener() method (see
EventDispatcher.addEventListener() in Flash Help) on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches the
event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
button called checkBoxInstance is clicked. The first line of code creates a listener object called
form. The second line defines a function for the click event on the listener object. Inside the
function is a trace() statement that uses the event object that is automatically passed to the
function (in this example, eventObj) to generate a message. The target property of an event
object is the component that generated the event (in this example, checkBoxInstance). The
CheckBox.selected property is accessed from the event object’s target property. The last line
calls addEventListener() from checkBoxInstance and passes it the click event and the form
listener object as parameters.
form = new Object();
form.click = function(eventObj){

trace("The selected property has changed to " + eventObj.target.selected);
}
checkBoxInstance.addEventListener("click", form);
92 Chapter 2: Components Reference

The following code also sends a message to the Output panel when checkBoxInstance is
clicked. The on() handler must be attached directly to checkBoxInstance:
on(click){

trace("check box component was clicked");
}

See also

EventDispatcher.addEventListener() in Flash Help

CheckBox.label

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

checkBoxInstance.label

Description

Property; indicates the text label for the check box. By default, the label appears to the right
of the check box. Setting this property overrides the label parameter specified in the Parameters
tab of the Component Inspector panel.

Example

The following code sets the text that appears beside the CheckBox component and sends the
value to the Output panel:
checkBox.label = "Remove from list";
trace(checkBox.label)

See also

CheckBox.labelPlacement

CheckBox.labelPlacement

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

checkBoxInstance.labelPlacement
CheckBox component 93

Description

Property; a string that indicates the position of the label in relation to the check box. The
following are the four possible values (the dotted lines represent the bounding area of the
component; they are invisible in a document):

• "right" The check box is pinned to the upper left corner of the bounding area. The label is
set to the right of the check box. This is the default value.

• "left" The check box is pinned to the upper right corner of the bounding area. The label is
set to the left of the check box.

• "bottom" The label is set below the check box. The check box and label are centered
horizontally and vertically.

• "top" The label is placed below the check box. The check box and label are centered
horizontally and vertically.

You can change the bounding area of a component while authoring by using the Transform
command or at runtime using the UIObject.setSize() property. For more information, see
“Customizing the CheckBox component” on page 85.

Example

The following example sets the placement of the label to the left of the check box:
checkBox_mc.labelPlacement = "left";

See also

CheckBox.label

CheckBox.selected

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

checkBoxInstance.selected
94 Chapter 2: Components Reference

Description

Property; a Boolean value that selects (true) or deselects (false) the check box.

Example

The following example selects the instance checkbox1:
checkbox1.selected = true;

CloseButton component

The CloseButton component is a small, round button with an x in it. Use this button in your
pods and notices to close notices and pod viewers for your application in the Console. The button
changes state when you move a mouse pointer over it.

CloseButton component in a collapsed pod viewer

Using the CloseButton component

The CloseButton component has the same methods, properties, and events as the Button object.
For detailed information on the Button object, see the help system in your Flash authoring tool.
However, for most developers, use of the CloseButton component will simply require the
onRelease event handler, which is documented in this book.

MCloseButton.onRelease

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myCloseButton.onRelease()

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when the button is released. You must define a function that executes
when the event is invoked.
CloseButton component 95

Example

The following example defines a function for the onRelease method that sends a trace action to
the Output panel:
myCloseButton.onRelease = function () {

trace ("onRelease called");
};

ComboBox component

A combo box allows a user to make a single selection from a drop-down list. A combo box can be
static or editable. An editable combo box allows a user to enter text directly into a text field at the
top of the list, as well as selecting an item from a drop-down list. If the drop-down list hits the
bottom of the document, it opens up instead of down. The combo box is composed of three
subcomponents: a Button component, a TextInput component, and a List component.

When a selection is made in the list, the label of the selection is copied to the text field at the top
of the combo box. It doesn’t matter if the selection is made with the mouse or the keyboard.

A ComboBox component receives focus if you click the text box or the button. When a
ComboBox component has focus and is editable, all keystrokes go to the text box and are handled
according to the rules of the TextInput component (see “TextInput component” on page 445),
with the exception of the following keys:

When a ComboBox component has focus and is static, alphanumeric keystrokes move the
selection up and down the drop-down list to the next item with the same first character. You can
also use the following keys to control a static combo box:

Key Description

Control+Down
Arrow

Opens the drop-down list and gives it focus.

Shift+Tab Moves focus to the previous object.

Tab Moves focus to the next object.

Key Description

Control+Down
Arrow

Opens the drop-down list and gives it focus.

Control+Up
Arrow

Closes the drop-down list, if open in the stand-alone and browser versions of Flash
Player.

Down Arrow Moves the selection down one item.

End Selection moves to the bottom of the list.

Escape Closes the drop-down list and returns focus to the combo box in Test Movie mode.

Enter Closes the drop-down list and returns focus to the combo box.

Home Moves the selection to the top of the list.

Page Down Moves the selection down one page.
96 Chapter 2: Components Reference

When the drop-down list of a combo box has focus, alphanumeric keystrokes move the selection
up and down the drop-down list to the next item with the same first character. You can also use
the following keys to control a drop-down list:

Note: The page size used by the Page Up and Page Down keys is one less than the number of items
that fit in the display. For example, paging down through a ten-line drop-down list will show items 0-
9, 9-18, 18-27, and so on, with one item overlapping per page.

For more information about controlling focus, see “Creating custom focus navigation” in Flash
Help or “FocusManager class” on page 231.

A live preview of each ComboBox component instance on the Stage reflects changes made to
parameters in the Property inspector or Component inspector during authoring. However, the
drop-down list does not open in the live preview, and the first item displays as the selected item.

When you add the ComboBox component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.ComboBoxAccImpl.enableAccessibility();

Page Up Moves the selection up one page.

Shift+Tab Moves focus to the previous object.

Tab Moves focus to the next object.

Key Description

Control+Up
Arrow

If the drop-down list is open, focus returns to the text box and the drop-down list
closes in the stand-alone and browser versions of Flash Player.

Down Arrow Moves the selection down one item.

End Moves the insertion point to the end of the text box.

Enter If the drop-down list is open, focus returns to the text box and the drop-down list
closes.

Escape If the drop-down list is open, focus returns to the text box and the drop-down list
closes in Test Movie mode.

Home Moves the insertion point to the beginning of the text box.

Page Down Moves the selection down one page.

Page Up Moves the selection up one page.

Tab Moves focus to the next object.

Shift+End Selects the text from the insertion point to the End position.

Shift+Home Selects the text from the insertion point to the Home position.

Shift+Tab Moves focus to the previous object.

Up Arrow Moves the selection up one item.

Key Description
ComboBox component 97

You enable accessibility for a component only once, regardless of how many instances you have of
the component.

Using the ComboBox component

You can use a ComboBox component in any form or application that requires a single choice
from a list. For example, you could provide a drop-down list of states in a customer address form.
You can use an editable combo box for more complex scenarios. For example, in an application
that provides driving directions, you could use an editable combo box for a user to enter her
origin and destination addresses. The drop-down list would contain her previously entered
addresses.

ComboBox parameters

You can set the following authoring parameters for each ComboBox component instance in the
Property inspector or in the Component inspector:

editable determines if the ComboBox component is editable (true) or only selectable (false).
The default value is false.

labels populates the ComboBox component with an array of text values.

data associates a data value with each item in the ComboBox component. The data parameter is
an array.

rowCount sets the maximum number of items that can be displayed in the list. The default value
is 5.

You can write ActionScript to set additional options for ComboBox instances using the methods,
properties, and events of the ComboBox class. For more information, see “ComboBox class”
on page 102.

Creating an application with the ComboBox component

The following procedure explains how to add a ComboBox component to an application
while authoring. In this example, the combo box presents a list of cities to select from in its
drop-down list.

To create an application with the ComboBox component:

1. Drag a ComboBox component from the Components panel to the Stage.

2. Select the Transform tool and resize the component on the Stage.

The combo box can only be resized on the Stage during authoring. Typically, you would only
change the width of a combo box to fit its entries.

3. Select the combo box and, in the Property inspector, enter the instance name comboBox.
98 Chapter 2: Components Reference

4. In the Component inspector or Property inspector, do the following:

■ Enter Minneapolis, Portland, and Keene for the label parameter. Double-click the label
parameter field to open the Values dialog box. Then click the plus sign to add items.

■ Enter MN.swf, OR.swf, and NH.swf for the data parameter.
These are imaginary SWF files that, for example, you could load when a user selects a city
from the combo box.

5. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
function change(evt){

trace(evt.target.selectedItem.label);
}
comboBox.addEventListener("change", this);

The last line of code adds a change event handler to the ComboBox instance. For more
information, see ComboBox.change.

Customizing the ComboBox component

You can transform a ComboBox component horizontally and vertically while authoring. While
authoring, select the component on the Stage and use the Free Transform tool or any of the
Modify > Transform commands.

If text is too long to fit in the combo box, the text is clipped to fit. You must resize the combo box
while authoring to fit the label text.

In editable combo boxes, only the button is the hit area—not the text box. For static combo
boxes, the button and the text box constitute the hit area. The hit area responds by opening or
closing the drop-down list.

Using styles with the ComboBox component

You can set style properties to change the appearance of a ComboBox component. If the name of
a style property ends in “Color”, it is a color style property and behaves differently than noncolor
style properties. For more information, see “Using styles to customize component color and text”
in Flash Help.

The combo box has two unique styles: openDuration and openEasing. Other styles are passed
to the button, text box, and drop-down list of the combo box through those individual
components, as follows:

• The button is a Button instance and uses its styles. (See “Using styles with the Button
component” on page 71.)

• The text is a TextInput instance and uses its styles. (See “Using styles with the TextInput
component” on page 447.)

• The drop-down list is an List instance and uses its styles. (See “Using styles with the List
component” on page 281.)
ComboBox component 99

A ComboBox component uses the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values are
"haloGreen", "haloBlue", and "haloOrange". The default value
is "haloGreen".

backgroundColor Both The background color. The default color is white.

border styles Both The Button subcomponent uses two RectBorder instances
for its borders and responds to the styles defined on that
class. See “RectBorder class” in Flash Help.

In the Halo theme, the ComboBox component uses a custom
rounded border for the collapsed portion of the ComboBox.
The colors of this portion of the ComboBox can be modified
only through skinning. See “Using skins with the ComboBox
component” on page 101.

color Both The text color. The default value is 0x0B333C for the Halo
theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The default
color is 0x848384 (dark gray).

embedFonts Both Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to
true if fontFamily refers to an embedded font. Otherwise, the
embedded font will not be used. If this style is set to true and
fontFamily does not refer to an embedded font, no text will be
displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bold". The default value
is "none". All components can also accept the value "normal"
in place of "none" during a setStyle() call, but subsequent
calls to getStyle() will return "none".

textAlign Both The text alignment: either "left", "right", or "center". The
default value is "left".

textDecoration Both The text decoration: either "none" or "underline". The default
value is "none".

openDuration Both The duration, in milliseconds, of the transition animation. The
default value is 250.

openEasing Both A reference to a tweening function that controls the animation.
Defaults to sine in/out. For more information, see
“Customizing component animations” in Flash Help.
100 Chapter 2: Components Reference

The following example demonstrates how to use List styles to control the behavior of the drop-
down portion of a ComboBox component.
// comboBox is an instance of the ComboBox component on Stage
comboBox.setStyle("alternatingRowColors", [0xFFFFFF, 0xBFBFBF]);

Using skins with the ComboBox component

The ComboBox component uses symbols in the library to represent the button states and has
skin variables for the down arrow. These skins are located in the Flash UI Components 2/
Themes/MMDefault/ComboBox Assets/States folder of the HaloTheme.fla and
SampleTheme.fla files. The information below describes these skins and provides steps for
customizing them.

The ComboBox component also uses scroll bar skins for the drop-down list’s scroll bar and two
RectBorder class instances for the border around the text input and drop-down list. For
information on customizing these skins, see “Using skins with the ScrollPane component”
on page 424 and “RectBorder class” in Flash Help. For more information on the methods
available to skin components, see “About skinning components” in Flash Help.

A ComboBox component uses the following skin properties:

To create movie clip symbols for ComboBox skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on your
operating system, see “About themes” in Flash Help.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault folder
and drag the ComboBox Assets folder to the library for your document.

4. Expand the ComboBox Assets/States folder in the library of your document.

5. Open the symbols you want to customize for editing.

For example, open the ComboDownArrowDisabled symbol.
6. Customize the symbol as desired.

For example, change the inner white square to a light gray.
7. Repeat steps 5-6 for all symbols you want to customize.

8. Click the Back button to return to the main Timeline.

9. Drag a ComboBox component to the Stage.

Property Description

ComboDownArrowDisabledName The down arrow’s disabled state. The default is
ComboDownArrowDisabled.

ComboDownArrowDownName The down arrow’s down state. The default is ComboDownArrowDown.

ComboDownArrowUpName The down arrow’s up state. The default is ComboDownArrowOver.

ComboDownArrowOverName The down arrow’s over state. The default is ComboDownArrowUp.
ComboBox component 101

10. Set the ComboBox instance properties as desired.

For this example, use ActionScript to set the ComboBox to disabled.
11. Select Control > Test Movie.

ComboBox class

Inheritance MovieClip > UIObject class > UIComponent class > ComboBase > ComboBox

ActionScript Class Name mx.controls.ComboBox

The ComboBox component combines three separate subcomponents: Button, TextInput, and
List. Most of the methods, properties, and events of each subcomponent are available directly
from the ComboBox component and are listed in the summary tables for the ComboBox class.

The drop-down list in a combo box is provided either as an array or as a data provider. If you use
a data provider, the list changes at runtime. You can change the source of the ComboBox data
dynamically by switching to a new array or data provider.

Items in a combo box list are indexed by position, starting with the number 0. An item can be one
of the following:

• A primitive data type.
• An object that contains a label property and a data property

Note: An object may use the ComboBox.labelFunction or ComboBox.labelField property to
determine the label property.

If the item is a primitive data type other than String, it is converted to a string. If an item is an
object, the label property must be a string and the data property can be any ActionScript value.

ComboBox methods to which you supply items have two parameters, label and data, that refer
to the properties above. Methods that return an item return it as an object.

A combo box defers the instantiation of its drop-down list until a user interacts with it. Therefore,
a combo box may appear to respond slowly on first use.

Use the following code to programmatically access the ComboBox component’s drop-down list
and override the delay:
var foo = myComboBox.dropdown;

Accessing the drop-down list may cause a pause in the application. This may occur when the user
first interacts with the combo box, or when the above code runs.

Method summary for the ComboBox class

The following table lists methods of the ComboBox class.

Method Description

ComboBox.addItem() Adds an item to the end of the list.

ComboBox.addItemAt() Adds an item to the end of the list at the specified index.

ComboBox.close() Closes the drop-down list.
102 Chapter 2: Components Reference

Methods inherited from the UIObject class

The following table lists the methods the ComboBox class inherits from the UIObject class.
When calling these methods from the ComboBox object, use the form
comboBoxInstance.methodName.

Methods inherited from the UIComponent class

The following table lists the methods the ComboBox class inherits from the UIComponent class.
When calling these methods from the ComboBox object, use the form
comboBoxInstance.methodName.

ComboBox.getItemAt() Returns the item at the specified index.

ComboBox.open() Opens the drop-down list.

ComboBox.removeAll() Removes all items in the list.

ComboBox.removeItemAt() Removes an item from the list at the specified location.

ComboBox.replaceItemAt() Replaces the content of the item at the specified index.

ComboBox.sortItems() Sorts the list using a compare function.

ComboBox.sortItemsBy() Sorts the list using a field of each item.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Method Description
ComboBox component 103

Property summary for the ComboBox class

The following table lists properties of the ComboBox class.

Properties inherited from the UIObject class

The following table lists the properties the ComboBox class inherits from the UIObject class.
When accessing these properties from the ComboBox object, use the form
comboBoxInstance.propertyName.

Property Description

ComboBox.dataProvider The data model for the items in the list.

ComboBox.dropdown Returns a reference to the List component contained by the
combo box.

ComboBox.dropdownWidth The width of the drop-down list, in pixels.

ComboBox.editable Indicates whether a combo box is editable.

ComboBox.labelField Indicates which data field to use as the label for the drop-down list.

ComboBox.labelFunction Specifies a function to compute the label field for the drop-down
list.

ComboBox.length Read-only; the length of the drop-down list.

ComboBox.restrict The set of characters that a user can enter in the text field of a
combo box.

ComboBox.rowCount The maximum number of list items to display at one time.

ComboBox.selectedIndex The index of the selected item in the drop-down list.

ComboBox.selectedItem The value of the selected item in the drop-down list.

ComboBox.text The string of text in the text box.

ComboBox.textField A reference to the TextInput component in the combo box.

ComboBox.value The value of the text box (editable) or drop-down list (static).

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.
104 Chapter 2: Components Reference

Properties inherited from the UIComponent class

The following table lists the properties the ComboBox class inherits from the UIComponent
class. When accessing these properties from the ComboBox object, use the form
comboBoxInstance.propertyName.

Event summary for the ComboBox class

The following table lists events of the ComboBox class.

Events inherited from the UIObject class

The following table lists the events the ComboBox class inherits from the UIObject class.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event Description

ComboBox.change Broadcast when the value of the combo box changes as a result of
user interaction.

ComboBox.close Broadcast when the list of the combo box begins to retract.

ComboBox.enter Broadcast when the Enter key is pressed.

ComboBox.itemRollOut Broadcast when the pointer rolls off a drop-down list item.

ComboBox.itemRollOver Broadcast when a drop-down list item is rolled over.

ComboBox.open Broadcast when the drop-down list begins to open.

ComboBox.scroll Broadcast when the drop-down list is scrolled.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

Property Description
ComboBox component 105

Events inherited from the UIComponent class

The following table lists the events the ComboBox class inherits from the UIComponent class.

ComboBox.addItem()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

comboBoxInstance.addItem(label[, data])

comboBoxInstance.addItem({label:label[, data:data]})

comboBoxInstance.addItem(obj);

Parameters

label A string that indicates the label for the new item.

data The data for the item; it can be of any data type. This parameter is optional.

obj An object with a label property and an optional data property.

Returns

The index at which the item was added.

Description

Method; adds a new item to the end of the list.

Example

The following code adds an item to the myComboBox instance:
myComboBox.addItem("this is an Item");

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description
106 Chapter 2: Components Reference

ComboBox.addItemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

comboBoxInstance.addItemAt(index, label[, data])

comboBoxInstance.addItemAt(index, {label:label[, data:data]})

comboBoxInstance.addItemAt(index, obj);

Parameters

index A number 0 or greater that indicates the position at which to insert the item (the index
of the new item).

label A string that indicates the label for the new item.

data The data for the item; it can be of any data type. This parameter is optional.

obj An object with label and data properties.

Returns

The index at which the item was added.

Description

Method; adds a new item to the end of the list at the index specified by the index parameter.
Indices greater than ComboBox.length are ignored.

Example

The following code inserts an item at index 3, which is the fourth position in the combo box list
(0 is the first position):
myBox.addItemAt(3, "this is the fourth Item");

ComboBox.change

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(change){

// your code here
}

ComboBox component 107

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners when the ComboBox.selectedIndex or
ComboBox.selectedItem property changes as a result of user interaction.

The first usage example uses an on() handler and must be attached directly to a ComboBox
instance. The keyword this, used in an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the ComboBox instance
myBox, sends “_level0.myBox” to the Output panel:
on(change){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call addEventListener() (see EventDispatcher.addEventListener() in Flash
Help) on the component instance that broadcasts the event to register the listener with the
instance. When the instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following example sends the instance name of the component that generated the change
event to the Output panel:
form.change = function(eventObj){

trace("Value changed to " + eventObj.target.value);
}
myCombo.addEventListener("change", form);

See also

EventDispatcher.addEventListener() in Flash Help
108 Chapter 2: Components Reference

ComboBox.close()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

myComboBox.close()

Parameters

None.

Returns

Nothing.

Description

Method; closes the drop-down list.

Example

The following example closes the drop-down list of the myBox combo box:
myBox.close();

See also

ComboBox.open()

ComboBox.close

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(close){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.close = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("close", listenerObject)
ComboBox component 109

Description

Event; broadcast to all registered listeners when the drop-down list of the combo box is fully
retracted.

The first usage example uses an on() handler and must be attached directly to a ComboBox
instance. The keyword this, used in an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the ComboBox instance
myBox, sends “_level0.myBox” to the Output panel:
on(close){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, close) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following example sends a message to the Output panel when the drop-down list begins to
close:
form.close = function(){

trace("The combo box has closed");
}
myCombo.addEventListener("close", form);

See also

EventDispatcher.addEventListener() in Flash Help

ComboBox.dataProvider

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

comboBoxInstance.dataProvider
110 Chapter 2: Components Reference

Description

Property; the data model for items viewed in a list. The value of this property can be an array
or any object that implements the DataProvider API. The default value is []. The List
component and the ComboBox component share the dataProvider property, and changes to
this property are immediately available to both components.

The List component, like other data-aware components, adds methods to the Array object’s
prototype so that they conform to the DataProvider API (see DataProvider.as for details).
Therefore, any array that exists at the same time as a list automatically has all the methods
(addItem(), getItemAt(), and so on) needed for it to be the model of a list, and can be used to
broadcast model changes to multiple components.

If the array contains objects, the labelField or labelFunction property is accessed to
determine what parts of the item to display. The default value is "label", so if such a field exists,
it is chosen for display; if not, a comma-separated list of all fields is displayed.

Note: If the array contains strings at each index, and not objects, the list is not able to sort the items
and maintain the selection state. Any sorting will cause the selection to be lost.

Any instance that implements the DataProvider API is eligible as a data provider for a List
component. This includes Flash Remoting RecordSet objects, Firefly DataSet components, and
so on.

Example

This example uses an array of strings to populate the drop-down list:
comboBox.dataProvider = ["Ground Shipping","2nd Day Air","Next Day Air"];

This example creates a data provider array and assigns it to the dataProvider property:
myDP = new Array();
list.dataProvider = myDP;

for (var i=0; i<accounts.length; i++) {
 // these changes to the DataProvider will be broadcast to the list
 myDP.addItem({label: accounts[i].name,
 data: accounts[i].accountID});
}

ComboBox.dropdown

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

myComboBox.dropdown
ComboBox component 111

Description

Property (read-only); returns a reference to the list contained by the combo box. The List
subcomponent isn’t instantiated in the combo box until it needs to be displayed. However, when
you access the dropdown property, the list is created.

See also

ComboBox.dropdownWidth

ComboBox.dropdownWidth

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

myComboBox.dropdownWidth

Description

Property; the width limit of the drop-down list, in pixels. The default value is the width of the
ComboBox component (the TextInput instance plus the SimpleButton instance).

Example

The following code sets dropdownWidth to 150 pixels:
myComboBox.dropdownWidth = 150;

See also

ComboBox.dropdown

ComboBox.editable

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

myComboBox.editable

Description

Property; indicates whether the combo box is editable (true) or not (false). In an editable
combo box, a user can enter values into the text box that do not appear in the drop-down list. If a
combo box is not editable, you cannot enter text into the text box. The text box displays the text
of the item in the list. The default value is false.
112 Chapter 2: Components Reference

Making a combo box editable clears the combo box text field. It also sets the selected index (and
item) to undefined. To make a combo box editable and still retain the selected item, use the
following code:
var ix = myComboBox.selectedIndex;
myComboBox.editable = true; // clears the text field
myComboBox.selectedIndex = ix; // copies the label back into the text field

Example

The following code makes myComboBox editable:
myComboBox.editable = true;

ComboBox.enter

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(enter){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.enter = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("enter", listenerObject)

Description

Event; broadcast to all registered listeners when the user presses the Enter key in the text box. This
event is a TextInput event that is broadcast only from editable combo boxes. For more
information, see TextInput.enter.

The first usage example uses an on() handler and must be attached directly to a ComboBox
instance. The keyword this, used in an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the ComboBox instance
myBox, sends “_level0.myBox” to the Output panel:
on(enter){

trace(this);
}

ComboBox component 113

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, enter) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following example sends a message to the Output panel when the drop-down list begins
to close:
form.enter = function(){

trace("The combo box enter event was triggered");
}
myCombo.addEventListener("enter", form);

See also

EventDispatcher.addEventListener() in Flash Help

ComboBox.getItemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

comboBoxInstance.getItemAt(index)

Parameters

index The index of the item to retrieve. The index must be a number greater than or equal to
0, and less than the value of ComboBox.length.

Returns

The indexed item object or value. The value is undefined if the index is out of range.

Description

Method; retrieves the item at a specified index.
114 Chapter 2: Components Reference

Example

The following code displays the item at index position 4:
trace(myBox.getItemAt(4).label);

ComboBox.itemRollOut

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(itemRollOut){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.itemRollOut = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("itemRollOut", listenerObject)

Event object

In addition to the standard properties of the event object, the itemRollOut event has an index
property. The index is the number of the item that the pointer rolled out of.

Description

Event; broadcast to all registered listeners when the pointer rolls out of drop-down list items.
This is a List event that is broadcast from a combo box. For more information, see
List.itemRollOut.

The first usage example uses an on() handler and must be attached directly to a ComboBox
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the ComboBox instance
myBox, sends “_level0.myBox” to the Output panel:
on(itemRollOut){

trace(this);
}

ComboBox component 115

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, itemRollOut) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
For more information, see “EventDispatcher class” in Flash Help.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends a message to the Output panel that indicates the index of the item
that the pointer rolled out of:
form.itemRollOut = function (eventObj) {
 trace("Item #" + eventObj.index + " has been rolled out of.");
}
myCombo.addEventListener("itemRollOut", form);

See also

ComboBox.itemRollOver, EventDispatcher.addEventListener() in Flash Help

ComboBox.itemRollOver

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(itemRollOver){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.itemRollOver = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("itemRollOver", listenerObject)

Event object

In addition to the standard properties of the event object, the itemRollOver event has an index
property. The index is the number of the item that the pointer rolled over.
116 Chapter 2: Components Reference

Description

Event; broadcast to all registered listeners when the mouse pointer rolls over drop-down list items.
This is a List event that is broadcast from a combo box. For more information, see
List.itemRollOver.

The first usage example uses an on() handler and must be attached directly to a ComboBox
instance. The keyword this, used in an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the ComboBox instance
myBox, sends “_level0.myBox” to the Output panel:
on(itemRollOver){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, itemRollOver) and the event is handled
by a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
For more information, see “EventDispatcher class” in Flash Help.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends a message to the Output panel that indicates the index of the item
that the pointer rolled over:
form.itemRollOver = function (eventObj) {
 trace("Item #" + eventObj.index + " has been rolled over.");
}
myCombo.addEventListener("itemRollOver", form);

See also

ComboBox.itemRollOut, EventDispatcher.addEventListener() in Flash Help

ComboBox.labelField

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

myComboBox.labelField
ComboBox component 117

Description

Property; the name of the field in dataProvider array objects to use as the label field. This is a
property of the List component that is available from a ComboBox component instance. For
more information, see List.labelField.

The default value is undefined.

Example

The following example sets the dataProvider property to an array of strings and sets the
labelField property to indicate that the name field should be used as the label for the
drop-down list:
myComboBox.dataProvider = [
 {name:"Gary", gender:"male"},
 {name:"Susan", gender:"female"}];

myComboBox.labelField = "name";

See also

List.labelFunction

ComboBox.labelFunction

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

myComboBox.labelFunction

Description

Property; a function that computes the label of a data provider item. You must define the
function. The default value is undefined.

Example

The following example creates a data provider and then defines a function to specify what to use
as the label in the drop-down list:
myComboBox.dataProvider = [
 {firstName:"Nigel", lastName:"Pegg", age:"really young"},
 {firstName:"Gary", lastName:"Grossman", age:"young"},
 {firstName:"Chris", lastName:"Walcott", age:"old"},
 {firstName:"Greg", lastName:"Yachuk", age:"really old"}];

myComboBox.labelFunction = function(itemObj){
return (itemObj.lastName + ", " + itemObj.firstName);

}

118 Chapter 2: Components Reference

See also

List.labelField

ComboBox.length

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

myComboBox.length

Description

Property (read-only); the length of the drop-down list. This is a property of the List component
that is available from a ComboBox instance. For more information, see List.length. The
default value is 0.

Example

The following example stores the value of length to a variable:
dropdownItemCount = myBox.length;

ComboBox.open()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

myComboBox.open()

Parameters

None.

Returns

Nothing.

Description

Method; opens the drop-down list.

Example

The following code opens the drop-down list for the combo1 instance:
combo1.open();
ComboBox component 119

See also

ComboBox.close()

ComboBox.open

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(open){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.open = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("open", listenerObject)

Description

Event; broadcast to all registered listeners when the drop-down list is completely open.

The first usage example uses an on() handler and must be attached directly to a ComboBox
instance. The keyword this, used in an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the ComboBox instance
myBox, sends “_level0.myBox” to the Output panel:
on(open){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, open) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
For more information, see “EventDispatcher class” in Flash Help.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.
120 Chapter 2: Components Reference

Example

The following example sends a message to the Output panel:
function open(evt) {
 trace("The combo box has opened with text " + evt.target.text);
}
myBox.addEventListener("open", this);

See also

ComboBox.close, EventDispatcher.addEventListener() in Flash Help

ComboBox.removeAll()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

comboBoxInstance.removeAll()

Parameters

None.

Returns

Nothing.

Description

Method; removes all items in the list. This is a method of the List component that is available
from an instance of the ComboBox component.

Example

The following code clears the list:
myCombo.removeAll();

See also

ComboBox.removeItemAt(), ComboBox.replaceItemAt()

ComboBox.removeItemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.
ComboBox component 121

Usage

listInstance.removeItemAt(index)

Parameters

index A number that indicates the position of the item to remove. The index is zero-based.

Returns

An object; the removed item (undefined if no item exists).

Description

Method; removes the item at the specified index position. The list indices after the index
indicated by the index parameter collapse by one. This is a method of the List component that is
available from an instance of the ComboBox component.

Example

The following code removes the item at index position 3:
myCombo.removeItemAt(3);

See also

ComboBox.removeAll(), ComboBox.replaceItemAt()

ComboBox.replaceItemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

comboBoxInstance.replaceItemAt(index, label[, data])

comboBoxInstance.replaceItemAt(index, {label:label[, data:data]})

comboBoxInstance.replaceItemAt(index, obj);

Parameters

index A number 0 or greater that indicates the position at which to insert the item (the index
of the new item).

label A string that indicates the label for the new item.

data The data for the item. This parameter is optional.

obj An object with label and data properties.

Returns

Nothing.
122 Chapter 2: Components Reference

Description

Method; replaces the content of the item at the specified index. This is a method of the List
component that is available from the ComboBox component.

Example

The following example changes the third index position:
myCombo.replaceItemAt(3, "new label");

See also

ComboBox.removeAll(), ComboBox.removeItemAt()

ComboBox.restrict

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

comboBoxInstance.restrict

Description

Property; indicates the set of characters that a user can enter in the text field of a combo box. The
default value is undefined. If this property is null or an empty string (""), a user can enter any
character. If this property is a string of characters, the user can enter only characters in the string;
the string is scanned from left to right. You can specify a range by using a dash (-).

If the string begins with a caret (^), all characters that follow the caret are considered unacceptable
characters. If the string does not begin with a caret, the characters in the string are considered
acceptable.

You can use the backslash (\) to enter a hyphen (-), caret (^), or backslash (\) character, as shown
here:
\^
\-
\\

When you enter a backslash in the Actions panel within double quotation marks, it has a
special meaning for the Actions panel’s double-quote interpreter. It signifies that the character
following the backslash should be treated “as is.” For example, you could use the following code to
enter a single quotation mark:
var leftQuote = "\’";

The Actions panel’s restrict interpreter also uses the backslash as an escape character. Therefore,
you may think that the following should work:
myText.restrict = "0-9\-\^\\";
ComboBox component 123

However, since this expression is surrounded by double quotation marks, the value 0-9-^\ is sent
to the restrict interpreter, and the restrict interpreter doesn’t understand this value.

Because you must enter this expression within double quotation marks, you must not only
provide the expression for the restrict interpreter, but you must also escape the expression so that
it will be read correctly by the Actions panel’s built-in interpreter for double quotation marks. To
send the value 0-9\-\^\\ to the restrict interpreter, you must enter the following code:
myCombo.restrict = "0-9\\-\\^\\\\";

The restrict property restricts only user interaction; a script may put any text into the text
field. This property does not synchronize with the Embed Font Outlines check boxes in the
Property inspector.

Example

In the following example, the first line of code limits the text field to uppercase letters, numbers,
and spaces. The second line of code allows all characters except lowercase letters.
my_combo.restrict = "A-Z 0-9";
my_combo.restrict = "^a-z";

The following code allows a user to enter the characters “0 1 2 3 4 5 6 7 8 9 - ^ \” in the instance
myCombo. You must use a double backslash to escape the characters -, ^, and \. The first \ escapes
the double quotation marks, and the second \ tells the interpreter that the next character should
not be treated as a special character.
myCombo.restrict = "0-9\\-\\^\\\\";

ComboBox.rowCount

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

myComboBox.rowCount

Description

Property; the maximum number of rows visible in the drop-down list. The default value is 5.

If the number of items in the drop-down list is greater than the rowCount property, the list resizes
and a scroll bar is displayed if necessary. If the drop-down list contains fewer items than the
rowCount property, it resizes to the number of items in the list.

This behavior differs from the List component, which always shows the number of rows specified
by its rowCount property, even if some empty space is shown.

If the value is negative or fractional, the behavior is undefined.
124 Chapter 2: Components Reference

Example

The following example specifies that the combo box should have 20 or fewer rows visible:
myComboBox.rowCount = 20;

ComboBox.scroll

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(scroll){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.scroll = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("scroll", listenerObject)

Event object

Along with the standard event object properties, the scroll event has one additional property,
direction. It is a string with two possible values, "horizontal" or "vertical". For a
ComboBox scroll event, the value is always "vertical".

Description

Event; broadcast to all registered listeners when the drop-down list is scrolled. This is a List
component event that is available to the ComboBox component.

The first usage example uses an on() handler and must be attached directly to a ComboBox
instance. The keyword this, used in an on() handler attached to a component, refers to the
instance. For example, the following code, attached to the ComboBox component instance
myBox, sends “_level0.myBox” to the Output panel:
on(scroll){

trace(this);
}

ComboBox component 125

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, scroll) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
For more information, see “EventDispatcher class” in Flash Help.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends a message to the Output panel that indicates the index of the item
that the list scrolled to:
form.scroll = function (eventObj) {
 trace("The list had been scrolled to item # " + eventObj.target.vPosition);
}
myCombo.addEventListener("scroll", form);

See also

EventDispatcher.addEventListener() in Flash Help

ComboBox.selectedIndex

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

myComboBox.selectedIndex

Description

Property; the index number of the selected item in the drop-down list. The default value is 0.
Assigning this property clears the current selection, selects the indicated item, and displays the
label of that item in the combo box’s text box.

If you assign an out-of-range value to this property, Flash ignores it. Entering text into the text
field of an editable combo box sets selectedIndex to undefined.

Example

The following code selects the last item in the list:
myComboBox.selectedIndex = myComboBox.length-1;
126 Chapter 2: Components Reference

See also

ComboBox.selectedItem

ComboBox.selectedItem

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

myComboBox.selectedItem

Description

Property; the value of the selected item in the drop-down list.

If the combo box is editable, selectedItem returns undefined if the user enters any text in the
text box. The property only has a value if you select an item from the drop-down list or set the
value using ActionScript. If the combo box is static, the value of selectedItem is always valid; it
returns undefined if there are no items in the list.

Example

The following example shows selectedItem if the data provider contains primitive types:
var item = myComboBox.selectedItem;
trace("You selected the item " + item);

The following example shows selectedItem if the data provider contains objects with label and
data properties:
var obj = myComboBox.selectedItem;
trace("You have selected the color named: " + obj.label);
trace("The hex value of this color is: " + obj.data);

See also

ComboBox.dataProvider, ComboBox.selectedIndex

ComboBox.sortItems()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myComboBox.sortItems([compareFunc], [optionsFlag])
ComboBox component 127

Parameters

compareFunc A reference to a function that compares two items to determine their sort order.
For details, see Array.sort() in Flash ActionScript Language Reference. This parameter
is optional.

optionsFlag Lets you perform multiple sorts of different types on a single array without
having to replicate the entire array or re-sort it repeatedly. This parameter is optional.

The following are possible values for optionsFlag:

• Array.DESCENDING, which sorts highest to lowest.
• Array.CASEINSENSITIVE, which sorts without regard to case.
• Array.NUMERIC, which sorts numerically if the two elements being compared are numbers. If

they aren’t numbers, use a string comparison (which can be case-insensitive if that flag is
specified).

• Array.UNIQUESORT, which returns an error code (0) instead of a sorted array if two objects in
the array are identical or have identical sort fields.

• Array.RETURNINDEXEDARRAY, which returns an integer index array that is the result of the
sort. For example, the following array would return the second line of code and the array
would remain unchanged:
["a", "d", "c", "b"]
[0, 3, 2, 1]

You can combine these options into one value. For example, the following code combines options
3 and 1:
array.sort (Array.NUMERIC | Array.DESCENDING)

Returns

Nothing.

Description

Method; sorts the items in the combo box according to the specified compare function or
according to the specified sort options.

Example

This example sorts according to uppercase labels. The items a and b are passed to the function
and contain label and data fields:
myComboBox.sortItems(upperCaseFunc);
function upperCaseFunc(a,b){
 return a.label.toUpperCase() > b.label.toUpperCase();
}

The following example uses the upperCaseFunc() function defined above, along with the
optionsFlag parameter to sort the elements of a ComboBox instance named myComboBox:
myComboBox.addItem("Mercury");
myComboBox.addItem("Venus");
myComboBox.addItem("Earth");
myComboBox.addItem("planet");
128 Chapter 2: Components Reference

myComboBox.sortItems(upperCaseFunc, Array.DESCENDING);
// The resulting sort order of myComboBox will be:
// Venus
// planet
// Mercury
// Earth

ComboBox.sortItemsBy()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myComboBox.sortItemsBy(fieldName, order [optionsFlag])

Parameters

fieldName A string that specifies the name of the field to use for sorting. This value is usually
"label" or "data".

order A string that specifies whether to sort the items in ascending order ("ASC") or descending
order ("DESC").

optionsFlag Lets you perform multiple sorts of different types on a single array without
having to replicate the entire array or re-sort it repeatedly. This parameter is optional, but if used,
should replace the order parameter.

The following are possible values for optionsFlag:

• Array.DESCENDING, which sorts highest to lowest.
• Array.CASEINSENSITIVE, which sorts without regard to case.
• Array.NUMERIC, which sorts numerically if the two elements being compared are numbers. If

they aren’t numbers, use a string comparison (which can be case-insensitive if that flag is
specified).

• Array.UNIQUESORT, which returns an error code (0) instead of a sorted array if two objects in
the array are identical or have identical sort fields.

• Array.RETURNINDEXEDARRAY, which returns an integer index array that is the result of the
sort. For example, the following array would return the second line of code and the array
would remain unchanged:
["a", "d", "c", "b"]
[0, 3, 2, 1]

You can combine these options into one value. For example, the following code combines options
3 and 1:
array.sort (Array.NUMERIC | Array.DESCENDING)
ComboBox component 129

Returns

Nothing.

Description

Method; sorts the items in the combo box alphabetically or numerically, in the specified order,
using the specified field name. If the fieldName items are a combination of text strings and
integers, the integer items are listed first. The fieldName parameter is usually "label" or
"data", but advanced programmers may specify any primitive value. If you want, you can use the
optionsFlag parameter to specify a sorting style.

Example

The following examples are based on a ComboBox instance named myComboBox, which contains
four elements labeled "Apples", "Bananas", "cherries", and "Grapes":
// First, populate the ComboBox with the elements.
myComboBox.addItem("Bananas");
myComboBox.addItem("Apples");
myComboBox.addItem("cherries");
myComboBox.addItem("Grapes");

// The following statement sorts using the order parameter set to "ASC",
// and results in a sort that places "cherries" at the bottom of the list
// because the sort is case-sensitive.
myDP.sortItemsBy("label", "ASC");
// resulting order: Apples, Bananas, Grapes, cherries

// The following statement sorts using the order parameter set to "DESC",
// and results in a sort that places "cherries" at the top of the list
// because the sort is case-sensitive.
myComboBox.sortItemsBy("label", "DESC");
// resulting order: cherries, Grapes, Bananas, Apples

// The following statement sorts using the optionsFlag parameter set to
// Array.CASEINSENSITIVE. Note that an ascending sort is the default setting.
myComboBox.sortItemsBy("label", Array.CASEINSENSITIVE);
// resulting order: Apples, Bananas, cherries, Grapes

// The following statement sorts using the optionsFlag parameter set to
// Array.CASEINSENSITIVE | Array.DESCENDING.
myComboBox.sortItemsBy("label", Array.CASEINSENSITIVE | Array.DESCENDING);
// resulting order: Grapes, cherries, Bananas, Apples

ComboBox.text

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.
130 Chapter 2: Components Reference

Usage

myComboBox.text

Description

Property; the text of the text box. You can get and set this value for editable combo boxes. For
static combo boxes, the value is read-only.

Example

The following example sets the current text value of an editable combo box:
myComboBox.text = "California";

ComboBox.textField

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

myComboBox.textField

Description

Property (read-only); a reference to the TextInput component contained by the ComboBox
component.

This property lets you access the underlying TextInput component so that you can manipulate it.
For example, you might want to change the selection of the text box or restrict the characters that
can be entered in it.

Example

The following code restricts the text box of myComboBox so that it only accept numbers:
myComboBox.textField.restrict = "0-9";

ComboBox.value

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

myComboBox.value
ComboBox component 131

Description

Property (read-only); if the combo box is editable, value returns the value of the text box. If the
combo box is static, value returns the value of the drop-down list. The value of the drop-down
list is the data field, or, if the data field doesn’t exist, the label field.

Example

The following example puts the data into the combo box by setting the dataProvider property.
It then displays the value in the Output panel. Finally, it selects "California" and displays it in
the text box.
cb.dataProvider = [
 {label:"Alaska", data:"AZ"},
 {label:"California", data:"CA"},
 {label:"Washington", data:"WA"}];
cb.editable = true;
cb.selectedIndex = 1;
trace('Editable value is "California": '+ cb.value);
cb.editable = false;
cb.selectedIndex = 1;
trace('Non-editable value is "CA": '+ cb.value);

DataGrid component

The DataGrid component lets you create powerful data-enabled displays and applications. You
can use the DataGrid component to instantiate a recordset (retrieved from a database query in
Macromedia ColdFusion, Java, or .Net) using Macromedia Flash Remoting and display it in
columns. You can also use data from a data set or from an array to fill a DataGrid component.
The version 2 DataGrid component has been improved to include horizontal scrolling, better
event support (including event support for editable cells), enhanced sorting capabilities, and
performance optimizations.

You can resize and customize characteristics such as the font, color, and borders of columns in a
grid. You can use a custom movie clip as a “cell renderer” for any column in a grid. (A cell
renderer displays the contents of a cell.) You can use scroll bars to move through data in a grid;
you can also turn off scroll bars and use the DataGrid methods to create a page view style display.

When you add the DataGrid component to an application, you can use the Accessibility panel to
make the component accessible to screen readers. First, you must add the following line of code to
enable accessibility for the DataGrid component:
mx.accessibility.DataGridAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances you have of
the component.

Interacting with the DataGrid component

You can use the mouse and the keyboard to interact with a DataGrid component.

If DataGrid.sortableColumns and DataGridColumn.sortOnHeaderRelease are both true,
clicking in a column header causes the grid to sort based on the column’s cell values.
132 Chapter 2: Components Reference

If DataGrid.resizableColumns is true, clicking in the area between columns lets you resize
columns.

Clicking in an editable cell sends focus to that cell; clicking a non-editable cell has no effect on
focus. An individual cell is editable when both the DataGrid.editable and
DataGridColumn.editable properties of the cell are true.

When a DataGrid instance has focus either from clicking or tabbing, you can use the following
keys to control it:

Using the DataGrid component

You can use the DataGrid component as the foundation for numerous types of data-driven
applications. You can easily display a formatted tabular view of a database query (or other data),
but you can also use the cell renderer capabilities to build more sophisticated and editable user
interface pieces. The following are practical uses for the DataGrid component:

• A webmail client
• Search results pages
• Spreadsheet applications such as loan calculators and tax form applications

Key Description

Down Arrow When a cell is being edited, the insertion point shifts to the end of the
cell’s text. If a cell is not editable, the Down Arrow key handles selection
as the List component does.

Up Arrow When a cell is being edited, the insertion point shifts to the beginning of
the cell’s text. If a cell is not editable, the Up Arrow key handles selection
as the List component does.

Right Arrow When a cell is being edited, the insertion point shifts one character to the
right. If a cell is not editable, the Right Arrow key does nothing.

Left Arrow When a cell is being edited, the insertion point shifts one character to the
left. If a cell is not editable, the Left Arrow key does nothing.

Return/Enter/Shift+Enter When a cell is editable, the change is committed, and the insertion point is
moved to the cell on the same column, next row (up or down, depending
on the shift toggle).

Shift+Tab/Tab Moves focus to the previous item. When the Tab key is pressed, focus
cycles from the last column in the grid to the first column on the next line.
When Shift+Tab is pressed, cycling is reversed. All the text in the focused
cell is selected.
DataGrid component 133

Understanding the design of the DataGrid component

The DataGrid component extends the List component. When you design an application with the
DataGrid component, it is helpful to understand how the List class underlying it was designed.
The following are some fundamental assumptions and requirements that Macromedia used when
developing the List class:

• Keep it small, fast, and simple.
Don’t make something more complicated than absolutely necessary. This was the prime design
directive. Most of the requirements listed below are based on this directive.

• Lists have uniform row heights.
Every row must be the same height; the height can be set during authoring or at runtime.

• Lists must scale to thousands of records.
• Lists don’t measure text.

This creates a horizontal scrolling issue for List and Tree components; for more information,
see “Understanding the design of the List component” on page 278. The DataGrid
component, however, supports "auto" as an hScrollPolicy value, because it measures
columns (which are the same width per item), not text.
The fact that lists don’t measure text explains why lists have uniform row heights. Sizing
individual rows to fit text would require intensive measuring. For example, if you wanted to
accurately show the scroll bars on a list with nonuniform row height, you’d need to premeasure
every row.

• Lists perform worse as a function of their visible rows.
Although lists can display 5000 records, they can’t render 5000 records at once. The more
visible rows (specified by the rowCount property) you have on the Stage, the more work the list
must to do to render. Limiting the number of visible rows, if at all possible, is the best solution.

• Lists aren’t tables.
DataGrid components are intended to provide an interface for many records. They’re not
designed to display complete information; they’re designed to display enough information so
that users can drill down to see more. The message view in Microsoft Outlook is a prime
example. You don’t read the entire e-mail in the grid; the message would be difficult to read
and the client would perform terribly. Outlook displays enough information so that a user can
drill into the post to see the details.
134 Chapter 2: Components Reference

Understanding the DataGrid component: data model and view

Conceptually, the DataGrid component is composed of a data model and a view that displays the
data. The data model consists of three main parts:

• DataProvider
This is a list of items with which to fill the data grid. Any array in the same frame as a
DataGrid component is automatically given methods (from the DataProvider API) that let you
manipulate data and broadcast changes to multiple views. Any object that implements the
DataProvider API can be assigned to the DataGrid.dataProvider property (including
recordsets, data sets, and so on). The following code creates a data provider called myDP:
myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",

price:"Cheap"});

• Item
This is an ActionScript object used for storing the units of information in the cells of a
column. A data grid is really a list that can display more than one column of data. A list can be
thought of as an array; each indexed space of the list is an item. For the DataGrid component,
each item consists of fields. In the following code, the content between curly braces ({}) is
an item:
myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",

price:"Cheap"});

• Field
Identifiers that indicate the names of the columns within the items. This corresponds to the
columnNames property in the columns list. In the List component, the fields are usually label
and data, but in the DataGrid component the fields can be any identifier. In the following
code, the fields are name and price:
myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",

price:"Cheap"});

The view consists of three main parts:

• Row
This is a view object responsible for rendering the items of the grid by laying out cells. Each
row is laid out horizontally below the previous one.

• Column
Columns are fields that are displayed in the grid; the fields each correspond to the columnName
property of each column.
Each column is a view object (an instance of the DataGridColumn class) responsible for
displaying each column—for example, width, color, size, and so on.
There are three ways to add columns to a data grid: assign a DataProvider object to
DataGrid.dataProvider (this automatically generates a column for each field in the first
item), set DataGrid.columnNames to specify which fields will be displayed, or use the
constructor for the DataGridColumn class to create columns and call DataGrid.addColumn()
to add them to the grid.
To format columns, either set up style properties for the entire data grid, or define
DataGridColumn objects, set up their style formats individually, and add them to the
data grid.
DataGrid component 135

• Cell
This is a view object responsible for rendering the individual fields of each item. To
communicate with the data grid, these components must implement the CellRenderer API
(see “CellRenderer API” in Flash Help). For a basic data grid, a cell is a built-in ActionScript
TextField object.

DataGrid parameters

You can set the following authoring parameters for each DataGrid component instance in the
Property inspector or in the Component inspector:

multipleSelection is a Boolean value that indicates whether multiple items can be selected (true)
or not (false). The default value is false.

rowHeight indicates the height of each row, in pixels. Changing the font size does not change the
row height. The default value is 20.

editable is a Boolean value that indicates whether the grid is editable (true) or not (false). The
default value is false.

You can write ActionScript to control these and additional options for the DataGrid component
using its properties, methods, and events. For more information, see “DataGrid class”
on page 139.

Creating an application with the DataGrid component

To create an application with the DataGrid component, you must first determine where your data
is coming from. The data for a grid can come from a recordset that is fed from a database query in
Macromedia ColdFusion, Java, or .Net using Flash Remoting. Data can also come from a data set
or an array. To pull the data into a grid, you set the DataGrid.dataProvider property to the
recordset, data set, or array. You can also use the methods of the DataGrid and DataGridColumn
classes to create data locally. Any Array object in the same frame as a DataGrid component copies
the methods, properties, and events of the DataProvider API.

To use Flash Remoting to add a DataGrid component to an application:

1. In Flash, select File > New and select Flash Document.

2. In the Components panel, double-click the DataGrid component to add it to the Stage.

3. In the Property inspector, enter the instance name myDataGrid.

4. In the Actions panel on Frame 1, enter the following code:
myDataGrid.dataProvider = recordSetInstance;

The Flash Remoting recordset recordSetInstance is assigned to the dataProvider property
of myDataGrid.

5. Select Control > Test Movie.
136 Chapter 2: Components Reference

To use a local data provider to add a DataGrid component to an application:

1. In Flash, select File > New and select Flash Document.

2. In the Components panel, double-click the DataGrid component to add it to the Stage.

3. In the Property inspector, enter the instance name myDataGrid.

4. In the Actions panel on Frame 1, enter the following code:
myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",

price:"Cheap"});
myDataGrid.dataProvider = myDP;

The name and price fields are used as the column headings, and their values fill the cells in
each row.

5. Select Control > Test Movie.

Customizing the DataGrid component

You can transform a DataGrid component horizontally and vertically during authoring and
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()). If there is no horizontal scroll bar, column widths adjust proportionally.
If column (and therefore, cell) size adjustment occurs, text in the cells may be clipped.

Using styles with the DataGrid component

You can set style properties to change the appearance of a DataGrid component. The DataGrid
component inherits styles from the List component. (See “Using styles with the List component”
on page 281.) The DataGrid component also supports the following styles:

Style Theme Description

backgroundColor Both The background color, which can be set for the whole grid or
for each column.

backgroundDisabledColor Both The background color when the component’s enabled
property is set to "false". The default value is 0xDDDDDD
(medium gray).

border styles Both The DataGrid component uses a RectBorder instance as its
border and responds to the styles defined on that class. See
“RectBorder class” in Flash Help.

The default border style value is "inset".

headerColor Both The color of the column headers. The default value is
0xEAEAEA (light gray)

headerStyle Both A CSS style declaration for the column header that can be
applied to a grid or column to customize the header styles.

color Both The text color. The default value is 0x0B333C for the Halo
theme and blank for the Sample theme.
DataGrid component 137

Setting styles for an individual column

Color and text styles can be set for the grid as a whole or for a column. You can use the following
syntax to set a style for a particular column:
grid.getColumnAt(3).setStyle("backgroundColor", 0xFF00AA);

Setting header styles

You can set header styles through headerStyle, which is a style property itself. To do this, you
create an instance of CSSStyleDeclaration, set the appropriate properties on that instance for
the header, and then assign the CSSStyleDeclaration to the headerStyle property, as shown in
the following example.
import mx.styles.CSSStyleDeclaration;
var headerStyles = new CSSStyleDeclaration();

disabledColor Both The color for text when the component is disabled. The
default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to
true if fontFamily refers to an embedded font. Otherwise,
the embedded font will not be used. If this style is set to true
and fontFamily does not refer to an embedded font, no text
will be displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bold". The default value
is "none". All components can also accept the value
"normal" in place of "none" during a setStyle() call, but
subsequent calls to getStyle() will return "none".

textAlign Both The text alignment: either "left", "right", or "center". The
default value is "left".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

vGridLines Both A Boolean value that indicates whether to show vertical grid
lines (true) or not (false). The default value is true.

hGridLines Both A Boolean value that indicates whether to show horizontal
grid lines (true) or not (false). The default value is false.

vGridLineColor Both The color of the vertical grid lines. The default value is
0x666666 (medium gray).

hGridLineColor Both The color of the horizontal grid lines. The default value is
0x666666 (medium gray).

Style Theme Description
138 Chapter 2: Components Reference

headerStyles.setStyle("fontStyle", "italic");
grid.setStyle("headerStyle", headerStyles);

Setting styles for all DataGrid components in a document

The DataGrid class inherits from the List class, which inherits from the ScrollSelectList class. The
default class-level style properties are defined on the ScrollSelectList class, which the Menu
component and all List-based components extend. You can set new default style values on this
class directly, and these new settings will be reflected in all affected components.
_global.styles.ScrollSelectList.setStyle("backgroundColor", 0xFF00AA);

To set a style property on the DataGrid components only, you can create a new instance of
CSSStyleDeclaration and store it in _global.styles.DataGrid.
import mx.styles.CSSStyleDeclaration;
if (_global.styles.DataGrid == undefined) {

_global.styles.DataGrid = new CSSStyleDeclaration();
}
_global.styles.DataGrid.setStyle("backgroundColor", 0xFF00AA);

When creating a new class-level style declaration, you will lose all default values provided by the
ScrollSelectList declaration, including backgroundColor, which is required for supporting
mouse events. To create a class-level style declaration and preserve defaults, use a for..in loop to
copy the old settings to the new declaration.
var source = _global.styles.ScrollSelectList;
var target = _global.styles.DataGrid;
for (var style in source) {

target.setStyle(style, source.getStyle(style));
}

For more information about class-level styles, see “Setting styles for a component class” in Flash
Help.

Using skins with the DataGrid component

The skins that the DataGrid component uses to represent its visual states are included in the
subcomponents that constitute the data grid (scroll bars and RectBorder). For information about
their skins, see “Using skins with the ScrollPane component” on page 424 and “RectBorder class”
in Flash Help.

DataGrid class

Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView >
ScrollSelectList > List component > DataGrid

ActionScript Class Name mx.controls.DataGrid

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.controls.DataGrid.version);

Note: The code trace(myDataGridInstance.version); returns undefined.
DataGrid component 139

Method summary for the DataGrid class

The following table lists methods of the DataGrid class.

Methods inherited from the UIObject class

The following table lists the methods the DataGrid class inherits from the UIObject class. When
calling these methods, use the form dataGridInstance.methodName.

Method Description

DataGrid.addColumn() Adds a column to the data grid.

DataGrid.addColumnAt() Adds a column to the data grid at a specified location.

DataGrid.addItem() Adds an item to the data grid.

DataGrid.addItemAt() Adds an item to the data grid at a specified location.

DataGrid.editField() Replaces the cell data at a specified location.

DataGrid.getColumnAt() Gets a reference to a column at a specified location.

DataGrid.getColumnIndex() Gets a reference to the DataGridColumn object at the specified
index.

DataGrid.removeAllColumns() Removes all columns from a data grid.

DataGrid.removeColumnAt() Removes a column from a data grid at a specified location.

DataGrid.replaceItemAt() Replaces an item at a specified location with another item.

DataGrid.spaceColumnsEqually() Spaces all columns equally.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property
and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.
140 Chapter 2: Components Reference

Methods inherited from the UIComponent class

The following table lists the methods the DataGrid class inherits from the UIComponent class.
When calling these methods, use the form dataGridInstance.methodName.

Methods inherited from the List class

The following table lists the methods the DataGrid class inherits from the List class. When calling
these methods, use the form dataGridInstance.methodName.

Property summary for the DataGrid class

The following table lists the properties of the DataGrid class.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Method Description

List.addItem() Adds an item to the end of the list.

List.addItemAt() Adds an item to the list at the specified index.

List.getItemAt() Returns the item at the specified index.

List.removeAll() Removes all items from the list.

List.removeItemAt() Removes the item at the specified index.

List.replaceItemAt() Replaces the item at the specified index with another item.

List.setPropertiesAt() Applies the specified properties to the specified item.

List.sortItems() Sorts the items in the list according to the specified compare
function.

List.sortItemsBy() Sorts the items in the list according to a specified property.

Property Description

DataGrid.columnCount Read-only; the number of columns that are displayed.

DataGrid.columnNames An array of field names within each item that are displayed
as columns.

DataGrid.dataProvider The data model for a data grid.

DataGrid.editable A Boolean value that indicates whether the data grid is editable
(true) or not (false).

DataGrid.focusedCell Defines the cell that has focus.

DataGrid.headerHeight The height of the column headers, in pixels.

DataGrid.hScrollPolicy Indicates whether a horizontal scroll bar is present ("on"), not
present ("off"), or appears when necessary ("auto").
DataGrid component 141

Properties inherited from the UIObject class

The following table lists the properties the DataGrid class inherits from the UIObject class. When
accessing these properties from the DataGrid object, use the form
dataGridInstance.propertyName.

DataGrid.resizableColumns A Boolean value that indicates whether the columns are
resizable (true) or not (false).

DataGrid.selectable A Boolean value that indicates whether the data grid is
selectable (true) or not (false).

DataGrid.showHeaders A Boolean value that indicates whether the column headers are
visible (true) or not (false).

DataGrid.sortableColumns A Boolean value that indicates whether the columns are sortable
(true) or not (false).

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description
142 Chapter 2: Components Reference

Properties inherited from the UIComponent class

The following table lists the properties the DataGrid class inherits from the UIComponent class.
When accessing these properties from the DataGrid object, use the form
dataGridInstance.propertyName.

Properties inherited from the List class

The following table lists the properties the DataGrid class inherits from the List class. When
accessing these properties from the DataGrid object, use the form
dataGridInstance.propertyName.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.

Property Description

List.cellRenderer Assigns the class or symbol to use to display each row of the list.

List.dataProvider The source of the list items.

List.hPosition The horizontal position of the list.

List.hScrollPolicy Indicates whether the horizontal scroll bar is displayed ("on") or
not ("off").

List.iconField A field in each item to be used to specify icons.

List.iconFunction A function that determines which icon to use.

List.labelField Specifies a field of each item to be used as label text.

List.labelFunction A function that determines which fields of each item to use for
the label text.

List.length The number of items in the list. This property is read-only.

List.maxHPosition The number of pixels the list can scroll to the right, when
List.hScrollPolicy is set to "on".

List.multipleSelection Indicates whether multiple selection is allowed in the list (true) or
not (false).

List.rowCount The number of rows that are at least partially visible in the list.

List.rowHeight The pixel height of every row in the list.

List.selectable Indicates whether the list is selectable (true) or not (false).

List.selectedIndex The index of a selection in a single-selection list.

List.selectedIndices An array of the selected items in a multiple-selection list.

List.selectedItem The selected item in a single-selection list. This property is read-
only.
DataGrid component 143

Event summary for the DataGrid class

The following table lists the events of the DataGrid class.

Events inherited from the UIObject class

The following table lists the events the DataGrid class inherits from the UIObject class.

List.selectedItems The selected item objects in a multiple-selection list. This
property is read-only.

List.vPosition Scrolls the list so the topmost visible item is the number
assigned.

List.vScrollPolicy Indicates whether the vertical scroll bar is displayed ("on"), not
displayed ("off"), or displayed when needed ("auto").

Event Description

DataGrid.cellEdit Broadcast when the cell value has changed.

DataGrid.cellFocusIn Broadcast when a cell receives focus.

DataGrid.cellFocusOut Broadcast when a cell loses focus.

DataGrid.cellPress Broadcast when a cell is pressed (clicked).

DataGrid.change Broadcast when an item has been selected.

DataGrid.columnStretch Broadcast when a user resizes a column horizontally.

DataGrid.headerRelease Broadcast when a user clicks (releases) a header.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Property Description
144 Chapter 2: Components Reference

Events inherited from the UIComponent class

The following table lists the events the DataGrid class inherits from the UIComponent class.

Events inherited from the List class

The following table lists the events the DataGrid class inherits from the List class.

DataGrid.addColumn()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.addColumn(dataGridColumn)

myDataGrid.addColumn(name)

Parameters

dataGridColumn An instance of the DataGridColumn class.

name A string that indicates the name of a new DataGridColumn object to be inserted.

Returns

A reference to the DataGridColumn object that was added.

Description

Method; adds a new column to the end of the data grid. For more information, see
“DataGridColumn class” on page 164.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description

List.change Broadcast whenever user interaction causes the selection to
change.

List.itemRollOut Broadcast when the pointer rolls over and then off of list items.

List.itemRollOver Broadcast when the pointer rolls over list items.

List.scroll Broadcast when a list is scrolled.
DataGrid component 145

Example

The following code adds a new DataGridColumn object named Purple:
import mx.controls.gridclasses.DataGridColumn;
myGrid.addColumn(new DataGridColumn("Purple"));

DataGrid.addColumnAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.addColumnAt(index, name)

myDataGrid.addColumnAt(index, dataGridColumn)

Parameters

index The index position at which the DataGridColumn object is added. The first
position is 0.

name A string that indicates the name of the DataGridColumn object.

dataGridColumn An instance of the DataGridColumn class.

Returns

A reference to the DataGridColumn object that was added.

Description

Method; adds a new column at the specified position. Columns are shifted to the right and their
indexes are incremented. For more information, see “DataGridColumn class” on page 164.

Example

The following example inserts a new DataGridColumn object called "Green" at the second and
fourth columns:
import mx.controls.gridclasses.DataGridColumn;
myGrid.addColumnAt(1, "Green");
myGrid.addColumnAt(3, new DataGridColumn("Purple"));

DataGrid.addItem()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.
146 Chapter 2: Components Reference

Usage

myDataGrid.addItem(item)

Parameters

item An instance of an object to be added to the grid.

Returns

A reference to the instance that was added.

Description

Method; adds an item to the end of the grid (after the last item index).

Note: This differs from the List.addItem() method in that an object is passed rather than a string.

Example

The following example adds a new object to the grid myGrid:
var anObject= {name:"Jim!!", age:30};
myGrid.addItem(anObject);

DataGrid.addItemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.addItemAt(index, item)

Parameters

index The index position (among the child nodes) at which the node should be added. The
first position is 0.

item A string that displays the node.

Returns

A reference to the object instance that was added.

Description

Method; adds an item to the grid at the position specified.

Example

The following example inserts an object instance to the grid at index position 4:
var anObject= {name:"Jim!!", age:30};
myGrid.addItemAt(4, anObject);
DataGrid component 147

DataGrid.cellEdit

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.cellEdit = function(eventObject){

// insert your code here
}
myDataGridInstance.addEventListener("cellEdit", listenerObject)

Description

Event; broadcast to all registered listeners when cell value changes.

Version 2 components use a dispatcher/listener event model. The DataGrid component
dispatches a cellEdit event when the value of a cell has changed, and the event is handled by a
function (also called a handler) that is attached to a listener object (listenerObject) that you
create. You call the addEventListener() method and pass it the name of the handler as a
parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The DataGrid.cellEdit event’s event
object has four additional properties:

columnIndex A number that indicates the index of the target column.

itemIndex A number that indicates the index of the target row.

oldValue The previous value of the cell.

type The string "cellEdit".

For more information, see “EventDispatcher class” in Flash Help.

Example

In the following example, a handler called myDataGridListener is defined and passed to
myDataGrid.addEventListener() as the second parameter. The event object is captured by the
cellEdit handler in the eventObject parameter. When the cellEdit event is broadcast, a
trace statement is sent to the Output panel.
myDataGridListener = new Object();
myDataGridListener.cellEdit = function(event){

var cell = "(" + event.columnIndex + ", " + event.itemIndex + ")";
trace("The value of the cell at " + cell + " has changed");

}
myDataGrid.addEventListener("cellEdit", myDataGridListener);

Note: The grid must be editable for the above code to work.
148 Chapter 2: Components Reference

DataGrid.cellFocusIn

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.cellFocusIn = function(eventObject){

// insert your code here
}
myDataGridInstance.addEventListener("cellFocusIn", listenerObject)

Description

Event; broadcast to all registered listeners when a particular cell receives focus. This event is
broadcast after any previously edited cell’s editCell and cellFocusOut events are broadcast.

Version 2 components use a dispatcher/listener event model. When a DataGrid component
dispatches a cellFocusIn event, the event is handled by a function (also called a handler) that is
attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The DataGrid.cellFocusIn event’s event
object has three additional properties:

columnIndex A number that indicates the index of the target column.

itemIndex A number that indicates the index of the target row.

type The string "cellFocusIn".

For more information, see “EventDispatcher class” in Flash Help.

Example

In the following example, a handler called myListener is defined and passed to
grid.addEventListener() as the second parameter. The event object is captured by the
cellFocusIn handler in the eventObject parameter. When the cellFocusIn event is broadcast,
a trace statement is sent to the Output panel.
var myListener = new Object();
myListener.cellFocusIn = function(event) {
 var cell = "(" + event.columnIndex + ", " + event.itemIndex + ")";
 trace("The cell at " + cell + " has gained focus");
};
grid.addEventListener("cellFocusIn", myListener);

Note: The grid must be editable for the above code to work.
DataGrid component 149

DataGrid.cellFocusOut

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.cellFocusOut = function(eventObject){

// insert your code here
}
myDataGridInstance.addEventListener("cellFocusOut", listenerObject)

Description

Event; broadcast to all registered listeners whenever a user moves off a cell that has focus. You can
use the event object properties to isolate the cell that was left. This event is broadcast after the
cellEdit event and before any subsequent cellFocusIn events are broadcast by the next cell.

Version 2 components use a dispatcher/listener event model. When a DataGrid component
dispatches a cellFocusOut event, the event is handled by a function (also called a handler) that is
attached to a listener object that you create. You call the addEventListener() method and pass
it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The DataGrid.cellFocusOut event’s event
object has three additional properties:

columnIndex A number that indicates the index of the target column. The first position is 0.

itemIndex A number that indicates the index of the target row. The first position is 0.

type The string "cellFocusOut".

For more information, see “EventDispatcher class” in Flash Help.

Example

In the following example, a handler called myListener is defined and passed to
grid.addEventListener() as the second parameter. The event object is captured by the
cellFocusOut handler in the eventObject parameter. When the cellFocusOut event is
broadcast, a trace statement is sent to the Output panel.
var myListener = new Object();
myListener.cellFocusOut = function(event) {
 var cell = "(" + event.columnIndex + ", " + event.itemIndex + ")";
 trace("The cell at " + cell + " has lost focus");
};
grid.addEventListener("cellFocusOut", myListener);

Note: The grid must be editable for the above code to work.
150 Chapter 2: Components Reference

DataGrid.cellPress

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.cellPress = function(eventObject){

// insert your code here
}
myDataGridInstance.addEventListener("cellPress", listenerObject)

Description

Event; broadcast to all registered listeners when a user presses the mouse button on a cell.

Version 2 components use a dispatcher/listener event model. When a DataGrid component
broadcasts a cellPress event, the event is handled by a function (also called a handler) that is
attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The DataGrid.cellPress event’s event
object has three additional properties:

columnIndex A number that indicates the index of the column that was pressed. The first
position is 0.

itemIndex A number that indicates the index of the row that was pressed. The first position is
0.

type The string "cellPress".

For more information, see “EventDispatcher class” in Flash Help.

Example

In the following example, a handler called myListener is defined and passed to
grid.addEventListener() as the second parameter. The event object is captured by the
cellPress handler in the eventObject parameter. When the cellPress event is broadcast, a
trace statement is sent to the Output panel.
var myListener = new Object();
myListener.cellPress = function(event) {
 var cell = "(" + event.columnIndex + ", " + event.itemIndex + ")";
 trace("The cell at " + cell + " has been clicked");
};
grid.addEventListener("cellPress", myListener);
DataGrid component 151

DataGrid.change

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.change = function(eventObject){

// insert your code here
}
myDataGridInstance.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners when an item has been selected.

Version 2 components use a dispatcher/listener event model. When a DataGrid component
dispatches a change event, the event is handled by a function (also called a handler) that is
attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The DataGrid.change event’s event object
has one additional property, type, whose value is "change". For more information, see
“EventDispatcher class” in Flash Help.

Example

In the following example, a handler called myListener is defined and passed to
grid.addEventListener() as the second parameter. The event object is captured by change
handler in the eventObject parameter. When the change event is broadcast, a trace statement
is sent to the Output panel.
var myListener = new Object();
myListener.change = function(event) {
 trace("The selection has changed to " + event.target.selectedIndex);
};
grid.addEventListener("change", myListener);

DataGrid.columnCount

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.
152 Chapter 2: Components Reference

Usage

myDataGrid.columnCount

Description

Property (read-only); the number of columns displayed.

Example

The following example gets the number of displayed columns in the DataGrid instance grid:
var c = grid.columnCount;

DataGrid.columnNames

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.columnNames

Description

Property; an array of field names within each item that are displayed as columns.

Example

The following example tells the grid instance to display only these three fields as columns:
grid.columnNames = ["Name", "Description", "Price"];

DataGrid.columnStretch

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.columnStretch = function(eventObject){

// insert your code here
}
myDataGridInstance.addEventListener("columnStretch", listenerObject)

Description

Event; broadcast to all registered listeners when a user resizes a column horizontally.
DataGrid component 153

Version 2 components use a dispatcher/listener event model. When a DataGrid component
dispatches a columnStretch event, the event is handled by a function (also called a handler) that
is attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The DataGrid.columnStretch event’s
event object has two additional properties:

columnIndex A number that indicates the index of the target column. The first position is 0.

type The string "columnStretch".

For more information, see “EventDispatcher class” in Flash Help.

Example

In the following example, a handler called myListener is defined and passed to
grid.addEventListener() as the second parameter. The event object is captured by the
columnStretch handler in the eventObject parameter. When the columnStretch event is
broadcast, a trace statement is sent to the Output panel.
var myListener = new Object();
myListener.columnStretch = function(event) {
 trace("column " + event.columnIndex + " was resized");
};
grid.addEventListener("columnStretch", myListener);

DataGrid.dataProvider

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.dataProvider

Description

Property; the data model for items viewed in a DataGrid component.

The data grid adds methods to the prototype of the Array class so that each Array object conforms
to the DataProvider API (see DataProvider.as in the Classes/mx/controls/listclasses folder). Any
array that is in the same frame or screen as a data grid automatically has all the methods
(addItem(), getItemAt(), and so on) needed for it to be the data model of a data grid, and can
be used to broadcast data model changes to multiple components.
154 Chapter 2: Components Reference

In a DataGrid component, you specify fields for display in the DataGrid.columnNames property.
If you don’t define the column set (by setting the DataGrid.columnNames property or by calling
DataGrid.addColumn()) for the data grid before the DataGrid.dataProvider property has
been set, the data grid generates columns for each field in the data provider’s first item, once that
item arrives.

Any object that implements the DataProvider API can be used as a data provider for a data grid
(including Flash Remoting recordsets, data sets, and arrays).

Use a grid’s data provider to communicate with the data in the grid because the data provider
remains consistent, regardless of scroll position.

Example

The following example creates an array to be used as a data provider and assigns it directly to the
dataProvider property:
grid.dataProvider = [{name:"Chris", price:"Priceless"}, {name:"Nigel",

price:"cheap"}];

The following example creates a new Array object that is decorated with the DataProvider API. It
uses a for loop to add 20 items to the grid:
myDP = new Array();
for (var i=0; i<20; i++)
 myDP.addItem({name:"Nivesh", price:"Priceless"});
list.dataProvider = myDP

DataGrid.editable

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.editable

Description

Property; determines whether the data grid can be edited by a user (true) or not (false). This
property must be true in order for individual columns to be editable and for any cell to receive
focus. The default value is false.

If you want individual columns to be uneditable, use the DataGridColumn.editable property.

Caution: The DataGrid is not editable or sortable if it is bound directly to a WebServiceConnector
component or an XMLConnector component. You must bind the DataGrid component to the
DataSet component and bind the DataSet component to the WebServiceConnector component or
XMLConnector component if you want the grid to be editable or sortable.
DataGrid component 155

Example

The following example allows users to edit all the columns of the grid except the first column:
myDataGrid.editable = true;
myDataGrid.getColumnAt(0).editable = false;

See also

DataGridColumn.editable

DataGrid.editField()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.editField(index, colName, data)

Parameters

index The index of the target cell. This number is zero-based.

colName A string indicating the name of the column (field) that contains the target cell.

data The value to be stored in the target cell. This parameter can be of any data type.

Returns

The data that was in the cell.

Description

Method; replaces the cell data at the specified location and refreshes the data grid with the new
value. Any cell present for that value will have its setValue() method triggered.

Example

The following example places a value in the grid:
var prevValue = myGrid.editField(5, "Name", "Neo");

DataGrid.focusedCell

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.focusedCell
156 Chapter 2: Components Reference

Description

Property; in editable mode only, an object instance that defines the cell that has focus. The object
must have the fields columnIndex and itemIndex, which are both integers that indicate the
index of the column and item of the cell. The origin is (0,0). The default value is undefined.

Example

The following example sets the focused cell to the third column, fourth row:
grid.focusedCell = {columnIndex:2, itemIndex:3};

DataGrid.getColumnAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index)

Parameters

index The index of the DataGridColumn object to be returned. This number is zero-based.

Returns

A DataGridColumn object.

Description

Method; gets a reference to the DataGridColumn object at the specified index.

Example

The following example gets the DataGridColumn object at index 4:
var aColumn = myGrid.getColumnAt(4);

DataGrid.getColumnIndex()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnIndex(columnName)

Parameters

columnName A string that is the name of a column.
DataGrid component 157

Returns

A number that specifies the index of the column.

Description

Method; returns the index of the column specified by the columnName parameter.

DataGrid.headerHeight

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.headerHeight

Description

Property; the height of the header bar of the data grid, in pixels. The default value is 20.

Example

The following example sets the scroll position to the top of the display:
myDataGrid.headerHeight = 30;

DataGrid.headerRelease

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.headerRelease = function(eventObject){

// insert your code here
}
myDataGridInstance.addEventListener("headerRelease", listenerObject)

Description

Event; broadcast to all registered listeners when a column header has been released. You can use
this event with the DataGridColumn.sortOnHeaderRelease property to prevent automatic
sorting and to let you sort as you like.

Version 2 components use a dispatcher/listener event model. When the DataGrid component
dispatches a headerRelease event, the event is handled by a function (also called a handler) that
is attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.
158 Chapter 2: Components Reference

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The DataGrid.headerRelease event’s
event object has two additional properties:

columnIndex A number that indicates the index of the target column.

type The string "headerRelease".

For more information, see “EventDispatcher class” in Flash Help.

Example

In the following example, a handler called myListener is defined and passed to
grid.addEventListener() as the second parameter. The event object is captured by the
headerRelease handler in the eventObject parameter. When the headerRelease event is
broadcast, a trace statement is sent to the Output panel.
var myListener = new Object();
myListener.headerRelease = function(event) {
 trace("column " + event.columnIndex + " header was pressed");
};
grid.addEventListener("headerRelease", myListener);

DataGrid.hScrollPolicy

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.hScrollPolicy

Description

Property; specifies whether the data grid has a horizontal scroll bar. This property can have the
value "on", "off", or "auto". The default value is "off".

If hScrollPolicy is set to "off", columns scale proportionally to accommodate the finite width.

Note: This differs from the List component, which cannot have hScrollPolicy set to "auto".

Example

The following example sets horizontal scroll policy to automatic, which means that the horizontal
scroll bar appears if it’s necessary to display all the content:
myDataGrid.hScrollPolicy = "auto";
DataGrid component 159

DataGrid.removeAllColumns()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.removeAllColumns()

Parameters

None.

Returns

Nothing.

Description

Method; removes all DataGridColumn objects from the data grid. Calling this method has no
effect on the data provider.

Call this method if you are setting a new data provider that has different fields from the previous
data provider, and you want to clear the fields that are displayed.

Example

The following example removes all DataGridColumn objects from myDataGrid:
myDataGrid.removeAllColumns();

DataGrid.removeColumnAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.removeColumnAt(index)

Parameters

index The index of the column to remove.

Returns

A reference to the DataGridColumn object that was removed.

Description

Method; removes the DataGridColumn object at the specified index.
160 Chapter 2: Components Reference

Example

The following example removes the DataGridColumn object at index 2 in myDataGrid:
myDataGrid.removeColumnAt(2);

DataGrid.replaceItemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.replaceItemAt(index, item)

Parameters

index The index of the item to be replaced.

item An object that is the item value to use as a replacement.

Returns

The previous value.

Description

Method; replaces the item at a specified index and refreshes the display of the grid.

Example

The following example replaces the item at index 4 with the item defined in aNewValue:
var aNewValue = {name:"Jim", value:"tired"};
var prevValue = myGrid.replaceItemAt(4, aNewValue);

DataGrid.resizableColumns

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.resizableColumns

Description

Property; a Boolean value that determines whether the columns of the grid can be stretched by
the user (true) or not (false). This property must be true for individual columns to be resizable
by the user. The default value is true.
DataGrid component 161

Example

The following example prevents users from resizing columns:
myDataGrid.resizableColumns = false;

DataGrid.selectable

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.selectable

Description

Property; a Boolean value that determines whether a user can select the data grid (true) or not
(false). The default value is true.

Example

The following example prevents the grid from being selected:
myDataGrid.selectable = false;

DataGrid.showHeaders

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.showHeaders

Description

Property; a Boolean value that indicates whether the data grid displays the column headers (true)
or not (false). Column headers are shaded to differentiate them from the other rows in a grid.
Users can click column headers to sort the contents of the column if
DataGrid.sortableColumns is set to true. The default value of showHeaders is true.

Example

The following example hides the column headers:
myDataGrid.showHeaders = false;

See also

DataGrid.sortableColumns
162 Chapter 2: Components Reference

DataGrid.sortableColumns

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.sortableColumns

Description

Property; a Boolean value that determines whether the columns of the data grid can be sorted
(true) or not (false) when a user clicks the column headers. This property must be true for
individual columns to be sortable, and for the headerRelease event to be broadcast. The default
value is true.

Caution: The DataGrid is not editable or sortable if it is bound directly to a WebServiceConnector
component or an XMLConnector component. You must bind the DataGrid component to the
DataSet component and bind the DataSet component to the WebServiceConnector component or
XMLConnector component if you want the grid to be editable or sortable.

Example

The following example turns off sorting:
myDataGrid.sortableColumns = false;

See also

DataGrid.headerRelease

DataGrid.spaceColumnsEqually()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.spaceColumnsEqually()

Parameters

None.

Returns

Nothing.

Description

Method; respaces the columns equally.
DataGrid component 163

Example

The following example respaces the columns of myGrid when any column header is pressed
and released:
myGrid.showHeaders = true
myGrid.dataProvider = [{guitar:"Flying V", name:"maggot"}, {guitar:"SG",

name:"dreschie"}, {guitar:"jagstang", name:"vitapup"}];
gridLO = new Object();
gridLO.headerRelease = function(){

myGrid.spaceColumnsEqually();
}
myGrid.addEventListener("headerRelease", gridLO);

DataGridColumn class

ActionScript Class Name mx.controls.gridclasses.DataGridColumn

You can create and configure DataGridColumn objects to use as columns of a data grid. Many of
the methods of the DataGrid class are dedicated to managing DataGridColumn objects.
DataGridColumn objects are stored in an zero-based array in the data grid; 0 is the leftmost
column. After columns have been added or created, you can access them by calling
DataGrid.getColumnAt(index).

There are three ways to add or create columns in a grid. If you want to configure your columns, it
is best to use either the second or third way before you add data to a data grid so you don’t have to
create columns twice.

• Adding a data provider or an item with multiple fields to a grid that has no configured
DataGridColumn objects automatically generates columns for every field in the reverse order
of the for...in loop.

• DataGrid.columnNames takes in the field names of the desired item fields and generates
DataGridColumn objects, in order, for each field listed. This approach lets you select and
order columns quickly with a minimal amount of configuration. This approach removes any
previous column information.

• The most flexible way to add columns is to prebuild them as DataGridColumn objects and
add them to the data grid by using DataGrid.addColumn(). This approach is useful because it
lets you add columns with proper sizing and formatting before the columns ever reach the grid
(which reduces processor demand). For more information, see “Constructor for the
DataGridColumn class” on page 165.

Property summary for the DataGridColumn class

The following table lists the properties of the DataGridColumn class.

Property Description

DataGridColumn.cellRenderer The linkage identifier of a symbol to be used to display the
cells in this column.

DataGridColumn.columnName Read-only; the name of the field associated with the column.
164 Chapter 2: Components Reference

Constructor for the DataGridColumn class

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

new DataGridColumn(name)

Parameters

name A string that indicates the name of the DataGridColumn object. This parameter is the
field of each item to display.

Returns

Nothing.

Description

Constructor; creates a DataGridColumn object. Use this constructor to create columns to add to
a DataGrid component. After you create the DataGridColumn objects, you can add them to a
data grid by calling DataGrid.addColumn().

 Example

The following example creates a DataGridColumn object called Location:
import mx.controls.gridclasses.DataGridColumn;
var column = new DataGridColumn("Location");

DataGridColumn.editable A Boolean value that indicates whether a column is editable
(true) or not (false).

DataGridColumn.headerRenderer The name of a class to be used to display the header of
this column.

DataGridColumn.headerText The text for the header of this column.

DataGridColumn.labelFunction A function that determines which field of an item to display.

DataGridColumn.resizable A Boolean value that indicates whether a column is resizable
(true) or not (false).

DataGridColumn.sortable A Boolean value that indicates whether a column is sortable
(true) or not (false).

DataGridColumn.sortOnHeaderRelease A Boolean value that indicates whether a column is sorted
(true) or not (false) when a user clicks a column header.

DataGridColumn.width The width of a column, in pixels.

Property Description
DataGrid component 165

DataGridColumn.cellRenderer

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).cellRenderer

Description

Property; a linkage identifier for a symbol to be used to display cells in this column. Any class
used for this property must implement the CellRenderer API (see “CellRenderer API” in Flash
Help.) The default value is undefined.

Example

The following example uses a linkage identifier to set a new cell renderer:
myGrid.getColumnAt(3).cellRenderer = "MyCellRenderer";

DataGridColumn.columnName

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).columnName

Description

Property (read-only); the name of the field associated with this column. The default value is the
name called in the DataGridColumn constructor.

Example

The following example assigns the column name of the column at the third index position to the
variable name:
var name = myGrid.getColumnAt(3).columnName;

See also

Constructor for the DataGridColumn class
166 Chapter 2: Components Reference

DataGridColumn.editable

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).editable

Description

Property; determines whether the column can be edited by a user (true) or not (false). The
DataGrid.editable property must be true in order for individual columns to be editable, even
when DataGridColumn.editable is set to true. The default value is true.

Caution: The DataGrid is not editable or sortable if it is bound directly to a WebServiceConnector
component or an XMLConnector component. You must bind the DataGrid component to the
DataSet component and bind the DataSet component to the WebServiceConnector component or
XMLConnector component if you want the grid to be editable or sortable.

Example

The following example prevents the first column in a grid from being edited:
myDataGrid.getColumnAt(0).editable = false;

See also

DataGrid.editable

DataGridColumn.headerRenderer

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).headerRenderer

Description

Property; a string that indicates a class name to be used to display the header of this column. Any
class used for this property must implement the CellRenderer API (see “CellRenderer API” in
Flash Help). The default value is undefined.

Example

The following example uses a linkage identifier to set a new header renderer:
myGrid.getColumnAt(3).headerRenderer = "MyHeaderRenderer";
DataGrid component 167

DataGridColumn.headerText

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).headerText

Description

Property; the text in the column header. The default value is the column name.

This property allows you to display something other than the field name as the header.

Example

The following example sets the column header text to “The Price”:
var myColumn = new DataGridColumn("price");
myColumn.headerText = "The Price";

DataGridColumn.labelFunction

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).labelFunction

Description

Property; specifies a function to determine which field (or field combination) of each item to
display. This function receives one parameter, item, which is the item being rendered, and must
return a string representing the text to display. This property can be used to create virtual columns
that have no equivalent field in the item.

Note: The specified function operates in a nondefined scope.

Example

The following example creates a virtual column:
var myCol = myGrid.addColumn("Subtotal");
myCol.labelFunction = function(item) {

return "$" + (item.price + (item.price * salesTax));
};
168 Chapter 2: Components Reference

DataGridColumn.resizable

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).resizable

Description

Property; a Boolean value that indicates whether a column can be resized by a user (true) or not
(false). The DataGrid.resizableColumns property must be set to true for this property to
take effect. The default value is true.

Example

The following example prevents the column at index 1 from being resized:
myGrid.getColumnAt(1).resizable = false;

DataGridColumn.sortable

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).sortable

Description

Property; a Boolean value that indicates whether a column can be sorted by a user (true) or not
(false). The DataGrid.sortableColumns property must be set to true for this property to take
effect. The default value is true.

Caution: The DataGrid is not editable or sortable if it is bound directly to a WebServiceConnector
component or an XMLConnector component. You must bind the DataGrid component to the
DataSet component and bind the DataSet component to the WebServiceConnector component or
XMLConnector component if you want the grid to be editable or sortable.

Example

The following example prevents the column at index 1 from being sorted:
myGrid.getColumnAt(1).sortable = false;
DataGrid component 169

DataGridColumn.sortOnHeaderRelease

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).sortOnHeaderRelease

Description

Property; a Boolean value that indicates whether the column is sorted automatically (true) or not
(false) when a user clicks a header. This property can be set to true only if
DataGridColumn.sortable is set to true. If DataGridColumn.sortOnHeaderRelease is set to
false, you can catch the headerRelease event and perform your own sort.

The default value is true.

Caution: The DataGrid is not editable or sortable if it is bound directly to a WebServiceConnector
component or an XMLConnector component. You must bind the DataGrid component to the
DataSet component and bind the DataSet component to the WebServiceConnector component or
XMLConnector component if you want the grid to be editable or sortable.

Example

The following example lets you catch the headerRelease event to perform your own sort:
myGrid.getColumnAt(7).sortOnHeaderRelease = false;

DataGridColumn.width

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).width

Description

Property; a number that indicates the width of the column, in pixels. The default value is 50.

Example

The following example makes a column half the default width:
myGrid.getColumnAt(4).width = 25;
170 Chapter 2: Components Reference

DateChooser component

The DateChooser component is a calendar that allows users to select a date. It has buttons that
allow users to scroll through months and click a date to select it. You can set parameters that
indicate the month and day names, the first day of the week, and disabled dates, as well as
highlighting the current date.

A live preview of each DateChooser instance reflects the values indicated by the Property
inspector or Component inspector during authoring.

Using the DateChooser component

The DateChooser can be used anywhere you want a user to select a date. For example, you could
use a DateChooser component in a hotel reservation system with certain dates selectable and
others disabled. You could also use the DateChooser component in an application that displays
current events, such as performances or meetings, when a user chooses a date.

DateChooser parameters

You can set the following authoring parameters for each DateChooser component instance in the
Property inspector or in the Component inspector:

monthNames sets the month names that are displayed in the heading row of the calendar. The
value is an array and the default value is ["January", "February", "March", "April",
"May", "June", "July", "August", "September", "October","November",
"December"].

dayNames sets the names of the days of the week. The value is an array and the default value is
["S", "M", "T", "W", "T", "F", "S"].

firstDayOfWeek indicates which day of the week (0-6, 0 being the first element of the dayNames
array) is displayed in the first column of the date chooser. This property changes the display order
of the day columns.

disabledDays indicates the disabled days of the week. This parameter is an array and can have up
to seven values. The default value is [] (an empty array).

showToday indicates whether to highlight today’s date. The default value is true.

You can write ActionScript to control these and additional options for the DateChooser
component using its properties, methods, and events. For more information, see “DateChooser
class” on page 175.

Creating an application with the DateChooser component

The following procedure explains how to add a DateChooser component to an application while
authoring. In this example, the date chooser allows a user to pick a date for an airline reservation
system. All dates before October 15th must be disabled. Also, a range in December must be
disabled to create a holiday black-out period, and Mondays must be disabled.
DateChooser component 171

To create an application with the DateChooser component:

1. Double-click the DateChooser component in the Components panel to add it to the Stage.

2. In the Property inspector, enter the instance name flightCalendar.

3. In the Actions panel, enter the following code on Frame 1 of the Timeline to set the range of
selectable dates:
flightCalendar.selectableRange = {rangeStart:new Date(2003, 9, 15),

rangeEnd:new Date(2003, 11, 31)}

This code assigns a value to the selectableRange property in an ActionScript object that
contains two Date objects with the variable names rangeStart and rangeEnd. This defines an
upper and lower end of a range in which the user can select a date.

4. In the Actions panel, enter the following code on Frame 1 of the Timeline to set a range of
holiday disabled dates:
flightCalendar.disabledRanges = [{rangeStart: new Date(2003, 11, 15),

rangeEnd: new Date(2003, 11, 26)}];

5. In the Actions panel, enter the following code on Frame 1 of the Timeline to disable Mondays:
flightCalendar.disabledDays=[1];

6. Select Control > Test Movie.

Customizing the DateChooser component

You can transform a DateChooser component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()).

Using styles with the DateChooser component

You can set style properties to change the appearance of a DateChooser instance. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than noncolor
style properties. For more information, see “Using styles to customize component color and text”
in Flash Help.

A DateChooser component supports the following styles:

Style Theme Description

themeColor Halo The glow color for the rollover and selected dates. Possible values are
"haloGreen", "haloBlue", and "haloOrange". The default value is
"haloGreen".

backgroundColor Both The background color. The default value is 0xEFEBEF (light gray).

borderColor Both The border color. The default value is 0x919999.
The DateChooser component uses a solid single-pixel line as its
border. This border cannot be modified through styles or skinning.

headerColor Both The background color for the component heading. The default color is
white.
172 Chapter 2: Components Reference

The DateChooser component uses four categories of text to display the month name, the days of
the week, today’s date, and regular dates. The text style properties set on the DateChooser
component itself control the regular date text and provide defaults for the other text. To set text
styles for specific categories of text, use the following class-level style declarations.

The following example demonstrates how to set the month name and days of the week to a deep
red color.
_global.styles.HeaderDateText.setStyle("color", 0x660000);
_global.styles.WeekDayStyle.setStyle("color", 0x660000);

rollOverColor Both The background color of a rolled-over date. The default value is
0xE3FFD6 (bright green) with the Halo theme and 0xAAAAAA (light
gray) with the Sample theme.

selectionColor Both The background color of the selected date. The default value is
0xCDFFC1 (light green) with the Halo theme and 0xEEEEEE (very
light gray) with the Sample theme.

todayColor Both The background color for the today’s date. The default value is
0x666666 (dark gray).

color Both The text color. The default value is 0x0B333C with the Halo theme
and blank with the Sample theme.

disabledColor Both The color for text when the component is disabled. The default color is
0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in fontFamily
is an embedded font. This style must be set to true if fontFamily refers
to an embedded font. Otherwise, the embedded font will not be used. If
this style is set to true and fontFamily does not refer to an embedded
font, no text will be displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bold". The default value is "none". All
components can also accept the value "normal" in place of "none"
during a setStyle() call, but subsequent calls to getStyle() will return
"none".

textDecoration Both The text decoration: either "none" or "underline". The default value is
"none".

Declaration name Description

HeaderDateText The month name.

WeekDayStyle The days of the week.

TodayStyle Today’s date.

Style Theme Description
DateChooser component 173

Using skins with the DateChooser component

The DateChooser component uses skins to represent the forward and back month buttons and
the today indicator. To skin the DateChooser component while authoring, modify skin symbols
in the Flash UI Components 2/Themes/MMDefault/DateChooser Assets/States folder in the
library of one of the themes FLA files. For more information, see “About skinning components”
in Flash Help.

Only the month scrolling buttons can be dynamically skinned in this component. A
DateChooser component uses the following skin properties:

The button symbols are used exactly as is without applying colors or resizing. The size is
determined by the symbol during authoring.

To create movie clip symbols for DateChooser skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on your
operating system, see “About themes” in Flash Help.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault folder
and drag the DateChooser Assets folder to the library for your document.

4. Expand the DateChooser Assets/States folder in the library of your document.

5. Open the symbols you want to customize for editing.

For example, open the backMonthDown symbol.
6. Customize the symbol as desired.

For example, change the tint of the arrow to red.
7. Repeat steps 5-6 for all symbols you want to customize.

For example, change the tint of the forward arrow down symbol to match the back arrow.
8. Click the Back button to return to the main Timeline.

Property Description

backMonthButtonUpSymbolName The month back button up state. The default value is
backMonthUp.

backMonthButtonDownSymbolName The month back button pressed state. The default value is
backMonthDown.

backMonthButtonDisabledSymbolName The month back button disabled state. The default value is
backMonthDisabled.

fwdMonthButtonUpSymbolName The month forward button up state. The default value is
fwdMonthUp.

fwdMonthButtonDownSymbolName The month forward button pressed state. The default value
is fwdMonthDown.

fwdMonthButtonDisabledSymbolName The month forward button disabled state. The default value
is fwdMonthDisabled.
174 Chapter 2: Components Reference

9. Drag a DateChooser component to the Stage.

10. Select Control > Test Movie.

Note: The DateChooser Assets/States folder also has a Day Skins folder with a single skin element,
cal_todayIndicator. This element can be modified during authoring to customize the today indicator.
However, it cannot be changed dynamically on a particular DateChooser instance to use a different
symbol. In addition, the cal_todayIndicator symbol must be a solid single-color graphic, because the
DateChooser component will apply the todayColor color to the graphic as a whole. The graphic may
have cut-outs, but keep in mind that the default text color for today’s date is white and the default
background for the DateChooser is white, so a cut-out in the middle of the today indicator skin
element would make today’s date unreadable unless either the background color or today text color is
also changed.

DateChooser class

Inheritance MovieClip > UIObject class > UIComponent class > DateChooser

ActionScript Class Name mx.controls.DateChooser

The properties of the DateChooser class let you access the selected date and the displayed month
and year. You can also set the names of the days and months, indicate disabled dates and selectable
dates, set the first day of the week, and indicate whether the current date should be highlighted.

Setting a property of the DateChooser class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component inspector.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.controls.DateChooser.version);

Note: The code trace(myDC.version); returns undefined.

Method summary for the DateChooser class

There are no methods exclusive to the DateChooser class.

Methods inherited from the UIObject class

The following table lists the methods the DateChooser class inherits from the UIObject class.
When calling these methods from the DateChooser object, use the form
dateChooserInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.
DateChooser component 175

Methods inherited from the UIComponent class

The following table lists the methods the DateChooser class inherits from the UIComponent
class. When calling these methods from the DateChooser object, use the form
dateChooserInstance.methodName.

Property summary for the DateChooser class

The following table lists the properties that are exclusive to the DateChooser class.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

DateChooser.dayNames An array indicating the names of the days of the week.

DateChooser.disabledDays An array indicating the days of the week that are disabled for all
applicable dates in the date chooser.

DateChooser.disabledRanges A range of disabled dates or a single disabled date.

DateChooser.displayedMonth A number indicating an element in the monthNames array to display in
the date chooser.

DateChooser.displayedYear A number indicating the year to display.

DateChooser.firstDayOfWeek A number indicating an element in the dayNames array to display in
the first column of the date chooser.

DateChooser.monthNames An array of strings indicating the month names.

DateChooser.selectableRange A single selectable date or a range of selectable dates.

DateChooser.selectedDate A Date object indicating the selected date.

DateChooser.showToday A Boolean value indicating whether the current date is highlighted.

Method Description
176 Chapter 2: Components Reference

Properties inherited from the UIObject class

The following table lists the properties the DateChooser class inherits from the UIObject class.
When accessing these properties from the DateChooser object, use the form
dateChooserInstance.propertyName.

Properties inherited from the UIComponent class

The following table lists the properties the DateChooser class inherits from the UIComponent
class. When accessing these properties from the DateChooser object, use the form
dateChooserInstance.propertyName.

Event summary for the DateChooser class

The following table lists the events that are exclusive to the DateChooser class.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event Description

DateChooser.change Broadcast when a date is selected.

DateChooser.scroll Broadcast when the month buttons are clicked.
DateChooser component 177

Events inherited from the UIObject class

The following table lists the events the DateChooser class inherits from the UIObject class.

Events inherited from the UIComponent class

The following table lists the events the DateChooser class inherits from the UIComponent class.

DateChooser.change

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
on(change){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

...
}
chooserInstance.addEventListener("change", listenerObject)

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
178 Chapter 2: Components Reference

Description

Event; broadcast to all registered listeners when a date is selected.

The first usage example uses an on() handler and must be attached directly to a DateChooser
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the date chooser myDC, sends
“_level0.myDC” to the Output panel:
on(change){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(chooserInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
DateChooser instance called myDC is changed. The first line of code creates a listener object called
form. The second line defines a function for the change event on the listener object. Inside the
function is a trace() statement that uses the event object that is automatically passed to the
function, in this example eventObj, to generate a message. The target property of an event
object is the component that generated the event (in this example, myDC). The
NumericStepper.maximum property is accessed from the event object’s target property. The last
line calls EventDispatcher.addEventListener() from myDC and passes it the change event
and the form listener object as parameters.
form.change = function(eventObj){
 trace("date selected " + eventObj.target.selectedDate);
}
myDC.addEventListener("change", form);

DateChooser.dayNames

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.
DateChooser component 179

Usage

myDC.dayNames

Description

Property; an array containing the names of the days of the week. Sunday is the first day (at index
position 0) and the rest of the day names follow in order. The default value is ["S", "M", "T",
"W", "T", "F", "S"].

Example

The following example changes the value of the fifth day of the week (Thursday) from “T” to
“R”:
myDC.dayNames[4] = "R";

DateChooser.disabledDays

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDC.disabledDays

Description

Property; an array indicating the disabled days of the week. All the dates in a month that fall on
the specified day are disabled. The elements of this array can have values from 0 (Sunday) to 6
(Saturday). The default value is [] (an empty array).

Example

The following example disables Sundays and Saturdays so that users can select only weekdays:
myDC.disabledDays = [0, 6];

DateChooser.disabledRanges

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDC.disabledRanges
180 Chapter 2: Components Reference

Description

Property; disables a single day or a range of days. This property is an array of objects. Each object
in the array must be either a Date object that specifies a single day to disable, or an object that
contains either or both of the properties rangeStart and rangeEnd, each of whose value must be
a Date object. The rangeStart and rangeEnd properties describe the boundaries of the date
range. If either property is omitted, the range is unbounded in that direction.

The default value of disabledRanges is undefined.

Specify a full date when you define dates for the disabledRanges property. For example, specify
new Date(2003,6,24) rather than new Date(). If you don’t specify a full date, the time returns
as 00:00:00.

Example

The following example defines an array with rangeStart and rangeEnd Date objects that disable
the dates between May 7 and June 7:
myDC.disabledRanges = [{rangeStart: new Date(2003, 4, 7), rangeEnd: new

Date(2003, 5, 7)}];

The following example disables all dates after November 7:
myDC.disabledRanges = [{rangeStart: new Date(2003, 10, 7)}];

The following example disables all dates before October 7:
myDC.disabledRanges = [{rangeEnd: new Date(2002, 9, 7)}];

The following example disables only December 7:
myDC.disabledRanges = [new Date(2003, 11, 7)];

DateChooser.displayedMonth

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDC.displayedMonth

Description

Property; a number indicating which month is displayed. The number indicates an element in
the monthNames array, with 0 being the first month. The default value is the month of the
current date.

Example

The following example sets the displayed month to December:
myDC.displayedMonth = 11;
DateChooser component 181

See also

DateChooser.displayedYear

DateChooser.displayedYear

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDC.displayedYear

Description

Property; a four-digit number indicating which year is displayed. The default value is the
current year.

Example

The following example sets the displayed year to 2010:
myDC.displayedYear = 2010;

See also

DateChooser.displayedMonth

DateChooser.firstDayOfWeek

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDC.firstDayOfWeek

Description

Property; a number indicating which day of the week (0-6, 0 being the first element of the
dayNames array) is displayed in the first column of the DateChooser component. Changing this
property changes the order of the day columns but has no effect on the order of the dayNames
property. The default value is 0 (Sunday).

Example

The following example sets the first day of the week to Monday:
myDC.firstDayOfWeek = 1;
182 Chapter 2: Components Reference

See also

DateChooser.dayNames

DateChooser.monthNames

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDC.monthNames

Description

Property; an array of strings indicating the month names at the top of the DateChooser
component. The default value is ["January", "February", "March", "April", "May",
"June", "July", "August", "September", "October", "November", "December"].

Example

The following example sets the month names for the instance myDC:
 myDC.monthNames = ["Jan", "Feb","Mar","Apr", "May", "June","July", "Aug",

"Sept","Oct", "Nov", "Dec"];

DateChooser.scroll

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
on(scroll){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.scroll = function(eventObject){

...
}
myDC.addEventListener("scroll", listenerObject)

Description

Event; broadcast to all registered listeners when a month button is clicked.
DateChooser component 183

The first usage example uses an on() handler and must be attached directly to a DateChooser
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the date chooser myDC, sends
“_level0.myDC” to the Output panel:
on(scroll){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance (myDC)
dispatches an event (in this case, scroll) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is triggered.
When the event is triggered, it automatically passes an event object (eventObject) to the listener
object method. Each event object has properties that contain information about the event. You
can use these properties to write code that handles the event. The scroll event’s event object has an
additional property, detail, that can have one of the following values: nextMonth,
previousMonth, nextYear, previousYear.

Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
month button is clicked on a DateChooser instance called myDC. The first line of code creates a
listener object called form. The second line defines a function for the scroll event on the listener
object. Inside the function is a trace() statement that uses the event object that is automatically
passed to the function, in this example eventObj, to generate a message. The target property of
an event object is the component that generated the event—in this example, myDC. The last line
calls EventDispatcher.addEventListener() from myDC and passes it the scroll event and the
form listener object as parameters.
form = new Object();
form.scroll = function(eventObj){
 trace(eventObj.detail);
}
myDC.addEventListener("scroll", form);

DateChooser.selectableRange

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.
184 Chapter 2: Components Reference

Usage

myDC.selectableRange

Description

Property; sets a single selectable date or a range of selectable dates. The user cannot scroll beyond
the selectable range. The value of this property is an object that consists of two Date objects
named rangeStart and rangeEnd. The rangeStart and rangeEnd properties designate the
boundaries of the selectable date range. If only rangeStart is defined, all the dates after
rangeStart are enabled. If only rangeEnd is defined, all the dates before rangeEnd are enabled.
The default value is undefined.

If you want to enable only a single day, you can use a single Date object as the value of
selectableRange.

Specify a full date when you define dates—for example, new Date(2003,6,24) rather than new
Date(). If you don’t specify a full date, the time returns as 00:00:00.

The value of DateChooser.selectedDate is set to undefined if it falls outside the
selectable range.

The values of DateChooser.displayedMonth and DateChooser.displayedYear are set to the
the nearest last month in the selectable range if the current month falls outside the selectable
range. For example, if the current displayed month is August, and the selectable range is from
June 2003 to July,2003, the displayed month will change to July 2003.

Example

The following example defines the selectable range as the dates between and including May 7 and
June 7:
myDC.selectableRange = {rangeStart: new Date(2001, 4, 7), rangeEnd: new

Date(2003, 5, 7)};

The following example defines the selectable range as the dates after and including May 7:
myDC.selectableRange = {rangeStart: new Date(2003, 4, 7)};

The following example defines the selectable range as the dates before and including June 7:
myDC.selectableRange = {rangeEnd: new Date(2003, 5, 7)};

The following example defines the selectable date as June 7 only:
myDC.selectableRange = new Date(2003, 5, 7);

DateChooser.selectedDate

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDC.selectedDate
DateChooser component 185

Description

Property; a Date object that indicates the selected date if that value falls within the value of the
selectableRange property. The default value is undefined.

You cannot set the selectedDate property within a disabled range, outside a selectable range, or
on a day that has been disabled. If this property is set to one of these dates, the value is
undefined.

Example

The following example sets the selected date to June 7:
myDC.selectedDate = new Date(2003, 5, 7);

DateChooser.showToday

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDC.showToday

Description

Property; a Boolean value that determines whether the current date is highlighted. The default
value is true.

Example

The following example turns off the highlighting on today’s date:
myDC.showToday = false;

DateField component

The DateField component is a nonselectable text field that displays the date with a calendar icon
on its right side. If no date has been selected, the text field is blank and the month of today’s date
is displayed in the date chooser. When a user clicks anywhere inside the bounding box of the date
field, a date chooser pops up and displays the dates in the month of the selected date. When the
date chooser is open, users can use the month scroll buttons to scroll through months and years
and select a date. When a date is selected, the date chooser closes.

The live preview of the DateField does not reflect the values indicated by the Property inspector
or Component inspector during authoring, because it is a pop-up component that is not visible
during authoring.
186 Chapter 2: Components Reference

Using the DateField component

The DateField component can be used anywhere you want a user to select a date. For example,
you could use a DateField component in a hotel reservation system with certain dates selectable
and others disabled. You could also use the DateField component in an application that displays
current events, such as performances or meetings, when a user chooses a date.

DateField parameters

You can set the following authoring parameters for each DateField component instance in the
Property inspector or in the Component inspector:

monthNames sets the month names that are displayed in the heading row of the calendar. The
value is an array and the default value is ["January", "February", "March", "April",
"May", "June", "July", "August", "September", "October","November",
"December"].

dayNames sets the names of the days of the week. The value is an array and the default value is
["S", "M", "T", "W", "T", "F", "S"].

firstDayOfWeek indicates which day of the week (0-6, 0 being the first element of dayNames
array) is displayed in the first column of the date chooser. This property changes the display order
of the day columns.

The default value is 0, which is "S".

disabledDays indicates the disabled days of the week. This parameter is an array and can have up
to seven values. The default value is [] (an empty array).

showToday indicates whether to highlight today’s date. The default value is true.

You can write ActionScript to control these and additional options for the DateField component
using its properties, methods, and events. For more information, see “DateField class”
on page 191.

Creating an application with the DateField component

The following procedure explains how to add a DateField component to an application while
authoring. In this example, the DateField component allows a user to pick a date for an airline
reservation system. All dates before today’s date must be disabled. Also, a 15-day range in
December must be disabled to create a holiday black-out period. Also, some flights are not
available on Mondays, so all Mondays must be disabled for those flights.

To create an application with the DateField component:

1. Double-click the DateField component in the Components panel to add it to the Stage.

2. In the Property inspector, enter the instance name flightCalendar.
DateField component 187

3. In the Actions panel, enter the following code on Frame 1 of the Timeline to set the range of
selectable dates:
flightCalendar.selectableRange = {rangeStart:new Date(2001, 9, 1),

rangeEnd:new Date(2003, 11, 1)};

This code assigns a value to the selectableRange property in an ActionScript object that
contains two Date objects with the variable names rangeStart and rangeEnd. This defines an
upper and lower end of a range within which the user can select a date.

4. In the Actions panel, enter the following code on Frame 1 of the Timeline to set the ranges of
disabled dates, one during December, and one for all dates before the current date:
flightCalendar.disabledRanges = [{rangeStart: new Date(2003, 11, 15),

rangeEnd: new Date(2003, 11, 31)}, {rangeEnd: new Date(2003, 6, 16)}];

5. In the Actions panel, enter the following code on Frame 1 of the Timeline to disable Mondays:
flightCalendar.disabledDays=[1];

6. Control > Test Movie.

Customizing the DateField component

You can transform a DateField component horizontally while authoring and at runtime. While
authoring, select the component on the Stage and use the Free Transform tool or any
of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()). Setting the width does not change the dimensions of the date chooser in
the DateField component. However, you can use the pullDown property to access the
DateChooser component and set its dimensions.

Using styles with the DateField component

You can set style properties to change the appearance of a date field instance. If the name of a style
property ends in “Color”, it is a color style property and behaves differently than noncolor style
properties. For more information, see “Using styles to customize component color and text” in
Flash Help.

The DateField component supports the following styles:

Style Theme Description

themeColor Halo The glow color for the rollover and selected dates. Possible
values are "haloGreen", "haloBlue", and "haloOrange". The
default value is "haloGreen"

backgroundColor Both The background color. The default value is 0xEFEBEF (light
gray).

borderColor Both The border color. The default value is 0x919999.

The DateField component’s drop-down list uses a solid
single-pixel line as its border. This border cannot be modified
through styles or skinning.
188 Chapter 2: Components Reference

The DateField component uses four categories of text to display the month name, the days of the
week, today’s date, and regular dates. The text style properties set on the DateField component
itself control the regular date text and the text displayed in the collapsed state, and provide
defaults for the other text. To set text styles for specific categories of text, use the following class-
level style declarations.

headerColor Both The background color for the drop-down heading. The default
color is white.

rollOverColor Both The background color of a rolled-over date. The default value
is 0xE3FFD6 (bright green) with the Halo theme and
0xAAAAAA (light gray) with the Sample theme.

selectionColor Both The background color of the selected date. The default value
is a 0xCDFFC1 (light green) with the Halo theme and
0xEEEEEE (very light gray) with the Sample theme.

todayColor Both The background color for the today’s date. The default value is
0x666666 (dark gray).

color Both The text color. The default value is 0x0B333C with the Halo
theme and blank with the Sample theme.

disabledColor Both The color for text when the component is disabled. The default
color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to
true if fontFamily refers to an embedded font. Otherwise, the
embedded font will not be used. If this style is set to true and
fontFamily does not refer to an embedded font, no text will be
displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bold". The default value
is "none". All components can also accept the value "normal"
in place of "none" during a setStyle() call, but subsequent
calls to getStyle() will return "none".

textDecoration Both The text decoration: either "none" or "underline". The default
value is "none".

Declaration name Description

HeaderDateText The month name.

WeekDayStyle The days of the week.

TodayStyle Today’s date.

Style Theme Description
DateField component 189

The following example demonstrates how to set the month name and days of the week to a deep
red color.
_global.styles.HeaderDateText.setStyle("color", 0x660000);
_global.styles.WeekDayStyle.setStyle("color", 0x660000);

Using skins with the DateField component

The DateField component uses skins to represent the visual states of the pop-up icon, a
RectBorder instance for the border around the text input, and a DateChooser instance for the
pop-up. To skin the pop-up icon while authoring, modify skin symbols in the Flash UI
Components 2/Themes/MMDefault/DateField Assets/States folder in the library of one of the
themes FLA files. For more information, see “About skinning components” in Flash Help. For
information about skinning the RectBorder and DateChooser instances, see “RectBorder class” in
Flash Help and “Using skins with the DateChooser component” on page 174.

Besides the skins used by the subcomponents mentioned above, a DateField component uses the
following skin properties to dynamically skin the pop-up icon:

To create movie clip symbols for DateField skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on your
operating system, see “About themes” in Flash Help.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault folder
and drag the DateField Assets folder to the library for your document.

4. Expand the DateField Assets folder in the library of your document.

5. Ensure that the DateFieldAssets symbol is selected for Export in First Frame.

6. Expand the DateField Assets/States folder in the library of your document.

7. Open the symbols you want to customize for editing.

For example, open the openIconUp symbol.
8. Customize the symbol as desired.

For example, draw a down arrow over the calendar image.
9. Repeat steps 7-8 for all symbols you want to customize.

For example, draw a down arrow over all of the symbols.
10. Click the Back button to return to the main Timeline.

Property Description

openDateUp The up state of the pop-up icon.

openDateDown The down state of the pop-up icon.

openDateOver The over state of the pop-up icon.

openDateDisabled The disabled state of the pop-up icon.
190 Chapter 2: Components Reference

11. Drag a DateField component to the Stage.

12. Select Control > Test Movie.

DateField class

Inheritance MovieClip > UIObject class > UIComponent class > ComboBase > DateField

ActionScript Class Name mx.controls.DateField

The properties of the DateField class let you access the selected date and the displayed month and
year. You can also set the names of the days and months, indicate disabled dates and selectable
dates, set the first day of the week, and indicate whether the current date should be highlighted.

Setting a property of the DateField class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component inspector.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.controls.DateField.version);

Note: The code trace(myDateFieldInstance.version); returns undefined.

Method summary for the DateField class

The following table lists methods of the DateField class.

Methods inherited from the UIObject class

The following table lists the methods the DateField class inherits from the UIObject class. When
calling these methods from the DateField object, use the form
dateFieldInstance.methodName.

Method Description

DateField.close() Closes the pop-up DateChooser subcomponent.

DateField.open() Opens the pop-up DateChooser subcomponent.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.
DateField component 191

Methods inherited from the UIComponent class

The following table lists the methods the DateField class inherits from the UIComponent class.
When calling these methods from the DateField object, use the form
dateFieldInstance.methodName.

Property summary for the DateField class

The following table lists properties of the DateField class.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

DateField.dateFormatter A function that formats the date to be displayed in the text field.

DateField.dayNames An array indicating the names of the days of the week.

DateField.disabledDays An array indicating the disabled days of the week.

DateField.disabledRanges A range of disabled dates or a single disabled date.

DateField.displayedMonth A number indicating which element in the monthNames array to
display.

DateField.displayedYear A number indicating the year to display.

DateField.firstDayOfWeek A number indicating an element in the dayNames array to display in
the first column of the DateField component.

DateField.monthNames An array of strings indicating the month names.

DateField.pullDown A reference to the DateChooser subcomponent. This property is
read-only.

DateField.selectableRange A single selectable date or a range of selectable dates.

DateField.selectedDate A Date object indicating the selected date.

DateField.showToday A Boolean value indicating whether the current date is highlighted.

Method Description
192 Chapter 2: Components Reference

Properties inherited from the UIObject class

The following table lists the properties the DateField class inherits from the UIObject class.
When accessing these properties from the DateField object, use the form
dateFieldInstance.propertyName.

Properties inherited from the UIComponent class

The following table lists the properties the DateField class inherits from the UIComponent class.
When accessing these properties from the DateField object, use the form
dateFieldInstance.propertyName.

Event summary for the DateField class

The following table lists events of the DateField class.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event Description

DateField.change Broadcast when a date is selected.

DateField.close Broadcast when the DateChooser subcomponent closes.
DateField component 193

Events inherited from the UIObject class

The following table lists the events the DateField class inherits from the UIObject class.

Events inherited from the UIComponent class

The following table lists the events the DateField class inherits from the UIComponent class.

DateField.change

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
on(change){

...
}

DateField.open Broadcast when the DateChooser subcomponent opens.

DateField.scroll Broadcast when the month buttons are clicked.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description
194 Chapter 2: Components Reference

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

...
}
myDF.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners when a date is selected.

The first usage example uses an on() handler and must be attached directly to a DateField
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the date field myDF, sends
“_level0.myDF” to the Output panel:
on(change){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance (myDF)
dispatches an event (in this case, change) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is triggered.
When the event is triggered, it automatically passes an event object (eventObject) to the listener
object method. Each event object has properties that contain information about the event. You
can use these properties to write code that handles the event. Finally, you call the
EventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
date field called myDF is changed. The first line of code creates a listener object called form. The
second line defines a function for the change event on the listener object. Inside the function is a
trace() statement that uses the event object that is automatically passed to the function, in this
example eventObj, to generate a message. The target property of an event object is the
component that generated the event—in this example, myDF. The DateField.selectedDate
property is accessed from the event object’s target property. The last line calls
EventDispatcher.addEventListener() from myDF and passes it the change event and the
form listener object as parameters.
function change(eventObj){
 trace("date selected " + eventObj.target.selectedDate) ;
}
myDF.addEventListener("change", this);
DateField component 195

DateField.close()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDF.close()

Parameters

None.

Returns

Nothing.

Description

Method; closes the pop-up menu.

Example

The following code closes the date chooser pop-up of the myDF date field instance:
myDF.close();

DateField.close

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
on(close){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.close = function(eventObject){

...
}
myDF.addEventListener("close", listenerObject)

Description

Event; broadcast to all registered listeners when the DateChooser subcomponent closes after a
user clicks outside the icon or selects a date.
196 Chapter 2: Components Reference

The first usage example uses an on() handler and must be attached directly to a DateField
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the date field myDF, sends
“_level0.myDF” to the Output panel:
on(close){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance (myDF)
dispatches an event (in this case, close) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is triggered.
When the event is triggered, it automatically passes an event object (eventObject) to the listener
object method. Each event object has properties that contain information about the event. You
can use these properties to write code that handles the event. Finally, you call the
EventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when the
date chooser in myDF closes. The first line of code creates a listener object called form. The second
line defines a function for the close event on the listener object. Inside the function is a trace()
statement that uses the event object that is automatically passed to the function, in this example
eventObj, to generate a message. The target property of an event object is the component that
generated the event—in this example, myDF. The property is accessed from the event object’s
target property. The last line calls EventDispatcher.addEventListener() from myDF and
passes it the close event and the form listener object as parameters.
form.close = function(eventObj){

trace("PullDown Closed" + eventObj.target.selectedDate);
}
myDF.addEventListener("close", form);

DateField.dateFormatter

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDF.dateFormatter
DateField component 197

Description

Property; a function that formats the date to be displayed in the text field. The function must
receive a Date object as parameter, and return a string in the format to be displayed.

Example

The following example sets the function to return the format of the date to be displayed:
myDF.dateFormatter = function(d:Date){

return d.getFullYear()+"/ "+(d.getMonth()+1)+"/ "+d.getDate();
};

DateField.dayNames

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDF.dayNames

Description

Property; an array containing the names of the days of the week. Sunday is the first day (at index
position 0) and the other day names follow in order. The default value is ["S", "M", "T", "W",
"T", "F", "S"].

Example

The following example changes the value of the fifth day of the week (Thursday) from “T” to
“R”:
myDF.dayNames[4] = "R";

DateField.disabledDays

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDF.disabledDays

Description

Property; an array indicating the disabled days of the week. All the dates in a month that fall on
the specified day are disabled. The elements of this array can have values between 0 (Sunday) and
6 (Saturday). The default value is [] (an empty array).
198 Chapter 2: Components Reference

Example

The following example disables Sundays and Saturdays so that users can select only weekdays:
myDF.disabledDays = [0, 6];

DateField.disabledRanges

Availability

Flash Player 6 (6.0 79.0).

Edition

 Flash MX Professional 2004.

Usage

myDF.disabledRanges

Description

Property; disables a single day or a range of days. This property is an array of objects. Each object
in the array must be either a Date object specifying a single day to disable, or an object containing
either or both of the properties rangeStart and rangeEnd, each of whose value must be a Date
object. The rangeStart and rangeEnd properties describe the boundaries of the date range. If
either property is omitted, the range is unbounded in that direction.

The default value of disabledRanges is undefined.

Specify a full date when you define dates for the disabledRanges property—for example, new
Date(2003,6,24) rather than new Date(). If you don’t specify a full date, the time returns as
00:00:00.

Example

The following example defines an array with rangeStart and rangeEnd Date objects that disable
the dates between May 7 and June 7:
myDF.disabledRanges = [{rangeStart: new Date(2003, 4, 7), rangeEnd: new

Date(2003, 5, 7)}];

The following example disables all dates after November 7:
myDF.disabledRanges = [{rangeStart: new Date(2003, 10, 7)}];

The following example disables all dates before October 7:
myDF.disabledRanges = [{rangeEnd: new Date(2002, 9, 7)}];

The following example disables only December 7:
myDF.disabledRanges = [new Date(2003, 11, 7)];
DateField component 199

DateField.displayedMonth

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDF.displayedMonth

Description

Property; a number indicating which month is displayed. The number indicates an element in
the monthNames array, with 0 being the first month. The default value is the month of the
current date.

Example

The following example sets the displayed month to December:
myDF.displayedMonth = 11;

See also

DateField.displayedYear

DateField.displayedYear

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDF.displayedYear

Description

Property; a number indicating which year is displayed. The default value is the current year.

Example

The following example sets the displayed year to 2010:
myDF.displayedYear = 2010;

See also

DateField.displayedMonth
200 Chapter 2: Components Reference

DateField.firstDayOfWeek

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDF.firstDayOfWeek

Description

Property; a number indicating which day of the week (0-6, 0 being the first element of the
dayNames array) is displayed in the first column of the DateField component. Changing this
property changes the order of the day columns but has no effect on the order of the dayNames
property. The default value is 0 (Sunday).

Example

The following example sets the first day of the week to Monday:
myDF.firstDayOfWeek = 1;

See also

DateField.dayNames

DateField.monthNames

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDF.monthNames

Description

Property; an array of strings indicating the month names at the top of the DateField component.
The default value is ["January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"].

Example

The following example sets the month names for the instance myDF:
myDF.monthNames = ["Jan", "Feb","Mar","Apr", "May", "June","July", "Aug",

"Sept","Oct", "Nov", "Dec"];
DateField component 201

DateField.open()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDF.open()

Parameters

None.

Returns

Nothing.

Description

Method; opens the pop-up DateChooser subcomponent.

Example

The following code opens the pop-up date chooser of the df instance:
df.open();

DateField.open

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
on(open){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.open = function(eventObject){

...
}
myDF.addEventListener("open", listenerObject)

Description

Event; broadcast to all registered listeners when a DateChooser subcomponent opens after a user
clicks on the icon.
202 Chapter 2: Components Reference

The first usage example uses an on() handler and must be attached directly to a DateField
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the date field myDF, sends
“_level0.myDF” to the Output panel:
on(open){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance (myDF)
dispatches an event (in this case, open) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is triggered.
When the event is triggered, it automatically passes an event object (eventObject) to the listener
object method. Each event object has properties that contain information about the event. You
can use these properties to write code that handles the event. Finally, you call the
EventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
date field called myDF is opened. The first line of code creates a listener object called form. The
second line defines a function for the open event on the listener object. Inside the function is a
trace() statement that uses the event object that is automatically passed to the function, in this
example eventObj, to generate a message. The target property of an event object is the
component that generated the event—in this example, myDF. The DateField.selectedDate
property is accessed from the event object’s target property. The last line calls
EventDispatcher.addEventListener() from myDF and passes it the open event and the form
listener object as parameters.
form.open = function(eventObj){
 trace("Pop-up opened and date selected is " +

eventObj.target.selectedDate) ;
}
myDF.addEventListener("open", form);

DateField.pullDown

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDF.pullDown
DateField component 203

Description

Property (read-only); a reference to the DateChooser component contained by the DateField
component. The DateChooser subcomponent is instantiated when a user clicks on the DateField
component. However, if the pullDown property is referenced before the user clicks on the
component, the DateChooser is instantiated and then hidden.

Example

The following example sets the visibility of the DateChooser subcomponent to false and then
sets the size of the DateChooser subcomponent to 300 pixels high and 300 pixels wide:
myDF.pullDown._visible = false;
myDF.pullDown.setSize(300,300);

DateField.scroll

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
on(scroll){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.scroll = function(eventObject){

...
}
myDF.addEventListener("scroll", listenerObject)

Description

Event; broadcast to all registered listeners when a month button is clicked.

The first usage example uses an on() handler and must be attached directly to a DateField
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the date field myDF, sends
“_level0.myDF” to the Output panel:
on(scroll){

trace(this);
}

204 Chapter 2: Components Reference

The second usage example uses a dispatcher/listener event model. A component instance (myDF)
dispatches an event (in this case, scroll) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is triggered.
When the event is triggered, it automatically passes an event object (eventObject) to the listener
object method. Each event object has properties that contain information about the event. You
can use these properties to write code that handles the event. The scroll event’s event object has an
additional property, detail, that can have one of the following values: nextMonth,
previousMonth, nextYear, previousYear.

Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
user clicks a month button on a DateField instance called myDF. The first line of code creates a
listener object called form. The second line defines a function for the scroll event on the listener
object. Inside the function is a trace() statement that uses the event object that is automatically
passed to the function, in this example eventObj, to generate a message. The target property of
an event object is the component that generated the event—in this example, myDF. The last line
calls EventDispatcher.addEventListener() from myDF and passes it the scroll event and the
form listener object as parameters.
form = new Object();
form.scroll = function(eventObj){
 trace(eventObj.detail);
}
myDF.addEventListener("scroll", form);

DateField.selectableRange

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDF.selectableRange

Description

Property; sets a single selectable date or a range of selectable dates. The value of this property is an
object that consists of two Date objects named rangeStart and rangeEnd. The rangeStart and
rangeEnd properties designate the boundaries of the selectable date range. If only rangeStart is
defined, all the dates after rangeStart are enabled. If only rangeEnd is defined, all the dates
before rangeEnd are enabled. The default value is undefined.
DateField component 205

If you want to enable only a single day, you can use a single Date object as the value of
selectableRange.

Specify a full date when you define dates—for example, new Date(2003,6,24) rather than new
Date(). If you don’t specify a full date, the time returns as 00:00:00.

The value of DateField.selectedDate is set to undefined if it falls outside the selectable range.

The values of DateField.displayedMonth and DateField.displayedYear are set to the
nearest last month in the selectable range if the current month falls outside the selectable range.
For example, if the current displayed month is August, and the selectable range is from June 2003
to July 2003, the displayed month will change to July 2003.

Example

The following example defines the selectable range as the dates between and including May 7 and
June 7:
myDF.selectableRange = {rangeStart: new Date(2001, 4, 7), rangeEnd: new

Date(2003, 5, 7)};

The following example defines the selectable range as the dates after and including May 7:
myDF.selectableRange = {rangeStart: new Date(2003, 4, 7)};

The following example defines the selectable range as the dates before and including June 7:
myDF.selectableRange = {rangeEnd: new Date(2003, 5, 7)};

The following example defines the selectable date as June 7 only:
myDF.selectableRange = new Date(2003, 5, 7);

DateField.selectedDate

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDF.selectedDate

Description

Property; a Date object that indicates the selected date if that value falls within the value of the
selectableRange property. The default value is undefined.

Example

The following example sets the selected date to June 7:
myDF.selectedDate = new Date(2003, 5, 7);
206 Chapter 2: Components Reference

DateField.showToday

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDF.showToday

Description

Property; a Boolean value that determines whether the current date is highlighted. The default
value is true.

Example

The following example turns off the highlighting on today’s date:
myDF.showToday = false;

DialogBox component

The DialogBox component provides you with a simple dialog box to use in your applications. It
also offers a pop-up menu to let you switch among different movie clips within the same dialog
box. For example, you could use the DialogBox component to create a Preferences dialog box for
your application. The selectable Preferences menu could contain Basic and Advanced preferences.

The following figure shows an example of a Preferences dialog box that can switch to contain the
General Settings and Manage Feeds movie clips.
DialogBox component 207

Using the DialogBox component

The DialogBox component uses item objects to build its content. Each item object is an instance
of the Object class and contains two properties: label, a string that is the label in the pop-up
menu, and data, a string or linkage ID to the content movie clip. These item objects are stored in
the data provider for the component. You can access this data provider using:

• MDialogBox.getDataProvider().someDataProviderAPIMethod();
• MDialogBox.setDataProvider(someNewDataProviderInstance);
• MDialogBox.someDataProviderAPIMethod();

The DialogBox component can be used to create a modal or non-modal dialog box. To create a
modal dialog box, set the Modal Dialog parameter to true, and attach the DialogBox component
to the outermost Timeline (effective _root).

Use the DialogBox component only when a specific sequence of operations is not required.

DialogBox parameters

You can set the following parameters for each instance of the DialogBox component:

Grow From Sets the origin point from which the dialog box expands. Possible values are left,
right, or middle.

Modal Dialog Specifies whether to make the dialog box modal (true) or non-modal (false). If
you set this value to true, attach the dialog box to the outermost Timeline (effective _root).
Modal dialog boxes must be dismissed by the user (for example, by clicking OK, Cancel, or a
close button) before focus can shift outside the dialog box. Non-modal dialog boxes let the user
shift focus without dismissing the dialog box.

Show Close Button Shows (true) or hides (false) the close button in the upper right corner
of the dialog box.

Gutter Sets the amount of space, in pixels, around the content movie clip.

Single Content Linkage ID Specifies the linkage ID of the content movie clip. Use this
parameter only if you have only one movie clip for your dialog box.

Title Sets the title of the DialogBox component, which appears in the title bar.

Labels Specifies a list of item labels for the pop-up menu display.

Data (Linkage IDs) Specifies a list of item linkage IDs for the content movie clips. Use this
parameter if you have multiple movie clips for your dialog box.

Minimum Width Sets the minimum width (in pixels) for resize events.

Minimum Height Sets the minimum height (in pixels) for resize events.
208 Chapter 2: Components Reference

About DialogBox states

The DialogBox component has no states.

Method summary for the DialogBox component

The following table summarizes the methods for the MDialogBox component:

Method Description

MDialogBox.doClose() Initiates a close event and hides the dialog box.

MDialogBox.doOpen() Opens a dialog box instance.

MDialogBox.getContent() Returns a reference to the currently selected content movie
clip.

MDialogBox.getDataProvider() Returns a reference to the current data provider.

MDialogBox.getSelectedContent() Returns a reference to the currently selected content movie
clip.

MDialogBox.getSelectedIndex() Returns the index of the currently selected item.

MDialogBox.getSelectedItem() Returns the currently selected item.

MDialogBox.setDataProvider() Sets the current data provider and updates the screen
accordingly.

MDialogBox.setSelectedByData() Sets the selected item based on a data property

MDialogBox.setSelectedByID() Sets the selected item based on an ID property

MDialogBox.setSelectedByKey() Sets the selected item based on a key-value pair match.

MDialogBox.setSelectedByLabel() Sets the selected item based on a label property.

MDialogBox.setSelectedIndex() Sets the selected item based on the index number passed in.

MDialogBox.setSelectedItem() Sets the selected item equal to the item passed in.The item
should be retrieved from the data provider.

MDialogBox.setSelectedNextIndex() Sends the dialog box to the next content item. If the content is
at the last item, then the first item appears.

MDialogBox.setSelectedPrevIndex() Sends the dialog box to the previous content item. If the
content is at the first item, then the last item appears.

MDialogBox.setSize() Sets the width and height of the dialog box and the number of
frames it takes to tween to that size.

MDialogBox.setTitle() Sets the title of the dialog box that appears in the title bar.

MDialogBox.showClose() Sets whether the close button is shown (true) or hidden
(false).
DialogBox component 209

Event summary for the MDialogBox component

The following table summarizes the events for the MDialogBox component.

MDialogBox.doClose()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.doClose()

Parameters

None.

Returns

Nothing.

Description

Method; initiates an onClosed event and hides the dialog box. This method also cleans up
required assets and listeners. The onClose event handler for listening objects is triggered before
these assets are removed.

This method hides the dialog box by setting _visible=0. If you want to completely remove the
box from memory, you can call removeMovieClip().

Example

myDialog.doClose();

MDialogBox.doOpen()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.doOpen()

Event Description

MDialogBox.onContentChanged() Executed when the content movie clip in the dialog box
changes (in the scope of any listening objects).

MDialogBox.onClosed() Executed when the dialog box is closed (in the scope of any
listening objects).
210 Chapter 2: Components Reference

Parameters

None.

Returns

Nothing.

Description

Method; initiates an open event and shows a previously instantiated dialog box instance.

Example

myDialog.doOpen();

MDialogBox.getContent()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialogBox.getContent()

Parameters

None.

Returns

A reference to the movie clip.

Description

Method; gets a reference to the currently selected movie clip.

Tip: You can use either getContent or getSelectedContent to get a reference to the currently
selected content movie clip.

Example

The following example gets a reference to the currently selected movie clip in the prefsDialog
instance and then calls doSomeMethod on it:
var gen = prefsDialog.getContent();
gen.doSomeMethod();
DialogBox component 211

MDialogBox.getDataProvider()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.getDataProvider()

Parameters

None.

Returns

A reference to the current data provider.

Description

Method; returns a reference to the current data provider for the component instance.

Example

The following example gets the data provider for the myDialog instance and adds an item to it:
var dp = myDialog.getDataProvider();
dp.addItem({label:"content1", data:"content1symbol"});
myDialog.getDataProvider();

MDialogBox.getSelectedContent()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.getSelectedContent()

Parameters

None.

Returns

A reference to a movie clip.

Description

Method; returns a reference to the currently selected content movie clip.

Tip: You can use either getContent or getSelectedContent to get a reference to the currently selected
content movie clip.
212 Chapter 2: Components Reference

Example

The following example gets a reference to the currently selected movie clip in the prefsDialog
instance and then calls doSomeMethod on it:
var gen = prefsDialog.getSelectedContent();
gen.doSomeMethod();

MDialogBox.getSelectedIndex()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.getSelectedIndex()

Parameters

Nothing.

Returns

The index of the currently selected item.

Description

Method; returns the index of the currently selected item.

Example

The following example creates a variable that is the index of the currently selected item:
var dialogIndex = myDialog.getSelectedIndex();

MDialogBox.getSelectedItem()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.getSelectedItem()

Parameters

None.

Returns

An object.
DialogBox component 213

Description

Method; returns the currently selected item. The item is an object with label and data properties.

Example

The following example creates a variable that is the currently selected item:
var item = myDialog.getSelectedItem();

MDialogBox.onClosed()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.onClosed()

Parameters

None.

Returns

Nothing.

Description

Event handler; executed in the scope of any listening objects. You can override this event handler
on a component instance.

Example

The following code overrides the onClosed event handler on the component instance myDialog:
myDialog.onClosed = function()
{

trace("Dialog closed at:" this);
}

MDialogBox.onContentChanged()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.onContentChanged()
214 Chapter 2: Components Reference

Parameters

None.

Returns

Nothing.

Description

Event handler; executed in the scope of any listening objects.

Example

The following example traces the content that has changed:
var obj = new Object();
obj.controller = this;
obj.onContentChanged = function(ref)
{

var content = ref.getSelectedContent();
trace("Dialog changed with: " +content);

}
myDialog.addListener(obj);

MDialogBox.setDataProvider()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.setDataProvider(dp)

Parameters

dp The data provider.

Returns

Nothing.

Description

Method; sets the data provider for the component. The data provider can be an array or an object
of the DataProvider class.

The DialogBox component uses item objects to build its content. Each item object is an instance
of the Object class and contains two properties: label, a string that is the label in the pop-up
menu, and data, a string or linkage ID to the content movie clip.

The DataProvider class included with the Macromedia Central SDK contains new methods. For
more information about the DataProvider class and its methods, see “Central.DataProviderClass
object” in Developing Central Applications.
DialogBox component 215

Example

The following code sets the data provider for a Preferences dialog box that has two selectable
screens, General and Notices:
var dp = new mx.central.data.DataProviderClass();
dp.addItem({label:"Notices", data: "NoticesMovie"});
dp.addItem({label:"General", data: "GeneralMovie"});
myDialog.setDataProvider(dp);

MDialogBox.setSelectedByData()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.setSelectedByData(data);

Parameters

data A string; the data property of the selected item.

Returns

Nothing.

Description

Method; sets the selected item based on a data property.

Example

The following code sets the selected item to the data property, prefs, for the Preferences menu:
myDialog.setSelectedByData("prefs");

MDialogBox.setSelectedByID()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.setSelectedByID(linkage)

Parameters

linkage The linkage ID of the item.
216 Chapter 2: Components Reference

Returns

Nothing.

Description

Method; sets the selected item based on its linkage ID property.

Example

The following code sets the selected item to the item with the linkage ID "prefs":
myDialog.setSelectedByID("prefs");

MDialogBox.setSelectedByKey()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.setSelectedByKey(label, data)

Parameters

label The label of the item.

data The data associated with the item.

Returns

Nothing.

Description

Method; sets the selected item by its key, which is composed of the label and its associated data.

Example

The following code sets the selected item to the Preferences item in the pop-up menu:
myDialog.setSelectedByKey("Preferences", "prefs");

MDialogBox.setSelectedByLabel()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.setSelectedByLabel(label)
DialogBox component 217

Parameters

label The label of the item.

Returns

Nothing.

Description

Method; sets the selected item by its label.

Example

The following code sets the item with label "My Feeds" as selected:
myDialog.setSelectedByLabel("My Feeds");

MDialogBox.setSelectedIndex()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.setSelectedIndex(index)

Parameters

index The index of the item.

Returns

Nothing.

Description

Method; sets the item indicated by index as selected.

Example

The following code sets the third item in the dialog box’s pop-up menu as selected:
myDialog.setSelectedIndex(2);

MDialogBox.setSelectedItem()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.setSelectedItem(item)
218 Chapter 2: Components Reference

Parameters

item The item to be set to the selected state.

Returns

Nothing.

Description

Method; sets the item specified in the item parameter to the selected state. The item should be
retrieved from the data provider.

Example

The following code sets George as the selected item:
myDialog.setSelectedItem({label: “George”});

MDialogBox.setSelectedNextIndex()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.setSelectedNextIndex()

Parameters

None.

Returns

Nothing.

Description

Method; changes the dialog box content to the next content item. If the current content is the last
item, then this method changes the dialog box to the first content item.

Example

A pop-up menu in the dialog box contains three items: A, B, and C. The current content item
is B. The following code changes the content to C:
myDialog.setSelectedNextIndex();
DialogBox component 219

MDialogBox.setSelectedPrevIndex()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.setSelectedPrevIndex()

Parameters

None.

Returns

Nothing

Description

Method; changes the dialog box content to the previous content item. If the current content is the
first item, then this method changes the dialog box to the last content item.

Example

A pop-up menu in the dialog box dialog1 contains three items: A, B, and C. The current
content item is B. The following code changes the content to A:
dialog1.setSelectedPrevIndex();

MDialogBox.setSize()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialogBox.setSize(width, height, tween)

Parameters

width The width in pixels.

height The height in pixels.

tween The number of frames it takes to animate (tween) to the size specified.

Returns

Nothing.
220 Chapter 2: Components Reference

Description

Method; sets the width and height of the dialog box and the number of frames it takes to tween to
that size.

Example

The following example makes a dialog box 300 pixels wide and 200 pixels high. It takes five
frames to tween to the dialog box’s full size.
myDialogBox.setSize(300,200,5);

MDialogBox.setTitle()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.setTitle(title)

Parameters

title A string.

Returns

Nothing.

Description

Method; sets the title of the dialog box, which appears in the title bar.

Example

The following code sets the title of the dialog box to "My New App Preferences":
myAppDialog.setTitle("My New App Preferences");

MDialogBox.showClose()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myDialog.showClose(close)

Parameters

close A Boolean value.
DialogBox component 221

Returns

Nothing.

Description

Method; sets whether the close button (X) in the upper right corner of the dialog box is visible
(true) or hidden (false). If you hide the close button, be sure that your code provides logic to let
the user close the dialog box, using an OK or Cancel button, for example.

Example

The following code shows the close button in the dialog box:
dialog2.showClose("true");

ExpandingPod component

The ExpandingPod component provides a box that presents a limited view of information and
lets users quickly open an expanded view by clicking a magnifying glass icon. When the user
clicks the magnifying glass icon, the original box tweens to an expanded view and displays new
content. This component lets you present teaser information in a limited space and then lets the
user expand the content area to view the full content in a larger space. You need to allow only
enough space for the collapsed size in your application.

The component provides a title bar, a magnifying glass icon, and a content area.

The following figures show an ExpandingPod component in its collapsed and expanded views.
222 Chapter 2: Components Reference

Using the ExpandingPod component

The content for the ExpandingPod component is contained in two movie clips: one for the
collapsed view and one for the expanded view. For example, the collapsed view might show the
face of a movie star, and the expanded view might show a full-body shot of the movie star from a
scene in a recent action movie as well as text describing the movie and a link for purchasing tickets
to a show. In another example, the collapsed view might show a summary of information about a
product or service, and the expanded view might show a request form for more information,
which the user can fill out and submit.

The component automatically sizes itself to fit your content movie clips. You can show or hide the
title bar of the box that contains information, and you can use the default magnifying glass icon
or a custom icon.

ExpandingPod parameters

You can set the following parameters for each instance of the ExpandingPod component:

Minimized Content is the symbol ID of the movie clip for the content in the collapsed view.

Expanded Content is the symbol ID of the movie clip for the content in the expanded view.

Grow From is the direction in which the component expands when the user clicks the magnifying
glass icon. Possible values are left, right, and middle.

About ExpandingPod states

The ExpandingPod component has the following states: collapsed and expanded. This
component does not use the green borders to reflect change of state, unlike some other
components. The user’s mouse indicator changes from an arrow to a pointer when the it moves
over the magnifier. The magnifying glass icon can be shown or hidden.

The component can be set to expand from the left, right, or middle when the user clicks the
magnifying glass icon.

Method summary for the MExpandingPod component

The following table summarizes the methods for the MExpandingPod component:

Method Description

MExpandingPod.getContentStart() Gets the x and y coordinates of where the content should
start (top left).

MExpandingPod.getExpanded() Gets whether the component is expanded (true) or
collapsed (false).

MExpandingPod.getLargeContent() Gets a reference to the large content movie clip for the
expanded view.

MExpandingPod.getSize() Returns an object with the width and height (in pixels)
properties of the component.

MExpandingPod.getSmallContent() Gets a reference to the small content movie clip for the
collapsed view.
ExpandingPod component 223

MExpandingPod.getContentStart()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.getContentStart()

Parameters

None.

Returns

An object with x and y properties.

Description

Method; gets the x and y coordinates of where the content starts.

Example

The following example creates a variable that contains the x and y coordinates of the location
where the content specified in setContentStart begins:
var contentLoc = myComponent.getContentStart();
var myMovie = attachMovie("movie","myMovie", 1);
myMovie._x = contentLoc._x;
myMovie._y = contentLoc._y;

MExpandingPod.setExpanded() Sets whether the pod is expanded (true) or collapsed
(false).

MExpandingPod.setExpandingOrigin() Sets the direction in which the pod expands.

MExpandingPod.setLargeContent() Sets the linkage of the large movie clip to appear in the
content area in the expanded state.

MExpandingPod.setSmallContent() Sets the linkage of the small movie clip to appear in the
content area in the collapsed state.

MExpandingPod.setTitle() Sets the title for the content so that it is visible to the user.

MExpandingPod.showMagnifier() Shows or hides the magnifying glass icon.

MExpandingPod.showTitleBar() Shows or hides the text in the title bar above the
content area.

Method Description
224 Chapter 2: Components Reference

MExpandingPod.getExpanded()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.getExpanded()

Parameters

None.

Returns

A Boolean value: true if the component instance is in expanded view; false if it is collapsed.

Description

Method; gets a Boolean value that indicates whether the component instance is in expanded view
(true) or collapsed view (false).

Example

The following example gets the current view of the component and traces it:
var expandedView = myExpandingPod.getExpanded();
trace(expandedView);

MExpandingPod.getLargeContent()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.getLargeContent()

Parameters

None.

Returns

A reference to the large content movie clip.

Description

Method; gets a reference to the large content movie clip, which is shown when the component is
expanded.
ExpandingPod component 225

Example

The following example traces the symbol ID of the large content movie clip shown in expanded
view:
trace(myExpandingPod.getLargeContent());

MExpandingPod.getSize()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.getSize()

Parameters

None.

Returns

Returns an object with width and height properties.

Description

Method; gets the width and height (in pixels) of the component.

Example

The following example traces the size of the myComponent instance:
var size = myComponent.getSize();
trace(size.height + ", " + size.width);

MExpandingPod.getSmallContent()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.getSmallContent()

Parameters

None.

Returns

A reference to the small content movie clip.
226 Chapter 2: Components Reference

Description

Method; gets a reference to the small content movie clip, which is shown when the component is
in collapsed view.

Example

The following example gets the reference to the small content movie clip:
var smallContent = myComponent.getSmallContent();
trace(smallContent);

MExpandingPod.setExpanded()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.setExpanded(expanded)

Parameters

expanded A Boolean value: true expands the component to contain the large content movie
clip; false collapses it to contain the small content movie clip.

Returns

Nothing.

Description

Method; sets whether the component is expanded.

Example

The following example sets the component to its expanded view:
myComponent.setExpanded(true);

MExpandingPod.setExpandingOrigin()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myExpandingPod.setExpandingOrigin(direction)
ExpandingPod component 227

Parameters

direction A string indicating the direction in which the pod expands. Possible values are left,
right, or middle.

Returns

Nothing.

Description

Method; sets the direction in which the pod expands when the user clicks the magnifying glass
icon in the pod’s title bar. The direction you select might depend on where the pod is placed in
your application. For example, if the pod is set in the bottom right corner of the application
window, you might want the pod to expand to the left.

Example

The following code sets the moviePod instance to expand to the left.
moviePod.setExpandingOrigin("left");

MExpandingPod.setLargeContent()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myPod.setLargeContent(linkageID)

Parameters

linkage ID The linkage ID of the large content movie clip.

Returns

Nothing.

Description

Method; sets the linkage ID of the large content movie clip, which appears when the component
is expanded. The user clicks the magnifying glass icon to expand the component. The component
is automatically resized to accommodate the content.

Example

The following example sets the movie clip for the expanded state to "formView":
myPod.setLargeContent("formView");

See also

MExpandingPod.setSmallContent()
228 Chapter 2: Components Reference

MExpandingPod.setSmallContent()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myPod.setSmallContent(linkageID)

Parameters

linkage ID The linkage ID of the small content movie clip.

Returns

Nothing.

Description

Method; sets the linkage ID of the small content movie clip, which is shown when the
component is collapsed. The user clicks the magnifying glass icon to collapse the component. The
component automatically resizes to accommodate the content.

Example

The following example sets the movie clip for the collapsed state to "formView":
myPod.setLargeContent("formView");

See also

MExpandingPod.setLargeContent()

MExpandingPod.setTitle()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.setTitle(title)

Parameters

title A string; the title that appears in the title bar of the component. The maximum number
of characters is determined by the width of the component.

Returns

Nothing.
ExpandingPod component 229

Description

Method; sets the text for the title that appears in the title bar of the component. This title is
visible to the user if you use the MExpandingPod.showTitleBar() method to show the title bar.

Example

The following example sets the title of the component instance to “Featured movie of the week”:
myComponent.setTitle("Featured movie of the week");

MExpandingPod.showMagnifier()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.showMagnifier(show)

Parameters

show A Boolean value: true shows the magnifying glass icon; false hides it.

Returns

Nothing.

Description

Method; lets you show or hide the magnifying glass icon in the upper right corner of the
component. Users click the magnifying glass icon to expand or collapse the content area.

If you hide this icon, the user cannot expand or collapse the instance of the ExpandingPod
component.

Example

The following example shows the magnifying glass icon:
myComponent.showMagnifier(true);

MExpandingPod.showTitleBar()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myComponent.showTitleBar(show)
230 Chapter 2: Components Reference

Parameters

show A Boolean value: true shows the text in the title bar above the content area; false
hides it.

Returns

Nothing.

Description

Method; lets you show or hide the text in the title bar above the content area. You set the text for
the title bar by using MExpandingPod.setTitle() on page 229.

Example

The following example shows the text in the title bar:
myComponent.showTitleBar(true);

FocusManager class

You can use the Focus Manager to specify the order in which components receive focus when a
user presses the Tab key to navigate in an application. You can also use the Focus Manager to set a
button in your document that receives keyboard input when a user presses Enter (Windows) or
Return (Macintosh). For example, when users fill out a form, they should be able to tab between
fields and press Enter (Windows) or Return (Macintosh) to submit the form.

All components implement Focus Manager support; you don’t need to write code to invoke it.

The Focus Manager interacts with the System Manager, which activates and deactivates
FocusManager instances as pop-up windows are activated or deactivated. Each modal window has
an instance of FocusManager so the components in that window become their own tab set,
preventing the user from tabbing into components in other windows.

The Focus Manager recognizes groups of radio buttons (those with a defined
RadioButton.groupName property) and sets focus to the instance in the group that has a
selected property that is set to true. When the Tab key is pressed, the Focus Manager checks to
see if the next object has the same group name as the current object. If it does, it automatically
moves focus to the next object with a different group name. Other sets of components that
support a groupName property can also use this feature.

The Focus Manager handles focus changes caused by mouse clicks. If the user clicks a component,
that component is given focus.

Using the Focus Manager

The Focus Manager does not automatically assign focus to a component. You must write a script
that calls FocusManager.setFocus() on a component if you want a component to have focus
when an application loads.

Note: If you call FocusManager.setFocus() to set focus to a component when an application loads,
the focus ring does not appear around that component. The component has focus, but the indicator is
not present.
FocusManager class 231

To create focus navigation in an application, set the tabIndex property on any objects (including
buttons) that should receive focus. When a user presses the Tab key, the Focus Manager looks for
an enabled object with a tabIndex property that is higher than the current value of tabIndex.
Once the Focus Manager reaches the highest tabIndex property, it returns to zero. So, in the
following example, the comment object (probably a TextArea component) receives focus first, and
then the okButton object receives focus:
comment.tabIndex = 1;
okButton.tabIndex = 2;

You can also use the Accessibility panel to assign a tab index value.

If nothing on the Stage has a tab index value, the Focus Manager uses the depth (stacking order, or
z-order). The depth is set up primarily by the order in which components are dragged to the
Stage; however, you can also use the Modify > Arrange > Bring to Front/Send to Back commands
commands to determine the final depth.

To create a button that receives focus when a user presses Enter (Windows) or Return
(Macintosh), set the FocusManager.defaultPushButton property to the instance name of the
desired button, as shown here:
focusManager.defaultPushButton = okButton;

Note: The Focus Manager is sensitive to when objects are placed on the Stage (the depth order of
objects) and not their relative positions on the Stage. This is different from the way Flash Player
handles tabbing.

Using the Focus Manager to allow tabbing

You can use the Focus Manager to create a scheme that allows users to press the Tab key to cycle
through objects in a Flash application. (Objects in the tab scheme are called tab targets.) The
Focus Manager examines the tabEnabled and tabChildren properties of the objects’ parents in
order to locate the objects.

A movie clip can be either a container of tab targets, a tab target itself, or neither:

Note: This is different from the default Flash Player behavior, in which a container’s tabChildren
property can be undefined.

Consider the following scenario. On the Stage of the main Timeline are two text fields (txt1 and
txt2) and a movie clip (mc) that contains a DataGrid component (grid1) and another text field
(txt3). You would use the following code to allow users to press Tab and cycle through the
objects in the following order: txt1, txt2, grid1, txt3.

Note: The FocusManager and TextField instances are enabled by default.

// let Focus Manager know mc has children;
// this overrides mc.focusEnabled=true;

Movie clip type tabEnabled tabChildren

Container of tab targets false true

Tab target true false

Neither false false
232 Chapter 2: Components Reference

mc.tabChildren=true;
mc.tabEnabled=false;
// set the tabbing sequence
txt1.tabIndex = 1;
txt2.tabIndex = 2;
mc.grid1.tabIndex = 3;
mc.txt3.tabIndex = 4;

// set initial focus to txt1
txt1.text = "focus";
focusManager.setFocus(txt1);

If your movie clip doesn’t have an onPress or onRelease method or a tabEnabled property, it
won’t be seen by the Focus Manager unless you set focusEnabled to true. Input text fields are
always in the tab scheme unless they are disabled.

If a Flash application is playing in a web browser, the application doesn’t have focus until a user
clicks somewhere in the application. Also, once a user clicks in the Flash application, pressing Tab
can cause focus to jump outside the Flash application. To keep tabbing limited to objects inside
the Flash application in Flash Player 7 ActiveX control, add the following parameter to the
HTML <object> tag:
<param name="SeamlessTabbing" value="false"/>

Creating an application with the Focus Manager

The following procedure creates a focus scheme in a Flash application.

To create a focus scheme:

1. Drag the TextInput component from the Components panel to the Stage.

2. In the Property inspector, assign it the instance name comment.

3. Drag the Button component from the Components panel to the Stage.

4. In the Property inspector, assign it the instance name okButton and set the label parameter
to OK.

5. In Frame 1 of the Actions panel, enter the following:
comment.tabIndex = 1;
okButton.tabIndex = 2;
focusManager.setFocus(comment);
function click(evt){

trace(evt.type);
}
okButton.addEventListener("click", this);

This code sets the tab ordering. Although the comment field doesn’t have a focus ring, it has
initial focus, so you can start typing in the comment field without clicking on it.
FocusManager class 233

Customizing the Focus Manager

You can change the color of the focus ring in the Halo theme by changing the value of the
themeColor style, as in this example:
_global.style.setStyle("themeColor", "haloBlue");

The Focus Manager uses a FocusRect skin for drawing focus. This skin can be replaced or
modified and subclasses can override UIComponent.drawFocus to draw custom focus indicators.

FocusManager class (API)

Inheritance MovieClip > UIObject class > UIComponent class > FocusManager

ActionScript Class Name mx.managers.FocusManager

You can use the Focus Manager to specify the order in which components receive focus when a
user presses the Tab key to navigate in an application. You can also use the FocusManager class to
set a button in your document that receives keyboard input when a user presses Enter (Windows)
or Return (Macintosh).

Tip: In a class file that inherits from UIComponent, it is not good practice to refer to
_root.focusManager. Every UIComponent instance inherits a getFocusManager() method, which
returns a reference to the FocusManager instance responsible for controlling that component’s focus
scheme.

Method summary for the FocusManager class

The following table lists the methods of the FocusManager class.

Methods inherited from the UIObject class

The following table lists the methods the FocusManager class inherits from the UIObject class.

Method Description

FocusManager.getFocus() Returns a reference to the object that has focus.

FocusManager.sendDefaultPushButtonEvent() Sends a click event to listener objects registered to
the default push button.

FocusManager.setFocus() Sets focus to the specified object.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.
234 Chapter 2: Components Reference

Methods inherited from the UIComponent class

The following table lists the methods the FocusManager class inherits from the UIComponent
class.

Property summary for the FocusManager class

The following table lists the properties of the FocusManager class.

Properties inherited from the UIObject class

The following table lists the properties the FocusManager class inherits from the UIObject class.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

FocusManager.defaultPushButton The object that receives a click event when a user
presses the Return or Enter key.

FocusManager.defaultPushButtonEnabled Indicates whether keyboard handling for the default push
button is turned on (true) or off (false). The default value
is true.

FocusManager.enabled Indicates whether tab handling is turned on (true) or off
(false). The default value is true.

FocusManager.nextTabIndex The next value of the tabIndex property.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

Method Description
FocusManager class 235

Properties inherited from the UIComponent class

The following table lists the properties the FocusManager class inherits from the UIComponent
class.

Event summary for the FocusManager class

There are no events exclusive to the FocusManager class.

Events inherited from the UIObject class

The following table lists the events the FocusManager class inherits from the UIObject class.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Property Description
236 Chapter 2: Components Reference

Events inherited from the UIComponent class

The following table lists the events the FocusManager class inherits from the UIComponent class.

FocusManager.defaultPushButton

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage

focusManager.defaultPushButton

Description

Property; specifies the default push button for an application. When the user presses Enter
(Windows) or Return (Macintosh), the listeners of the default push button receive a click event.
The default value is undefined and the data type of this property is object.

The Focus Manager uses the emphasized style declaration of the SimpleButton class to visually
indicate the current default push button.

The value of the defaultPushButton property is always the button that has focus. Setting the
defaultPushButton property does not give initial focus to the default push button. If there are
several buttons in an application, the button that currently has focus receives the click event
when Enter or Return is pressed. If some other component has focus when Enter or Return is
pressed, the defaultPushButton property is reset to its original value.

Example

The following code sets the default push button to the OKButton instance:
focusManager.defaultPushButton = OKButton;

See also

FocusManager.defaultPushButtonEnabled,
FocusManager.sendDefaultPushButtonEvent()

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
FocusManager class 237

FocusManager.defaultPushButtonEnabled

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

focusManager.defaultPushButtonEnabled

Description

Property; a Boolean value that determines if keyboard handling of the default push button is
turned on (true) or not (false). Setting defaultPushButtonEnabled to false allows a
component to receive the Return or Enter key and handle it internally. You must re-enable default
push button handling by watching the component’s onKillFocus() method (see
MovieClip.onKillFocus in Flash ActionScript Language Reference) or focusOut event. The
default value is true.

This property is for use by advanced component developers.

Example

The following code disables default push button handling:
focusManager.defaultPushButtonEnabled = false;

FocusManager.enabled

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

focusManager.enabled

Description

Property; a Boolean value that determines if tab handling is turned on (true) or not (false) for a
particular group of focus objects. (For example, another pop-up window could have its own Focus
Manager.) Setting enabled to false allows a component to receive the tab handling keys and
handle them internally. You must re-enable the Focus Manager handling by watching the
component’s onKillFocus() method (see MovieClip.onKillFocus in Flash ActionScript
Language Reference) or focusOut event. The default value is true.

Example

The following code disables tabbing:
focusManager.enabled = false;
238 Chapter 2: Components Reference

FocusManager.getFocus()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage

focusManager.getFocus()

Parameters

None.

Returns

A reference to the object that has focus.

Description

Method; returns a reference to the object that currently has focus.

Example

The following code sets the focus to myOKButton if the object that currently has focus is
myInputText:
if (focusManager.getFocus() == myInputText)
{

focusManager.setFocus(myOKButton);
}

See also

FocusManager.setFocus()

FocusManager.nextTabIndex

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

FocusManager.nextTabIndex

Description

Property; the next available tab index number. Use this property to dynamically set an object’s
tabIndex property.
FocusManager class 239

Example

The following code gives the mycheckbox instance the next highest tabIndex value:
mycheckbox.tabIndex = focusManager.nextTabIndex;

See also

UIComponent.tabIndex

FocusManager.sendDefaultPushButtonEvent()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage

focusManager.sendDefaultPushButtonEvent()

Parameters

None.

Returns

Nothing.

Description

Method; sends a click event to listener objects registered to the default push button. Use this
method to programmatically send a click event.

Example

The following code triggers the default push button click event and fills in the user name and
password fields when a user selects the CheckBox instance chb (the check box would be labeled
“Automatic Login”):
name_txt.tabIndex = 1;
password_txt.tabIndex = 2;
chb.tabIndex = 3;
submit_ib.tabIndex = 4;

focusManager.defaultPushButton = submit_ib;

chbObj = new Object();
chbObj.click = function(o){

if (chb.selected == true){
name_txt.text = "Jody";
password_txt.text = "foobar";
focusManager.sendDefaultPushButtonEvent();

} else {
name_txt.text = "";
password_txt.text = "";
240 Chapter 2: Components Reference

}
}
chb.addEventListener("click", chbObj);

submitObj = new Object();
submitObj.click = function(o){

if (password_txt.text != "foobar"){
trace("error on submit");

} else {
trace("Yeah! sendDefaultPushButtonEvent worked!");

}
}
submit_ib.addEventListener("click", submitObj);

See also

FocusManager.defaultPushButton

FocusManager.setFocus()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage

focusManager.setFocus(object)

Parameters

object A reference to the object to receive focus.

Returns

Nothing.

Description

Method; sets focus to the specified object. If the object to which you want to set focus is not on
the main Timeline, use the following code:
_root.focusManager.setFocus(object);

Example

The following code sets focus to myOKButton:
focusManager.setFocus(myOKButton);

See also

FocusManager.getFocus()
FocusManager class 241

IconButton component

The IconButton component lets you create a simple button with a choice of icons or a custom
icon.

The following images show various icon buttons that you can create using the IconButton
component: (from left to right) Print, Set Notices, Remove from Favorites, and Toss buttons.

Using the IconButton component

Icon buttons look as if you can press them, and each button has an icon on its face. An icon
button performs an action when the user clicks it.

The IconButton component offers the following icon buttons, which you can use in your
application’s interface:

• Close button (icon_close)
Use this button as a close button in your application.

• Print button (icon_print)
Use this button to let the user print the current content appearing in the application.

• Toss button (icon_toss-to)
Use this button to let the user start the application’s pod in the Console, that is, to send data
from the application to the pod.

• Add to Favorites button (icon_bookmark_add)
Use this button to let the user add the current selection to the application tab used for caching
data, such as the Favorites tab. This button contains a bookmark icon to reflect the bookmark
icon you use to visually identify the Favorites tab.

• Remove from Favorites button (icon_bookmark_remove)
Use this button to let the user remove the current selection from the application tab used for
caching data, such as the Favorites tab. This button contains a bookmark icon to reflect the
bookmark icon you use to visually identify the Favorites tab.

• Set Notices icon button (icon_alert)
Use this button to open a dialog box (which you can create with the Window component)
where users can select criteria for notices they would like to receive. For example, a weather
application could send a notice when the temperature drops below a certain degree. Users
would click the Set Notices icon button to access a dialog box that lets them specify that
temperature.

Note: These buttons are different from the images found in the Central artwork MXP. These buttons
are intended for use in your application, not your pod. For more information on elements you can use
in your pods, see the “CloseButton component” on page 95, the “TossButton component”
on page 476 and the “Macromedia Central artwork” on page 10.
242 Chapter 2: Components Reference

IconButton parameters

You can set the following parameters for each instance of the IconButton component:

Built-In Icon has the following available values: icon_print, icon_toss-to,
icon_bookmark_add, icon_bookmark_remove, icon_alert, or Custom. If you select Custom,
provide the symbol ID in the following parameter, Custom Icon.

Custom Icon is the symbol ID of the image file to use for the icon; for example, mylogo.jpg.

Change Handler is the name of a function to call when the state of the button changes.

You can set additional options and functionality for instances of this component by using its
methods.

About IconButton states and variations

The IconButton component has the following states: active, rollover, press, default, default
rollover, and disabled. The component in all states has a green border to indicate its status to the
user, except for the active and disabled states. The disabled button is dimmed and is unavailable
to the user.

Method summary for the MIconButton component

The following table summarizes the methods for the MIconButton class:

MIconButton.getEnabled()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconButton.getEnabled()

Parameters

None.

Method Description

MIconButton.getEnabled() Returns true if enabled; false if disabled.

MIconButton.getIcon() Returns an instance of the icon inside the button.

MIconButton.setChangeHandler() Assigns a function that is called every time the push button is
released (toggle state is false).

MIconButton.setEnabled() Enables the push button.

MIconButton.setIcon() Sets the icon that appears in the push button.
IconButton component 243

Returns

A Boolean value: true indicates that the IconButton instance is enabled; false indicates that the
IconButton instance is disabled.

Description

Method; indicates whether the IconButton instance is enabled or disabled.

Example

The following example returns the enabled state of the iconButton1 instance to the Output
panel:
trace(iconButton1.getEnabled());

MIconButton.getIcon()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconButton.getIcon()

Parameters

None.

Returns

A reference to the movie clip in the IconButton component.

Description

Method; returns an instance of the icon appearing in the icon button.

Example

The following example retrieves a reference to the movie clip inside the iconButton1 object,
stores it in a variable, and sets the rotation property to 45:
var icon = iconButton1.getIcon();
icon._rotation=45;

MIconButton.setChangeHandler()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.
244 Chapter 2: Components Reference

Usage

myIconButton.setChangeHandler(callBack)

Parameters

callBack The string name of the function that is called. The function that it calls should reside
on the same Timeline as the IconButton component.

Returns

Nothing.

Description

Method; specifies a change handler function to call when the icon button is released. The
function always accepts the instance of the component that has changed as a parameter. Calling
this method overrides the Change Handler parameter value specified in the Property inspector.

Example

The following example sets a Change Handler for the iconButton1 object:
iconButton1.setChangeHandler("On");

MIconButton.setEnabled()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconButton.setEnabled(state)

Parameters

state A Boolean value: enables the button (true) or disables it (false).

Returns

Nothing.

Description

Method; specifies whether the IconButton is enabled (true) or disabled (false). If an
IconButton instance is disabled, it does not accept mouse or keyboard interaction from the user.
If you omit this parameter, the default for the method is true.

Example

The following example disables the IconButton component:
myIconButton.setEnabled(false);
IconButton component 245

MIconButton.setIcon()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconButton.setIcon(linkage)

Parameters

linkage A string listing the linkage name or instance reference of the movie clip target.

Returns

Nothing.

Description

Method; sets the icon that appears on the face of the button. Possible values for the linkage
parameter are as follows: icon_close, icon_print, icon_toss-to, icon_bookmark_add,
icon_bookmark_remove, icon_alert. For more information about how to use these icons in
your application, see “Using the IconButton component” on page 242.

If the icon movie clip is composed of frames labeled “_up,” “_over,” “_down,” and “disabled,”
the content of each frame appears with the corresponding button state. Calling this method
overrides the Icon parameter value set in authoring.

Example

The following example applies the icon movie clip in the library with the specified linkage:
iconButton1.setIcon("foo");

IconMenu component

The IconMenu component combines an icon button with a multiselect ListBox component.
When users click the menu button, they can select items from a pop-up menu.

The IconMenu component

Using the IconMenu component

Use the IconMenu component to present a list of commands in a pop-up menu when space is
limited to the size of the button. You can use any icon for the button, and you can change the
width and height of the button that the users click to display the menu.
246 Chapter 2: Components Reference

If the menu contains more items than are viewable, a scroll arrow appears at the bottom of the
list. You can move the mouse pointer toward the arrow to scroll the list and display the other
items. As you scroll through the list, a scroll arrow appears at the top of the list. When you reach
the bottom of the list, the bottom scroll arrow disappears. You can make menu items scroll faster
by moving the mouse pointer farther below or above the scroll arrows.

If you turn on check marks by using the showCheckmarks method, a check mark appears next to
an item that the user selects.

The MIconMenu.setDataProvider() method lets you set a data provider for the menu. A data
provider can be an array or an instance of the DataProvider class. For more information about
arrays, see the Help system in the Flash authoring tool. For more information about the
DataProvider class, see Developing Central Applications.

IconMenu parameters

You can set the following parameters for each instance of the IconMenu component:

Icon is the path to the image file to use on the button; for example, logo.jpg.

Label is the text label that appears on the button.

Label Placement is the position for the label, to the left or right of the button, or at the top or
bottom of the button.

Menu Labels is an array of text strings specifying the items in the pop-up menu. Enter the text
strings for the array using the Values dialog box or using the MIconMenu.addItem or
MIconMenu.addItemAt methods to add items at runtime.

Data is an array of text strings specifying the values associated with the items (labels) in the pop-
up menu. Enter the text strings for the array using the Values dialog box or using the
MIconMenu.addItem or IconMenu.addItemAt methods to add items at runtime.

Change Handler is the name of the function that you call when the user selects an item in the
pop-up menu. You must define this function in the same Timeline as the instance of the
IconMenu. This parameter is optional and must be specified only if you want an action to occur
when the user selects an item in the pop-up menu. For more information, see “Writing event
listeners for components” on page 11.

Check Marks lets you show check marks next to items.

Row Count indicates the number of rows, or how many items appear, in the menu.

You can set additional options and functionality for IconMenu instances by using the methods of
the IconMenu component.

About IconMenu states and variations

The IconMenu component has the following states: disabled, enabled, rollover, pressed, focused,
clicked, and scrolling. In the clicked and scrolling states, the menu appears.

IconMenu also offers two optional variations for the menu. Items in the menu can appear with
check marks to the left, indicating a default selection. Items can also appear as disabled, or
dimmed, so that the user cannot select them.
IconMenu component 247

Method summary for the MIconMenu component

The following table summarizes the methods for the MIconMenu class:

Method Description

MIconMenu.addItem() Adds a new item to the menu.

MIconMenu.addItemAt() Adds a new item to the menu at the position indicated by the
index value.

MIconMenu.clearChecked() Turns off check marks for any selected items in the menu.

MIconMenu.clearDisabled() Re-enables all items in the menu that were previously disabled
using setEnabledIndices().

MIconMenu.getCheckedIndices() Returns an array of indexes for items that have a check mark
next to them.

MIconMenu.getCheckedItems() Returns an array of objects with label and data properties for
items in the menu that have check marks next to them.

MIconMenu.getCheckmarks() Returns true if check marks are turned on for the menu. Returns
false if check marks are turned off.

MIconMenu.getDisabledIndices() Returns an array of indexes corresponding to items in the menu
that have been disabled using setEnabledIndices().

MIconMenu.getEnabled() Returns true if the IconMenu is enabled; false if the IconMenu is
disabled.

MIconMenu.getIcon() Returns the name of the symbol in the library that is the icon for
the IconButton component.

MIconMenu.getItemAt() Returns an object containing label and data properties for the
item in the menu indicated by the index.

MIconMenu.getItemID() Returns the value of the item._ID_ property found at index.

MIconMenu.getLabel() Retrieves the label of the button used to toggle the pop-up
menu.

MIconMenu.getLabelPlacement() Retrieves the position of the label of the icon menu toggle
button.

MIconMenu.getLength() Returns the number of items in the menu .

MIconMenu.getRowCount() Returns the number of rows visible in the menu.

MIconMenu.getSelectedIndex() Returns the index of the most recently selected item in the menu.

MIconMenu.getSelectedItem() Returns an object with label and data properties of the most
recently selected item in the menu.

MIconMenu.getValue() Returns the label of the most recently selected item in the menu.

MIconMenu.isDisabled() Returns true if the item indicated in the index is disabled.
Returns false if the item indicated by the index is enabled.

MIconMenu.removeAll() Removes all items from the menu .

MIconMenu.removeIcon() Removes the icon from the icon button.
248 Chapter 2: Components Reference

MIconMenu.addItem()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIcon.addItem(label [,data])

Parameters

label A text string for the menu item.

data The optional value to associate with the menu item.

MIconMenu.removeItemAt() Removes the item from the menu indicated by the index.

MIconMenu.replaceAllItems() Deletes and replaces all the items in the DataProvider instance.

MIconMenu.replaceItemAt() Overwrites an item at the specified index with a new item object.

MIconMenu.setCheckedIndices() Turns on the check marks for items indicated in the itemArray
parameter.

MIconMenu.setDataProvider() Sets the data provider for the menu to the one indicated in
dataprovider. The data provider should be an array of labels or a
DataProvider object.

MIconMenu.setEnabled() Enables or disables the IconMenu component.

MIconMenu.setEnabledIndices() Enables or disables individual items in the menu.

MIconMenu.setIcon() Sets the icon of the IconButton component to the symbol in the
library indicated by symbolName.

MIconMenu.setLabel() Sets the label of the IconButton component.

MIconMenu.setLabelPlacement() Sets the placement of the label in the IconButton component
relative to the icon. The values can be left, right, top, and
button.

MIconMenu.setMenuWidth() Sets the width of the menu.

MIconMenu.setPopUpLocation() Sets the location of the pop-up menu to that of the movie clip
instance.

MIconMenu.setRowCount() Sets the number of rows visible in the menu. The index
parameter indicates the number of visible rows.

MIconMenu.setSize() Sets the width and height of the IconButton component.

MIconMenu.showCheckmarks() Shows or hides check marks that can appear to the left of items
in the menu.

Method Description
IconMenu component 249

Returns

Nothing.

Description

Method; adds a new item with the specified label and optional data to the end of the menu and
updates the menu. The data can be any Flash object, string, Boolean value, integer, object, or
movie clip.

For best performance and load-time results, do not add more than 400 items in a single frame.

Example

The following example adds the item Kenny with an associated value of Keen to the end of the
menu in the menu teacherList:
teacherList.addItem("Kenny", Keen);

MIconMenu.addItemAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.addItemAt(index, label[, data])

Parameters

index An integer specifying the position at which to insert the item.

label A text string for the menu item.

data The optional value to associate with the list item.

Returns

Nothing.

Description

Method; adds a new item with the specified label and optional associated data to the menu at the
specified index position. The data parameter can be any Flash object, string, Boolean value,
integer, object, or movie clip. As you add each item, the list is updated and the scroll bar is resized.

The IconMenu component uses a zero-based index, where the item at index 0 appears at the top
of the list.

For best performance and load-time results, do not add more than 400 items in a single frame.
This guideline applies whether you are adding the items to a single menu or to several menus.
250 Chapter 2: Components Reference

Example

The following example adds the item Justin with the associated value Ace as the fifth item in the
list of the menu Favorites:
Favorites.addItemAt(4, "Justin", Ace);

MIconMenu.clearChecked()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.clearChecked()

Parameters

None.

Returns

Nothing.

Description

Method; turns off check marks for any selected items in the menu.

Example

The following example turns off check marks:
myIconMenu.clearChecked();

See also

MIconMenu.setCheckedIndices()

MIconMenu.clearDisabled()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.clearDisabled()

Parameters

None.
IconMenu component 251

Returns

Nothing.

Description

Method; reenables all items in the menu that were previously disabled using
MIconMenu.setEnabledIndices() on page 266.

Example

The following code reenables disabled menu items:
myIconMenu.clearDisabled();

See also

MIconMenu.setEnabledIndices()

MIconMenu.getCheckedIndices()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.getCheckedIndices()

Parameters

None.

Returns

Nothing.

Description

Method; returns an array of indexes for items in the menu that have check marks next to them.

Example

The following code traces the indexes of items in the menu with check marks:
var checked = myIconMenu.getCheckedIndices();
trace(checked);

See also

MIconMenu.setCheckedIndices()
252 Chapter 2: Components Reference

MIconMenu.getCheckedItems()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.getCheckedItems()

Parameters

Nothing.

Returns

An array of objects with label and data properties for menu items that have check marks next to
them.

Description

Method; returns an array of objects with label and data properties for menu items that have check
marks next to them.

Example

The following code traces the menu items with check marks:
var checked = myIconMenu.getCheckedItems();
trace(checked);

MIconMenu.getCheckmarks()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.getCheckmarks()

Parameters

Nothing.

Returns

A Boolean value: if true, check marks are turned on for the menu; if false, check marks are
turned off.
IconMenu component 253

Description

Method; returns a Boolean value. If true, check marks are turned on for the menu; if false,
check marks are turned off.

Example

The following code traces the return value for getCheckmarks:
trace(myIconMenu.getCheckmarks());

MIconMenu.getDisabledIndices()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.getDisabledIndices()

Parameters

None.

Returns

An array of indexes corresponding to items in the menu that were disabled using the
MIconMenu.setEnabledIndices() method.

Description

Method; returns an array of indexes for items disabled using MIconMenu.setEnabledIndices()
on page 266.

Example

The following code traces the array of indexes for disabled items in the icon menu instance:
var disabledInd = myIconMenu.getDisabledIndices();
trace(disabledInd);

MIconMenu.getEnabled()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.getEnabled()
254 Chapter 2: Components Reference

Parameters

None.

Returns

A Boolean value: indicates whether the icon menu is enabled (true) or disabled (false).

Description

Method; indicates whether the icon menu is enabled or disabled.

Example

The following example traces the value indicating whether the icon menu is enabled:
trace(myIconMenu.getEnabled());

MIconMenu.getIcon()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.getIcon()

Parameters

None.

Returns

A movie clip instance.

Description

Method; retrieves the name of the symbol in the library (the movie clip instance) that serves as the
icon for the button that toggles the pop-up menu.

Example

The following example traces the name of the icon button’s movie clip instance:
trace(myIconMenu.getIcon());

MIconMenu.getItemAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.
IconMenu component 255

Usage

myIconMenu.getItemAt(index)

Parameters

index The index of the desired item.

Returns

An object containing label and data properties for the item in the menu indicated by index.

Description

Method; retrieves an item in the menu, specified by its index.

Example

The following example gets the third item in the icon menu:
myIconMenu.getItemAt(2);

MIconMenu.getItemID()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.getItemID(index)

Parameters

index The index of the item whose ID is to be retrieved.

Returns

A string.

Description

Method; returns the value of the item._ID_ property found at index. The returned value is a
string datatype but can be evaluated to a number.

Example

The following example gets the ID of the third item in the list:
getItemID(2);
256 Chapter 2: Components Reference

MIconMenu.getLabel()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.getLabel()

Parameters

None.

Returns

A string.

Description

Method; retrieves the label of the button used to toggle the pop-up menu, if a label exists. The
label appears on the button.

Example

The following code traces the text label of the button:
var label = myIconMenu.getLabel();
trace(label);

MIconMenu.getLabelPlacement()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.getLabelPlacement()

Parameters

None.

Returns

The position of the label for the button

Description

Method; retrieves the position of the label of the button. Possible values are left, right, top,
and bottom.
IconMenu component 257

Example

The following example traces the label position of the button:
var labelPosition = myIconMenu.getLabelPlacement();
trace(labelPosition);

MIconMenu.getLength()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.getLength()

Parameters

Nothing.

Returns

The number of items in the icon menu.

Description

Method; returns the number of items in the icon menu.

Example

The following example traces the number of items in the icon menu:
trace(myIconMenu.getLength());

MIconMenu.getRowCount()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.getRowCount()

Parameters

None.

Returns

The number of rows visible in the icon menu.
258 Chapter 2: Components Reference

Description

Method; retrieves the number of rows visible in the icon menu.

Example

The following example traces the number of rows in the icon menu:
var rows = myIconMenu.getRowCount();
trace(rows);

MIconMenu.getSelectedIndex()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.getSelectedIndex()

Parameters

None.

Returns

The index of the menu item that the user selected most recently.

Description

Method; retrieves the index of the menu item that the user selected most recently.

Example

The following example traces the index of the most recently selected menu item:
var lastSelected = myIconMenu.getSelectedIndex();
trace(lastSelected);

MIconMenu.getSelectedItem()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.getSelectedItem()

Parameters

None.
IconMenu component 259

Returns

An object with label and data properties of the most recently selected menu item.

Description

Method; returns an object with label and data properties of the menu item most recently selected
by the user.

Example

The following example traces the most recently selected item:
var lastSelected = myIconMenu.getSelectedItem();
trace(lastSelected);

MIconMenu.getValue()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.getValue()

Parameters

None.

Returns

The label of the most recently selected menu item.

Description

Method; returns the label of the most recently selected menu item.

Example

The following example gets the label of the most recently selected menu item:
var recentSelection = myIconMenu.getValue();
trace(recentSelection);

MIconMenu.isDisabled()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.isDisabled(index)
260 Chapter 2: Components Reference

Parameters

index The index of the item whose status is being checked.

Returns

A Boolean value; if true, the item indicated is disabled; if false, it is enabled.

Description

Method; returns true if the item indicated in index is disabled; false if the item is enabled.

Example

The following example checks whether the second item in the icon menu is disabled:
trace(myIconMenu.isDisabled(1));

MIconMenu.removeAll()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.removeAll()

Parameters

None.

Returns

Nothing.

Description

Method; removes all items from the menu.

Example

The following example removes all items from the icon menu:
myIconMenu.removeAll();

MIconMenu.removeIcon()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.removeIcon()
IconMenu component 261

Parameters

None.

Returns

Nothing.

Description

Method; removes the icon from the button.

Example

The following code removes the icon from the button:
myIconMenu.removeIcon();

MIconMenu.removeItemAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.removeItemAt(index)

Parameters

index The index number for the item that you want to remove from the menu.

Returns

Nothing.

Description

Method; removes the specified item from the menu.

Example

The following code removes the fifth item from the icon menu:
myIconMenu.removeItemAt(4);

MIconMenu.replaceAllItems()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.replaceAllItems(items)
262 Chapter 2: Components Reference

Parameters

items An array of objects (ordered) or an object of objects (unordered).

Returns

Nothing.

Description

Method; deletes all items in the list and replaces them with the items specified in the
items parameter.

Example

The following code replaces all items in the list with a new array of objects:
var podMenu = new Array();
podMenu[0] = "Jody";
podMenu[1] = "Mary";
podMenu[2] = "Marcelle";
podMenu[3] = "Dale";
podMenu[4] = "Stephanie";
podMenu[5] = "Barbara";
myIconMenu.replaceAllItems(podMenu);

MIconMenu.replaceItemAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.replaceItemAt(index, item)

Parameters

index The index of the item to be replaced.

item An object.

Returns

Nothing.

Description

Method; overwrites an item at the specified index with a new item object. If item has an _ID_
property, that property is overwritten with a new one.

Example

The following code replaces the fourth item in the list with the new item:
replaceItemAt(3, {category: "circus" , name: "lion"});
IconMenu component 263

MIconMenu.setCheckedIndices()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.setCheckedIndices(itemArray)

Parameters

itemArray An array of indexes for the menu items that appear with check marks to the left.

Returns

Nothing.

Description

Method; turns on the check marks for items indicated in itemArray.

Example

The following code turns on check marks for the second, third, and fourth items in the menu (in
a zero-based index):
myIconMenu.setCheckedIndices([1,2,3]);

MIconMenu.setDataProvider()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.setDataProvider(dataprovider)

Parameters

dataprovider An array of labels or a DataProvider object.

Returns

Nothing.

Description

Method; sets the data provider for the menu to the one indicated in dataprovider.

If dataProvider is an instance of the DataProvider class, it must implement the methods of the
DataProvider class.
264 Chapter 2: Components Reference

The DataProvider class included with the Macromedia Central SDK contains new methods. For
more information about the DataProvider class and its methods, see “Central.DataProviderClass
object” in Developing Central Applications.

The following examples show how you can use an Array object or a DataProvider object as a data
provider.

Example 1

The following code specifies the Array object podMenu as the data provider for iconMenu1 and
creates the array podMenu to display the labels of the items listed in iconMenu1:
iconMenu1.setDataProvider(podMenu);
podMenu = new Array();
podMenu[0] = "Jody";
podMenu[1] = "Mary";
podMenu[2] = "Marcelle";
podMenu[3] = "Dale";
podMenu[4] = "Stephanie";
podMenu[5] = "Barbara";

Example 2

The following code creates the array itemList1, which specifies both the label and the data for
list items. This Array object could be used as an alternative data provider for iconMenu1.
itemList1 = new Array();
for (i=0; i<10; i++) {

// create a real item
 var myItem = new Object();
 myItem.label = "Item" + i;
 myItem.data = 75;

// put it in the array
itemList1[i] = myItem;
}

Example 3

The following code specifies prefsList, an instance of the DataProvider class, as the data
provider for iconMenu1:
iconMenu1.setDataProvider(prefsList);

The following code creates a new instance of the DataProvider class and then adds the item labels
using the DataProvider addItem method:
prefsList = new mx.central.data.DataProviderClass();
prefsList.addItem("Names");
prefsList.addItem("Addresses");
prefsList.addItem("Email Addresses");
prefsList.addItem("Phone Numbers");

Note: The addItem method is one method of the DataProvider class. Programmers interested in
using the DataProvider class should refer to the DataProvider documentation in Developing Central
Applications before using the methods.
IconMenu component 265

MIconMenu.setEnabled()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.setEnabled(state)

Parameters

state A Boolean value; enables (true) or disables (false) the component.

Returns

Nothing.

Description

Method; sets the state of the icon menu. If true, the icon menu is enabled; if false, the icon
menu is disabled.

Example

The following code disables the icon menu, so that it appears dimmed and is unavailable to
the user:
myIconMenu.setEnabled(false);

MIconMenu.setEnabledIndices()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.setEnabledIndices(itemArray, state)

Parameters

itemArray An array of indexes for the enabled or disabled items.

state A Boolean value; enables the items in itemArray (true) or disables the items (false).

Returns

Nothing.
266 Chapter 2: Components Reference

Description

Method; enables or disables individual items in the menu. The itemArray parameter is an array
of indexes for items in the list to be enabled or disabled. When state is true, the items indicated
in itemArray are enabled; when state is false, the items are disabled.

Example

The following code disables the first and second items in the icon menu:
myIconMenu.setEnabledIndices([0,1],false);

MIconMenu.setIcon()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.setIcon(symbol)

Parameters

symbol A string; the name of the icon symbol as specified in the library.

Returns

Nothing.

Description

Method; sets the icon of the icon menu component to the symbol specified in the library.

Example

The following code sets the icon to triangle.jpg:
myIconMenu.setIcon("triangle.jpg");

MIconMenu.setLabel()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.setLabel(label)

Parameters

label A string; the label that appears on the icon menu button.
IconMenu component 267

Returns

Nothing.

Description

Method; sets the label that appears on the icon menu button.

Example

The following code sets the label to Options:
myIconMenu.setLabel("Options");

MIconMenu.setLabelPlacement()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.setLabelPlacement(position)

Parameters

position A string; the position of the label, relative to the icon. Possible values are left,
right, top, and bottom.

Returns

Nothing.

Description

Method; sets the position of the label in the IconButton component, relative to the icon. Possible
values are left, right, top, and button.

Example

The following code sets the position of the label to the left of the button:
myIconMenu.setLabelPlacement("left");

MIconMenu.setMenuWidth()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.setMenuWidth(width)
268 Chapter 2: Components Reference

Parameters

width An integer to set the width of the menu, in pixels.

Returns

Nothing.

Description

Method; sets the width of the menu. The length is determined by the number of items.

Example

The following code sets the width of the menu to 50 pixels:
myIconMenu.setMenuWidth(50);

MIconMenu.setPopUpLocation()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.setPopUpLocation(movieclip)

Parameters

movieclip A movie clip instance.

Returns

Nothing.

Description

Method; sets the location of the pop-up menu to that of the movie clip instance.

MIconMenu.setRowCount()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.setRowCount(index)

Parameters

index The number of visible rows in the menu.
IconMenu component 269

Returns

Nothing.

Description

Method; sets the number of rows visible in the menu. The index parameter indicates the number
of visible rows.

Example

The following code example sets the number of visible rows to five, in a zero-based index:
myIconMenu.setRowCount(4);

MIconMenu.setSize()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.setSize(width, height)

Parameters

width The width of the button, in pixels.

height The height of the button, in pixels.

Returns

Nothing.

Description

Method; sets the width and height of the button, in pixels.

Example

The following code sets the width to 20 pixels and the height to 15 pixels:
myIconMenu.setSize(20,15);

MIconMenu.showCheckmarks()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myIconMenu.showCheckmarks(state)
270 Chapter 2: Components Reference

Parameters

state A Boolean value; shows the check marks (true) or hides them (false).

Returns

Nothing.

Description

Method; sets whether check marks are visible in the menu. When state is true, check marks
appear to the left of items that the user selected in the menu. When state is false, no check
marks appear.

Example

The following example hides check marks:
myIconMenu.showCheckmarks(false);

Label component

A label component is a single line of text. You can specify that a label be formatted with HTML.
You can also control the alignment and size of a label. Label components don’t have borders,
cannot be focused, and don’t broadcast any events.

A live preview of each Label instance reflects changes made to parameters in the Property
inspector or Component inspector during authoring. The label doesn’t have a border, so the only
way to see its live preview is to set its text parameter. The autoSize parameter is not supported in
live preview.

When you add the Label component to an application, you can use the Accessibility panel
to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.LabelAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances you have of
the component.

Using the label component

Use a Label component to create a text label for another component in a form, such as a “Name:”
label to the left of a TextInput field that accepts a user’s name. If you’re building an application
using components based on version 2 of the Macromedia Component Architecture, it’s a good
idea to use a Label component instead of a plain text field because you can use styles to maintain
a consistent look and feel.

If you want to rotate a Label component, you must embed the fonts. See “Using styles with the
Label component” on page 273.
Label component 271

Label parameters

You can set the following authoring parameters for each Label component instance in the
Property inspector or in the Component inspector:

text indicates the text of the label; the default value is Label.

html indicates whether the label is formatted with HTML (true) or not (false). If this
parameter is set to true, a label cannot be formatted with styles. The default value is false.

autoSize indicates how the label sizes and aligns to fit the text. The default value is none. The
parameter can have any of the following four values:

• none specifies that the label doesn’t resize or align to fit the text.
• left specifies that the right and bottom sides of the label resize to fit the text. The left and top

sides don’t resize.
• center specifies that the bottom side of the label resizes to fit the text. The horizontal center of

the label stays anchored at its original horizontal center position.
• right specifies that the left and bottom sides of the label resize to fit the text. The top and

right side don’t resize.

Note: The Label component’s autoSize property is different from the built-in ActionScript TextField
object’s autoSize property.

You can write ActionScript to set additional options for Label instances using its methods,
properties, and events. For more information, see “Label class” on page 273.

Creating an application with the Label component

The following procedure explains how to add a Label component to an application while
authoring. In this example, the label is beside a combo box with dates in a shopping
cart application.

To create an application with the Label component:

1. Drag a Label component from the Components panel to the Stage.

2. In the Component inspector, enter Expiration Date for the label parameter.

Customizing the Label component

You can transform a Label component horizontally and vertically while authoring and at runtime.
While authoring, select the component on the Stage and use the Free Transform tool or any of the
Modify > Transform commands. You can also set the autoSize authoring parameter; setting this
parameter doesn’t change the bounding box in the live preview, but the label does resize. For more
information, see “Label parameters” on page 272. At runtime, use the setSize() method (see
UIObject.setSize()) or Label.autoSize.
272 Chapter 2: Components Reference

Using styles with the Label component

You can set style properties to change the appearance of a label instance. All text in a Label
component instance must share the same style. For example, you can’t set the color style to
"blue" for one word in a label and to "red" for the second word in the same label.

If the name of a style property ends in “Color”, it is a color style property and behaves differently
than noncolor style properties. For more information about styles, see “Using styles to customize
component color and text” in Flash Help.

A Label component supports the following styles:

Using skins with the Label component

The Label component does not have any visual elements to skin.

Label class

Inheritance MovieClip > UIObject class > Label

ActionScript Class Name mx.controls.Label

The properties of the Label class allow you at runtime to specify text for the label, indicate
whether the text can be formatted with HTML, and indicate whether the label auto-sizes to fit
the text.

Style Theme Description

color Both The text color. The default value is 0x0B333C for the Halo theme and
blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The default color is
0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in fontFamily
is an embedded font. This style must be set to true if fontFamily refers
to an embedded font. Otherwise, the embedded font will not be used. If
this style is set to true and fontFamily does not refer to an embedded
font, no text will be displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bold". The default value is "none". All
components can also accept the value "normal" in place of "none"
during a setStyle() call, but subsequent calls to getStyle() will return
"none".

textAlign Both The text alignment: either "left", "right", or "center". The default
value is "left".

textDecoration Both The text decoration: either "none" or "underline". The default value is
"none".
Label component 273

Setting a property of the Label class with ActionScript overrides the parameter of the same name
set in the Property inspector or Component inspector.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.controls.Label.version);

Note: The code trace(myLabelInstance.version); returns undefined.

Method summary for the Label class

There are no methods exclusive to the Label class.

Methods inherited from the UIObject class

The following table lists the methods the Label class inherits from the UIObject class. When
calling these methods from the Label object, use the form labelInstance.methodName.

Property summary for the Label class

The following table lists properties of the Label class.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Property Description

Label.autoSize A string that indicates how a label sizes and aligns to fit the value of
its text property. There are four possible values: "none", "left",
"center", and "right". The default value is "none".

Label.html A Boolean value that indicates whether a label can be formatted
with HTML (true) or not (false).

Label.text The text on the label.
274 Chapter 2: Components Reference

Properties inherited from the UIObject class

The following table lists the properties the Label class inherits from the UIObject class. When
accessing these properties, use the form labelInstance.propertyName.

Event summary for the Label class

There are no events exclusive to the Label class.

Events inherited from the UIObject class

The following table lists the events the Label class inherits from the UIObject class.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.
Label component 275

Label.autoSize

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

labelInstance.autoSize

Description

Property; a string that indicates how a label sizes and aligns to fit the value of its text property.
There are four possible values: "none", "left", "center", and "right". The default value
is "none".

• none The label doesn’t resize or align to fit the text.
• left The right and bottom sides of the label resize to fit the text. The left and top sides

don’t resize.
• center The bottom side of the label resizes to fit the text. The horizontal center of the label

stays anchored at its original horizontal center position.
• right The left and bottom sides of the label resize to fit the text. The top and right sides

don’t resize.

Note: The Label component’s autoSize property is different from the built-in ActionScript TextField
object’s autoSize property.

Label.html

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

labelInstance.html

Description

Property; a Boolean value that indicates whether the label can be formatted with HTML (true)
or not (false). The default value is false. Label components with the html property set to true
cannot be formatted with styles.

To retrieve plain text from HTML-formatted text, set the HTML property to false and then access
the text property. This will remove the HTML formatting, so you may want to copy the label
text to an offscreen Label or TextArea component before you retrieve the plain text.
276 Chapter 2: Components Reference

Example

The following example sets the html property to true so the label can be formatted with HTML.
The text property is then set to a string that includes HTML formatting.
lbl.html = true;
lbl.text = "The Royal Nonesuch";

The word “Royal” displays in bold.

Label.text

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

labelInstance.text

Description

Property; the text of a label. The default value is "Label".

Example

The following code sets the text property of the Label instance labelControl and sends the
value to the Output panel:
labelControl.text = "The Royal Nonesuch";
trace(labelControl.text);

List component

The List component is a scrollable single- or multiple-selection list box. A list can also display
graphics, including other components. You add the items displayed in the list by using the Values
dialog box that appears when you click in the labels or data parameter fields. You can also use the
List.addItem() and List.addItemAt() methods to add items to the list.

The List component uses a zero-based index, where the item with index 0 is the top item
displayed. When adding, removing, or replacing list items using the List class methods and
properties, you may need to specify the index of the list item.

The list receives focus when you click it or tab to it, and you can then use the following keys to
control it:

Key Description

Alphanumeric keys Jump to the next item that has Key.getAscii() as the first character in its label.

Control Toggle key that allows multiple noncontiguous selections and deselections.

Down Arrow Selection moves down one item.

Home Selection moves to the top of the list.
List component 277

Note: The page size used by the Page Up and Page Down keys is one less than the number of items
that fit in the display. For example, paging down through a ten-line drop-down list will show items 0-
9, 9-18, 18-27, and so on, with one item overlapping per page.

For more information about controlling focus, see “Creating custom focus navigation” in Flash
Help or “FocusManager class” on page 231.

A live preview of each List instance on the Stage reflects changes made to parameters in the
Property inspector or Component inspector during authoring.

When you add the List component to an application, you can use the Accessibility panel to
make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.ListAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances you have of
the component.

Using the List component

You can set up a list so that users can make either single or multiple selections. For example, a user
visiting an e-commerce website needs to select which item to buy. There are 30 items, and the
user scrolls through a list and selects one by clicking it.

You can also design a list that uses custom movie clips as rows so you can display more
information to the user. For example, in an e-mail application, each mailbox could be a List
component and each row could have icons to indicate priority and status.

Understanding the design of the List component

When you design an application with the List component, or any component that extends the
List class, it is helpful to understand how the list was designed. The following are some
fundamental assumptions and requirements that Macromedia used when developing the List
class:

• Keep it small, fast, and simple.
Don’t make something more complicated than absolutely necessary. This was the prime design
directive. Most of the requirements listed below are based on this directive.

• Lists have uniform row heights.
Every row must be the same height; the height can be set during authoring or at runtime.

• Lists must scale to thousands of records.

Page Down Selection moves down one page.

Page Up Selection moves up one page.

Shift Allows for contiguous selection.

Up Arrow Selection moves up one item.

Key Description
278 Chapter 2: Components Reference

• Lists don’t measure text.
This restriction has the most potential ramifications. Because a list must scale to thousands of
records, any one of which could contain an unusually long string, it shouldn’t grow to fit the
largest string of text within it, or add a horizontal scroll bar in “auto” mode. Also, measuring
thousands of strings would be too intensive. The compromise is the maxHPosition property,
which, when vScrollPolicy is set to "on", gives the list extra buffer space for scrolling.
If you know you’re likely to deal with long strings, turn hScrollPolicy to "on", and add a
200-pixel maxHPosition value to your List or Tree component. A user is more or less
guaranteed to be able to scroll to see everything. The DataGrid component, however, does
support "auto" as an hScrollPolicy value, because it measures columns (which are the same
width per item), not text.
The fact that lists don’t measure text also explains why lists have uniform row heights. Sizing
individual rows to fit text would require intensive measuring. For example, if you wanted to
accurately show the scroll bars on a list with nonuniform row height, you’d need to premeasure
every row.

• Lists perform worse as a function of their visible rows.
Although lists can display 5000 records, they can’t render 5000 records at once. The more
visible rows (specified by the rowCount property) you have on the Stage, the more work the list
must to do to render. Limiting the number of visible rows, if at all possible, is the best solution.

• Lists aren’t tables.
For example, DataGrid components, which extend the List class, are intended to provide an
interface for many records. They’re not designed to display complete information; they’re
designed to display enough information so that users can drill down to see more. The message
view in Microsoft Outlook is a prime example. You don't read the entire e-mail in the grid; the
mail would be difficult to read and the client would perform terribly. Outlook displays enough
information so that a user can drill into the post to see the details.

List parameters

You can set the following authoring parameters for each List component instance in the Property
inspector or in the Component inspector:

data is an array of values that populate the data of the list. The default value is [] (an empty
array). There is no equivalent runtime property.

labels is an array of text values that populate the label values of the list. The default value is [] (an
empty array). There is no equivalent runtime property.

multipleSelection is a Boolean value that indicates whether you can select multiple values (true)
or not (false). The default value is false.

rowHeight indicates the height, in pixels, of each row. The default value is 20. Setting a font does
not change the height of a row.

You can write ActionScript to set additional options for List instances using its methods,
properties, and events. For more information, see “List class” on page 284.
List component 279

Creating an application with the List component

The following procedure explains how to add a List component to an application while
authoring. In this example, the list is a sample with three items.

To add a simple List component to an application:

1. Drag a List component from the Components panel to the Stage.

2. Select the list and select Modify > Transform to resize it to fit your application.

3. In the Property inspector, do the following:

■ Enter the instance name myList.
■ Enter Item1, Item2, and Item3 for the labels parameter.
■ Enter item1.html, item2.html, item3.html for the data parameter.

4. Select Control > Test Movie to see the list with its items.

You could use the data property values in your application to open HTML files.

To populate a List instance with a data provider:

1. Drag a List component from the Components panel to the Stage.

2. Select the list and select Modify > Transform to resize it to fit your application.

3. In the Actions panel, enter the instance name myList.

4. Select Frame 1 of the Timeline and, in the Actions panel, enter the following:
myList.dataProvider = myDP;

If you have defined a data provider named myDP, the list will fill with data. (For more
information about data providers, see List.dataProvider.)

5. Select Control > Test Movie to see the list with its items.

Customizing the List component

You can transform a List component horizontally and vertically while authoring and at runtime.
While authoring, select the component on the Stage and use the Free Transform tool or any of the
Modify > Transform commands. At runtime, use the List.setSize() method (see
UIObject.setSize()).

When a list is resized, the rows of the list shrink horizontally, clipping any text within them.
Vertically, the list adds or removes rows as needed. Scroll bars position themselves automatically.
For more information about scroll bars, see “UIScrollBar component” on page 557.
280 Chapter 2: Components Reference

Using styles with the List component

You can set style properties to change the appearance of a List component.

A List component uses the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values are
"haloGreen", "haloBlue", and "haloOrange". The default value
is "haloGreen".

alternatingRowColors Both Specifies colors for rows in an alternating pattern. The value
can be an array of two or more colors, for example, 0xFF00FF,
0xCC6699, and 0x996699. Unlike single-value color styles,
alternatingRowColors does not accept color names; the
values must be numeric color codes. By default, this style is not
set and backgroundColor is used in its place for all rows.

backgroundColor Both The background color of the list. The default color is white and
is defined on the class style declaration. This style is ignored if
alternatingRowColors is specified.

backgroundDisabledColor Both The background color when the component’s enabled property
is set to "false". The default value is 0xDDDDDD (medium
gray).

border styles Both The List component uses a RectBorder instance as its border
and responds to the styles defined on that class. See
“RectBorder class” in Flash Help.
The default border style is "inset".

color Both The text color.

disabledColor Both The color for text when the component is disabled. The default
color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to true
if fontFamily refers to an embedded font. Otherwise, the
embedded font will not be used. If this style is set to true and
fontFamily does not refer to an embedded font, no text will be
displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bold". The default value
is "none". All components can also accept the value "normal" in
place of "none" during a setStyle() call, but subsequent calls
to getStyle() will return "none".

textAlign Both The text alignment: either "left", "right", or "center". The
default value is "left".
List component 281

textDecoration Both The text decoration: either "none" or "underline". The default
value is "none".

textIndent Both A number indicating the text indent. The default value is 0.

defaultIcon Both The name of the default icon to display on each row. The
default value is undefined, which means no icon is displayed.

repeatDelay Both The number of milliseconds of delay between when a user first
presses a button in the scrollbar and when the action begins to
repeat. The default value is 500, half a second.

repeatInterval Both The number of milliseconds between automatic clicks when a
user holds the mouse button down on a button in the scrollbar.
The default value is 35.

rollOverColor Both The background color of a rolled-over row. The default value is
0xE3FFD6 (bright green) with the Halo theme and
0xAAAAAA (light gray) with the Sample theme.
When themeColor is changed through a setStyle() call, the
framework sets rollOverColor to a value related to the
themeColor chosen.

selectionColor Both The background color of a selected row. The default value is a
0xCDFFC1 (light green) with the Halo theme and 0xEEEEEE
(very light gray) with the Sample theme.
When themeColor is changed through a setStyle() call, the
framework sets selectionColor to a value related to the
themeColor chosen.

selectionDuration Both The length of the transition from a normal to selected state or
back from selected to normal, in milliseconds. The default value
is 200.

selectionDisabledColor Both The background color of a selected row. The default value is a
0xDDDDDD (medium gray). Because the default value for this
property is the same as the default for
backgroundDisabledColor, the selection is not visible when the
component is disabled unless one of these style properties is
changed.

selectionEasing Both A reference to the easing equation used to control the
transition between selection states. This applies only for the
transition from a normal to a selected state. The default
equation uses a sine in/out formula. For more information, see
“Customizing component animations” in Flash Help.

textRollOverColor Both The color of text when the mouse pointer rolls over it. The
default value is 0x2B333C (dark gray). This style is important
when you set rollOverColor, because the two settings must
complement each other so that text is easily viewable during a
rollover.

Style Theme Description
282 Chapter 2: Components Reference

Setting styles for all List components in a document

The List class inherits from the ScrollSelectList class. The default class-level style properties are
defined on the ScrollSelectList class, which the Menu component and all List-based components
extend. You can set new default style values on this class directly, and the new settings will be
reflected in all affected components.
_global.styles.ScrollSelectList.setStyle("backgroundColor", 0xFF00AA);

To set a style property on the List and List-based components only, you can create a new
CSSStyleDeclaration instance and store it in _global.styles.List.
import mx.styles.CSSStyleDeclaration;
if (_global.styles.List == undefined) {

_global.styles.List = new CSSStyleDeclaration();
}
_global.styles.List.setStyle("backgroundColor", 0xFF00AA);

When creating a new class-level style declaration, you will lose all default values provided by the
ScrollSelectList declaration. This includes backgroundColor, which is required for
supporting mouse events. To create a class-level style declaration and preserve defaults, use a
for..in loop to copy the old settings to the new declaration.
var source = _global.styles.ScrollSelectList;
var target = _global.styles.List;
for (var style in source) {

target.setStyle(style, source.getStyle(style));
}

To provide styles for the List component but not for components that extend List (DataGrid and
Tree), you must provide class-level style declarations for these subclasses.
import mx.styles.CSSStyleDeclaration;
if (_global.styles.DataGrid == undefined) {

_global.styles.DataGrid = new CSSStyleDeclaration();
}
_global.styles.DataGrid.setStyle("backgroundColor", 0xFFFFFF);
if (_global.styles.Tree == undefined) {

_global.styles.Tree = new CSSStyleDeclaration();
}
_global.styles.Tree.setStyle("backgroundColor", 0xFFFFFF);

For more information about class-level styles, see “Setting styles for a component class” in Flash
Help.

textSelectedColor Both The color of text in the selected row. The default value is
0x005F33 (dark gray). This style is important when you set
selectionColor, because the two settings must complement
each other so that text is easily viewable while selected.

useRollOver Both Determines whether rolling over a row activates highlighting.
The default value is true.

Style Theme Description
List component 283

Using skins with the List component

The List component uses an instance of RectBorder for its border and scroll bars for scrolling
images. For more information about skinning these visual elements, see “RectBorder class” in
Flash Help and “Using skins with the ScrollPane component” on page 424.

List class

Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView >
ScrollSelectList > List

ActionScript Class Name mx.controls.List

The List component is composed of three parts: items, rows, and a data provider.

An item is an ActionScript object used for storing the units of information in the list. A list can be
thought of as an array; each indexed space of the array is an item. An item is an object that
typically has a label property that is displayed and a data property that is used for storing data.

A row is a component that is used to display an item. Rows are either supplied by default by the
list (the SelectableRow class is used), or you can supply them, usually as a subclass of the
SelectableRow class. The SelectableRow class implements the CellRenderer API, which is the set
of properties and methods that allow the list to manipulate each row and send data and state
information (for example, size, selected, and so on) to the row for display.

A data provider is a data model of the list of items in a list. Any array in the same frame as a list is
automatically given methods that let you manipulate data and broadcast changes to multiple
views. You can build an Array instance or get one from a server and use it as a data model for
multiple lists, combo boxes, data grids, and so on. The List component has methods that proxy to
its data provider (for example, addItem() and removeItem()). If no external data provider is
provided to the list, these methods create a data provider instance automatically, which is exposed
through List.dataProvider.

To add a List component to the tab order of an application, set its tabIndex property (see
UIComponent.tabIndex). The List component uses the Focus Manager to override the default
Flash Player focus rectangle and draw a custom focus rectangle with rounded corners. For more
information, see “Creating custom focus navigation” in Flash Help.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.controls.List.version);

Note: The code trace(myListInstance.version); returns undefined.
284 Chapter 2: Components Reference

Method summary for the List class

The following table lists methods of the List class.

Methods inherited from the UIObject class

The following table lists the methods the List class inherits from the UIObject class. When calling
these methods, use the form listInstance.methodName.

Method Description

List.addItem() Adds an item to the end of the list.

List.addItemAt() Adds an item to the list at the specified index.

List.getItemAt() Returns the item at the specified index.

List.removeAll() Removes all items from the list.

List.removeItemAt() Removes the item at the specified index.

List.replaceItemAt() Replaces the item at the specified index with another item.

List.setPropertiesAt() Applies the specified properties to the specified item.

List.sortItems() Sorts the items in the list according to the specified compare
function.

List.sortItemsBy() Sorts the items in the list according to a specified property.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.
List component 285

Methods inherited from the UIComponent class

The following table lists the methods the List class inherits from the UIComponent class. When
calling these methods, use the form listInstance.methodName.

Property summary for the List class

The following table lists properties of the List class.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

List.cellRenderer Assigns the class or symbol to use to display each row of the list.

List.dataProvider The source of the list items.

List.hPosition The horizontal position of the list.

List.hScrollPolicy Indicates whether the horizontal scroll bar is displayed ("on") or
not ("off").

List.iconField A field in each item to be used to specify icons.

List.iconFunction A function that determines which icon to use.

List.labelField Specifies a field of each item to be used as label text.

List.labelFunction A function that determines which fields of each item to use for the
label text.

List.length The number of items in the list. This property is read-only.

List.maxHPosition The number of pixels the list can scroll to the right, when
List.hScrollPolicy is set to "on".

List.multipleSelection Indicates whether multiple selection is allowed in the list (true) or
not (false).

List.rowCount The number of rows that are at least partially visible in the list.

List.rowHeight The pixel height of every row in the list.

List.selectable Indicates whether the list is selectable (true) or not (false).

List.selectedIndex The index of a selection in a single-selection list.

List.selectedIndices An array of the selected items in a multiple-selection list.

List.selectedItem The selected item in a single-selection list. This property is read-
only.

List.selectedItems The selected item objects in a multiple-selection list. This property
is read-only.

List.vPosition The topmost visible item of the list.

List.vScrollPolicy Indicates whether the vertical scroll bar is displayed ("on"), not
displayed ("off"), or displayed when needed ("auto").
286 Chapter 2: Components Reference

Properties inherited from the UIObject class

The following table lists the properties the List class inherits from the UIObject class. When
accessing these properties, use the form listInstance.propertyName.

Properties inherited from the UIComponent class

The following table lists the properties the List class inherits from the UIComponent class. When
accessing these properties, use the form listInstance.propertyName.

Event summary for the List class

The following table lists events that of the List class.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event Description

List.change Broadcast whenever user interaction causes the selection to
change.

List.itemRollOut Broadcast when the pointer rolls over and then off of list items.

List.itemRollOver Broadcast when the pointer rolls over list items.

List.scroll Broadcast when a list is scrolled.
List component 287

Events inherited from the UIObject class

The following table lists the events the List class inherits from the UIObject class.

Events inherited from the UIComponent class

The following table lists the events the List class inherits from the UIComponent class.

List.addItem()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.addItem(label[, data])

listInstance.addItem(itemObject)

Parameters

label A string that indicates the label for the new item.

data The data for the item. This parameter is optional and can be of any data type.

itemObject An item object that usually has label and data properties.

Returns

The index at which the item was added.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
288 Chapter 2: Components Reference

Description

Method; adds a new item to the end of the list.

In the first usage example, an item object is always created with the specified label property, and,
if specified, the data property.

The second usage example adds the specified item object.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components will update as well.

Example

Both of the following lines of code add an item to the myList instance. To try this code, drag a
List component to the Stage and give it the instance name myList. Add the following code to
Frame 1 in the Timeline:
myList.addItem("this is an Item");
myList.addItem({label:"Gordon",age:"very old",data:123});

List.addItemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.addItemAt(index, label[, data])

listInstance.addItemAt(index, itemObject)

Parameters

index A number greater than or equal to 0 that indicates the position of the item.

label A string that indicates the label for the new item.

data The data for the item. This parameter is optional and can be of any data type.

itemObject An item object that usually has label and data properties.

Returns

The index at which the item was added.

Description

Method; adds a new item to the position specified by the index parameter.

In the first usage example, an item object is always created with the specified label property, and,
if specified, the data property.

The second usage example adds the specified item object.
List component 289

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components will update as well.

Example

The following line of code adds an item to the third index position, which is the fourth item in
the list:
myList.addItemAt(3,{label:'Red',data:0xFF0000});

List.cellRenderer

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.cellRenderer

Description

Property; assigns the cell renderer to use for each row of the list. This property must be a class
object reference or a symbol linkage identifier. Any class used for this property must implement
the CellRenderer API.

Example

The following example uses a linkage identifier to set a new cell renderer:
myList.cellRenderer = "ComboBoxCell";

List.change

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(change){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

// your code here
}
listInstance.addEventListener("change", listenerObject)
290 Chapter 2: Components Reference

Description

Event; broadcast to all registered listeners when the selected index of the list changes as a result of
user interaction.

The first usage example uses an on() handler and must be attached directly to a List instance.
The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the List instance myBox, sends
“_level0.myBox” to the Output panel:
on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(listInstance) dispatches an event (in this case, change) and the event is handled by a function,
also called a handler, on a listener object (listenerObject) that you create. You define a method
with the same name as the event on the listener object; the method is called when the event is
triggered. When the event is triggered, it automatically passes an event object (eventObject) to
the listener object method. Each event object has properties that contain information about the
event. You can use these properties to write code that handles the event. For more information,
see “EventDispatcher class (API)” in Flash Help.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends the instance name of the component that generated the change
event to the Output panel:
form.change = function(eventObj){

trace("Value changed to " + eventObj.target.value);
}
myList.addEventListener("change", form);

See also

EventDispatcher.addEventListener() in Flash Help

List.dataProvider

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listinstance.dataProvider
List component 291

Description

Property; the data model for items viewed in a list. The value of this property can be an array or
any object that implements the DataProvider API. The default value is []. For more information,
see “DataProvider API” in Flash Help.

The List component, like other data-aware components, adds methods to the Array object’s
prototype so that they conform to the DataProvider API. Therefore, any array that exists at the
same time as a list automatically has all the methods (addItem(), getItemAt(), and so on)
it needs to be the data model for the list, and can be used to broadcast model changes to
multiple components.

If the array contains objects, the List.labelField or List.labelFunction properties are
accessed to determine what parts of the item to display. The default value is "label", so if a
label field exists, it is chosen for display; if it doesn’t exist, a comma-separated list of all fields
is displayed.

Note: If the array contains strings at each index, and not objects, the list is not able to sort the items
and maintain the selection state. Any sorting will cause the selection to be lost.

Any instance that implements the DataProvider API can be a data provider for a List component.
This includes Flash Remoting recordsets, Firefly data sets, and so on.

Example

This example uses an array of strings to populate the list:
list.dataProvider = ["Ground Shipping","2nd Day Air","Next Day Air"];

This example creates a data provider array and assigns it to the dataProvider property, as in
the following:
myDP = new Array();
list.dataProvider = myDP;

for (var i=0; i<accounts.length; i++) {
 // these changes to the data provider will be broadcast to the list
 myDP.addItem({label: accounts[i].name,
 data: accounts[i].accountID});
}

List.getItemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.getItemAt(index)
292 Chapter 2: Components Reference

Parameters

index A number greater than or equal to 0, and less than List.length. It specifies the index of
the item to retrieve.

Returns

The indexed item object; undefined if the index is out of range.

Description

Method; retrieves the item at the specified index.

Example

The following code displays the label of the item at index position 4:
trace(myList.getItemAt(4).label);

List.hPosition

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.hPosition

Description

Property; scrolls the list horizontally to the number of pixels specified. You can’t set hPosition
unless the value of hScrollPolicy is "on" and the list has a maxHPosition that is greater than 0.

Example

The following example gets the horizontal scroll position of myList:
var scrollPos = myList.hPosition;

The following example sets the horizontal scroll position all the way to the left:
myList.hPosition = 0;

List.hScrollPolicy

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.hScrollPolicy
List component 293

Description

Property; a string that determines whether the horizontal scroll bar is displayed; the value can be
"on" or "off". The default value is "off". The horizontal scroll bar does not measure text; you
must set a maximum horizontal scroll position (see List.maxHPosition).

Note: List.hScrollPolicy does not support the value "auto".

Example

The following code enables the list to scroll horizontally up to 200 pixels:
myList.hScrollPolicy = "on";
myList.Box.maxHPosition = 200;

See also

List.hPosition, List.maxHPosition

List.iconField

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.iconField

Description

Property; specifies the name of a field to be used as an icon identifier. If the field has a value of
undefined, the default icon specified by the defaultIcon style is used. If the defaultIcon style
is undefined, no icon is used.

Example

The following example sets the iconField property to the icon property of each item:
list.iconField = "icon"

See also

List.iconFunction

List.iconFunction

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.
294 Chapter 2: Components Reference

Usage

listInstance.iconFunction

Description

Property; specifies a function that determines which icon each row will use to display its item.
This function receives a parameter, item, which is the item being rendered, and must return a
string representing the icon’s symbol identifier.

Example

The following example adds icons that indicate whether a file is an image or a text document. If
the data.fileExtension field contains a value of "jpg" or "gif", the icon used will be
"pictureIcon", and so on.
list.iconFunction = function(item){

var type = item.data.fileExtension;
if (type=="jpg" || type=="gif") {

return "pictureIcon";
} else if (type=="doc" || type=="txt") {

return "docIcon";
}

}

List.itemRollOut

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(itemRollOut){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.itemRollOut = function(eventObject){

// your code here
}
listInstance.addEventListener("itemRollOut", listenerObject)

Event object

In addition to the standard properties of the event object, the itemRollOut event has an index
property, which specifies the number of the item that was rolled out.
List component 295

Description

Event; broadcast to all registered listeners when the pointer rolls over and then off of list items.

The first usage example uses an on() handler and must be attached directly to a List instance.
The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the List instance myList, sends
“_level0.myList” to the Output panel:
on(itemRollOut){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(listInstance) dispatches an event (in this case, itemRollOut) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches the
event, the listener is called.

For more information, see “EventDispatcher class (API)” in Flash Help.

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled over:
form.itemRollOut = function (eventObj) {
 trace("Item #" + eventObj.index + " has been rolled out.");
}
myList.addEventListener("itemRollOut", form);

See also

List.itemRollOver

List.itemRollOver

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(itemRollOver){

// your code here
}

296 Chapter 2: Components Reference

Usage 2:
listenerObject = new Object();
listenerObject.itemRollOver = function(eventObject){

// your code here
}
listInstance.addEventListener("itemRollOver", listenerObject)

Event object

In addition to the standard properties of the event object, the itemRollOver event has an index
property that specifies the number of the item that was rolled over.

Description

Event; broadcast to all registered listeners when the list items are rolled over.

The first usage example uses an on() handler and must be attached directly to a List instance.
The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the List instance myList, sends
“_level0.myList” to the Output panel:
on(itemRollOver){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(listInstance) dispatches an event (in this case, itemRollOver) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class (API)” in Flash Help.

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled over:
form.itemRollOver = function (eventObj) {
 trace("Item #" + eventObj.index + " has been rolled over.");
}
myList.addEventListener("itemRollOver", form);

See also

List.itemRollOut
List component 297

List.labelField

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.labelField

Description

Property; specifies a field in each item to be used as display text. This property takes the value of
the field and uses it as the label. The default value is "label".

Example

The following example sets the labelField property to be the "name" field of each item. “Nina”
would display as the label for the item added in the second line of code:
list.labelField = "name";
list.addItem({name: "Nina", age: 25});

See also

List.labelFunction

List.labelFunction

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.labelFunction

Description

Property; specifies a function that determines which field (or field combination) of each item to
display. This function receives one parameter, item, which is the item being rendered, and must
return a string representing the text to display.

Example

The following example makes the label display some formatted details of the items:
list.labelFunction = function(item){

return "The price of product " + item.productID + ", " + item.productName +
" is $"

+ item.price;
}

298 Chapter 2: Components Reference

See also

List.labelField

List.length

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.length

Description

Property (read-only); the number of items in the list.

Example

The following example places the value of length in a variable:
var len = myList.length;

List.maxHPosition

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.maxHPosition

Description

Property; specifies the number of pixels the list can scroll when List.hScrollPolicy is set to
"on". The list doesn’t precisely measure the width of text that it contains. You must set
maxHPosition to indicate the amount of scrolling that the list requires. The list does not scroll
horizontally if this property is not set.

Example

The following example creates a list with 400 pixels of horizontal scrolling:
myList.hScrollPolicy = "on";
myList.maxHPosition = 400;

See also

List.hScrollPolicy
List component 299

List.multipleSelection

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.multipleSelection

Description

Property; indicates whether multiple selections are allowed (true) or only single selections are
allowed (false). The default value is false.

Example

The following example tests to determine whether multiple items can be selected:
if (myList.multipleSelection){

// your code here
}

The following example allows the list to take multiple selections:
myList.multipleSelection = true;

List.removeAll()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.removeAll()

Parameters

None.

Returns

Nothing.

Description

Method; removes all items in the list.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components will update as well.
300 Chapter 2: Components Reference

Example

The following code clears the list:
myList.removeAll();

List.removeItemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.removeItemAt(index)

Parameters

index A string that indicates the label for the new item. The value must be greater than 0 and
less than List.length.

Returns

An object; the removed item (undefined if no item exists).

Description

Method; removes the item at the specified index position. The list indices after the specified index
collapse by one.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components will update as well.

Example

The following code removes the item at index position 3:
myList.removeItemAt(3);

List.replaceItemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.replaceItemAt(index, label[, data])

listInstance.replaceItemAt(index, itemObject)
List component 301

Parameters

index A number greater than 0 and less than List.length that indicates the position at which
to insert the item (the index of the new item).

label A string that indicates the label for the new item.

data The data for the item. This parameter is optional and can be of any type.

itemObject An object to use as the item, usually containing label and data properties.

Returns

Nothing.

Description

Method; replaces the content of the item at the specified index.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components will update as well.

Example

The following example changes the fourth index position:
myList.replaceItemAt(3, "new label");

List.rowCount

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.rowCount

Description

Property; the number of rows that are at least partially visible in the list. This is useful if you’ve
scaled a list by pixel and need to count its rows. Conversely, setting the number of rows
guarantees that an exact number of rows will be displayed, without a partial row at the bottom.

The code myList.rowCount = num is equivalent to the code
myList.setSize(myList.width, h) (where h is the height required to display num items).

The default value is based on the height of the list as set during authoring, or set by the
list.setSize() method (see UIObject.setSize()).

Example

The following example discovers the number of visible items in a list:
var rowCount = myList.rowCount;
302 Chapter 2: Components Reference

The following example makes the list display four items:
myList.rowCount = 4;

This example removes a partial row at the bottom of a list, if there is one:
myList.rowCount = myList.rowCount;

This example sets a list to the smallest number of rows it can fully display:
myList.rowCount = 1;
trace("myList has "+myList.rowCount+" rows");

List.rowHeight

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.rowHeight

Description

Property; the height, in pixels, of every row in the list. The font settings do not make the rows
grow to fit, so setting the rowHeight property is the best way to make sure items are fully
displayed. The default value is 20.

Example

The following example sets each row to 30 pixels:
myList.rowHeight = 30;

List.scroll

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(scroll){

// your code here
}

List component 303

Usage 2:
listenerObject = new Object();
listenerObject.scroll = function(eventObject){

// your code here
}
listInstance.addEventListener("scroll", listenerObject)

Event object

Along with the standard event object properties, the scroll event has one additional property,
direction. It is a string with two possible values, "horizontal" or "vertical". For a
ComboBox scroll event, the value is always "vertical".

Description

Event; broadcast to all registered listeners when a list scrolls.

The first usage example uses an on() handler and must be attached directly to a List instance.
The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the List instance myList, sends
“_level0.myList” to the Output panel:
on(scroll){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(listInstance) dispatches an event (in this case, scroll) and the event is handled by a function,
also called a handler, on a listener object (listenerObject) that you create. You define a method
with the same name as the event on the listener object; the method is called when the event is
triggered. When the event is triggered, it automatically passes an event object (eventObject) to
the listener object method. Each event object has properties that contain information about the
event. You can use these properties to write code that handles the event. Finally, you call the
EventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information, see “EventDispatcher class (API)” in Flash Help.

Example

The following example sends the instance name of the component that generated the change
event to the Output panel:
form.scroll = function(eventObj){

trace("list scrolled");
}
myList.addEventListener("scroll", form);
304 Chapter 2: Components Reference

List.selectable

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.selectable

Description

Property; a Boolean value that indicates whether the list is selectable (true) or not (false). The
default value is true.

List.selectedIndex

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.selectedIndex

Description

Property; the selected index of a single-selection list. The value is undefined if nothing is
selected; the value is equal to the last item selected if there are multiple selections. If you assign a
value to selectedIndex, any current selection is cleared and the indicated item is selected.

Using the selectedIndex property to change selection doesn’t dispatch a change event. To
dispatch the change event, use the following code:
myList.dispatchEvent({type:"change", target:myList});

Example

This example selects the item after the currently selected item. If nothing is selected, item 0 is
selected.
var selIndex = myList.selectedIndex;
myList.selectedIndex = (selIndex==undefined ? 0 : selIndex+1);

See also

List.selectedIndices, List.selectedItem, List.selectedItems
List component 305

List.selectedIndices

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.selectedIndices

Description

Property; an array of indices of the selected items. Assigning this property replaces the current
selection. Setting selectedIndices to a zero-length array (or undefined) clears the current
selection. The value is undefined if nothing is selected.

The selectedIndices property reflects the order in which the items were selected. If you click
the second item, then the third item, and then the first item, selectedIndices returns [1,2,0].

Example

The following example retrieves the selected indices:
var selIndices = myList.selectedIndices;

The following example selects four items:
var myArray = new Array (1,4,5,7);
myList.selectedIndices = myArray;

See also

List.selectedIndex, List.selectedItem, List.selectedItems

List.selectedItem

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.selectedItem

Description

Property (read-only); an item object in a single-selection list. (In a multiple-selection list with
multiple items selected, selectedItem returns the item that was most recently selected.) If there
is no selection, the value is undefined.
306 Chapter 2: Components Reference

Example

This example displays the selected label:
trace(myList.selectedItem.label);

See also

List.selectedIndex, List.selectedIndices, List.selectedItems

List.selectedItems

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.selectedItems

Description

Property (read-only); an array of the selected item objects. In a multiple-selection list,
selectedItems lets you access the set of items selected as item objects.

Example

The following example retrieves an array of selected item objects:
var myObjArray = myList.selectedItems;

See also

List.selectedIndex, List.selectedItem, List.selectedIndices

List.setPropertiesAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.setPropertiesAt(index, styleObj)

Parameters

index A number greater than 0 or less than List.length indicating the index of the item
to change.

styleObj An object that enumerates the properties and values to set.
List component 307

Returns

Nothing.

Description

Method; applies the specified properties to the specified item. The supported properties are icon
and backgroundColor.

Example

The following example changes the fourth item to black and gives it an icon:
myList.setPropertiesAt(3, {backgroundColor:0x000000, icon: "file"});

List.sortItems()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.sortItems(compareFunc)

Parameters

compareFunc A reference to a function. This function is used to compare two items to
determine their sort order.

For more information, see Array.sort() in Flash ActionScript Language Reference.

Returns

The index at which the item was added.

Description

Method; sorts the items in the list by using the function specified in the compareFunc parameter.

Example

The following example sorts the items according to uppercase labels. Note that the a and b
parameters that are passed to the function are items that have label and data properties.
myList.sortItems(upperCaseFunc);
function upperCaseFunc(a,b){
 return a.label.toUpperCase() > b.label.toUpperCase();
}

See also

List.sortItemsBy()
308 Chapter 2: Components Reference

List.sortItemsBy()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

myList.sortItemsBy(fieldName, optionsFlag)

myList.sortItemsBy(fieldName, order)

Parameters

fieldName A string that specifies the name of the field to use for sorting. This value is usually
"label" or "data".

order A string that specifies whether to sort the items in ascending order ("ASC") or descending
order ("DESC").

optionsFlag Lets you perform multiple sorts of different types on a single array without
having to replicate the entire array or resort it repeatedly.

The following are possible values for optionsFlag:

• Array.DESCENDING, which sorts from highest to lowest.
• Array.CASEINSENSITIVE, which sorts without regard to case.
• Array.NUMERIC, which sorts numerically if the two elements being compared are numbers. If

they aren’t numbers, use a string comparison (which can be case-insensitive if that flag is
specified).

• Array.UNIQUESORT, which returns an error code (0) instead of a sorted array if two objects in
the array are identical or have identical sort fields.

• Array.RETURNINDEXEDARRAY, which returns an integer index array that is the result of the
sort. For example, the following array would return the second line of code and the array
would remain unchanged:
["a", "d", "c", "b"]
[0, 3, 2, 1]

You can combine these options into one value. For example, the following code combines options
3 and 1:
array.sort (Array.NUMERIC | Array.DESCENDING)

Returns

Nothing.
List component 309

Description

Method; sorts the items in the list in the specified order, using the specified field name. If the
fieldName items are a combination of text strings and integers, the integer items are listed first.
The fieldName parameter is usually "label" or "data", but you can specify any primitive data
value.

This is the fastest way to sort data in a component. It also maintains the component’s selection
state. The sortItemsBy() method is fast because it doesn’t run any ActionScript while sorting.
The sortItems() method needs to run an ActionScript compare function, and is therefore
slower.

Example

The following code sorts the items in the list surnameMenu in ascending order using the labels of
the list items:
surnameMenu.sortItemsBy("label", "ASC");

See also

List.sortItems()

List.vPosition

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listInstance.vPosition

Description

Property; sets the topmost visible item of the list. If you set this property to an index number that
doesn’t exist, the list scrolls to the nearest index. The default value is 0.

Example

The following example sets the position of the list to the first index item:
myList.vPosition = 0;

List.vScrollPolicy

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.
310 Chapter 2: Components Reference

Usage

listInstance.vScrollPolicy

Description

Property; a string that determines whether the list supports vertical scrolling. The value of this
property can be "on", "off" or "auto". The value "auto" causes a scroll bar to appear when
needed.

Example

The following example disables the scroll bar:
myList.vScrollPolicy = "off";

You can still create scrolling by using List.vPosition.

See also

List.vPosition

Loader component

The Loader component is a container that can display a SWF or JPEG file. You can scale the
contents of the loader or resize the loader itself to accommodate the size of the contents. By
default, the contents are scaled to fit the loader. You can also load content at runtime and monitor
loading progress.

A Loader component can’t receive focus. However, content loaded into the Loader component
can accept focus and have its own focus interactions. For more information about controlling
focus, see “Creating custom focus navigation” in Flash Help or “FocusManager class”
on page 231.

A live preview of each Loader instance reflects changes made to parameters in the Property
inspector or Component inspector during authoring.

You can use the Accessibility panel to make Loader component content accessible to screen
readers.

Using the Loader component

You can use a loader whenever you need to retrieve content from a remote location and pull it
into a Flash application. For example, you could use a loader to add a company logo (JPEG file)
to a form. You could also use a loader to leverage Flash work that has already been completed. For
example, if you had already built a Flash application and wanted to expand it, you could use the
loader to pull the old application into a new application, perhaps as a section of a tab interface. In
another example, you could use the loader component in an application that displays photos. Use
Loader.load(), Loader.percentLoaded, and Loader.complete to control the timing of the
image loads and display progress bars to the user during loading.

If you load certain version 2 components into a SWF file or into the Loader component, the
components may not work correctly. These components include the following: Alert,
ComboBox, DateField, Menu, MenuBar, and Window.
Loader component 311

Use the _lockroot property when calling loadMovie() or loading into the Loader component.
If you’re using the Loader component, add the following code:

myLoaderComponent.content._lockroot = true;

If you’re using a movie clip with a call to loadMovie(), add the following code:
myMovieClip._lockroot = true;

If you don’t set _lockroot to true in the loader movie clip, the loader only has access to its own
library, but not the library in the loaded movie clip.

The _lockroot property is supported by Flash Player 7.

Loader parameters

You can set the following authoring parameters for each Loader component instance in the
Property inspector or in the Component inspector:

autoload indicates whether the content should load automatically (true), or wait to load until
the Loader.load() method is called (false). The default value is true.

contentPath an absolute or relative URL indicating the file to load into the loader. A relative
path must be relative to the SWF file loading the content. The URL must be in the same
subdomain as the URL where the Flash content currently resides. For use in Flash Player or in
test-movie mode, all SWF files must be stored in the same folder, and the filenames cannot
include folder or disk drive specifications. The default value is undefined until the load starts.

scaleContent indicates whether the content scales to fit the loader (true), or the loader scales to
fit the content (false). The default value is true.

You can write ActionScript to set additional options for Loader instances using its methods,
properties, and events. For more information, see “Loader class” on page 313.

Creating an application with the Loader component

The following procedure explains how to add a Loader component to an application while
authoring. In this example, the loader loads a logo JPEG from an imaginary URL.

To create an application with the Loader component:

1. Drag a Loader component from the Components panel to the Stage.

2. Select the loader on the Stage and use the Free Transform tool to size it to the dimensions of
the corporate logo.

3. In the Property inspector, enter the instance name logo.

4. Select the loader on the Stage and in the Component inspector, and enter http://corp.com/
websites/logo/corplogo.jpg for the contentPath parameter.
312 Chapter 2: Components Reference

Customizing the Loader component

You can transform a Loader component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()).

The sizing behavior of the Loader component is controlled by the scaleContent property. When
scaleContent is true, the content is scaled to fit within the bounds of the loader (and is rescaled
when UIObject.setSize() is called). When scaleContent is false, the size of the component
is fixed to the size of the content and UIObject.setSize() has no effect.

Using styles with the Loader component

The Loader component uses the following styles.

Using skins with the Loader component

The Loader component uses an instance of RectBorder for its border (see “RectBorder class” in
Flash Help).

Loader class

Inheritance MovieClip > UIObject class > UIComponent class > View > Loader

ActionScript Class Name mx.controls.Loader

The properties of the Loader class let you set content to load and monitor its loading progress at
runtime.

Setting a property of the Loader class with ActionScript overrides the parameter of the same name
set in the Property inspector or Component inspector.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.controls.Loader.version);

Note: The code trace(myLoaderInstance.version); returns undefined.

Style Theme Description

border styles Both The Loader component uses a RectBorder instance as its border and
responds to the styles defined on that class. See “RectBorder class” in
Flash Help.

The default border style is "none".
Loader component 313

Method summary for the Loader class

The following table lists the method of the Loader class.

Methods inherited from the UIObject class

The following table lists the methods the Loader class inherits from the UIObject class. When
calling these methods from the Loader object, use the form LoaderInstance.methodName.

Methods inherited from the UIComponent class

The following table lists the methods the Loader class inherits from the UIComponent class.
When calling these methods from the Loader object, use the form
LoaderInstance.methodName.

Method Description

Loader.load() Loads the content specified by the contentPath property.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.
314 Chapter 2: Components Reference

Property summary for the Loader class

The following table lists properties of the Loader class.

Properties inherited from the UIObject class

The following table lists the properties the Loader class inherits from the UIObject class. When
accessing these properties from the Loader object, use the form LoaderInstance.propertyName.

Property Description

Loader.autoLoad A Boolean value that indicates whether the content loads
automatically (true) or you must call Loader.load() (false).

Loader.bytesLoaded A read-only property that indicates the number of bytes that have
been loaded.

Loader.bytesTotal A read-only property that indicates the total number of bytes in
the content.

Loader.content A reference to the content of the loader. This property is read-only.

Loader.contentPath A string that indicates the URL of the content to be loaded.

Loader.percentLoaded A number that indicates the percentage of loaded content. This
property is read-only.

Loader.scaleContent A Boolean value that indicates whether the content scales to fit the
loader (true), or the loader scales to fit the content (false).

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.
Loader component 315

Properties inherited from the UIComponent class

The following table lists the properties the Loader class inherits from the UIComponent class.
When accessing these properties from the Loader object, use the form
LoaderInstance.propertyName.

Event summary for the Loader class

The following table lists events of the Loader class.

Events inherited from the UIObject class

The following table lists the events the Loader class inherits from the UIObject class.

Events inherited from the UIComponent class

The following table lists the events the Loader class inherits from the UIComponent class.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event Description

Loader.complete Triggered when the content finished loading.

Loader.progress Triggered while content is loading.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
316 Chapter 2: Components Reference

Loader.autoLoad

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

loaderInstance.autoLoad

Description

Property; a Boolean value that indicates whether to automatically load the content (true), or wait
until Loader.load() is called (false). The default value is true.

Example

The following code sets up the loader component to wait for a Loader.load() call:
loader.autoload = false;

Loader.bytesLoaded

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

loaderInstance.bytesLoaded

Description

Property (read-only); the number of bytes of content that have been loaded. The default value is 0
until content begins loading.

Example

The following code creates a progress bar and a Loader component. It then creates a listener
object with a progress event handler that shows the progress of the load. The listener is
registered with the loader instance.
createClassObject(mx.controls.ProgressBar, "pBar", 0);
createClassObject(mx.controls.Loader, "loader", 1);
loadListener = new Object();
loadListener.progress = function(eventObj){

// eventObj.target is the component that generated the progress event,
// that is, the loader
pBar.setProgress(loader.bytesLoaded, loader.bytesTotal); // show progress

}
loader.addEventListener("progress", loadListener);
loader.content = "logo.swf";
Loader component 317

When you create an instance with createClassObject(), you have to position it on the Stage
with move() and setSize(). See UIObject.move() and UIObject.setSize().

See also

Loader.bytesTotal, UIObject.createClassObject()

Loader.bytesTotal

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

loaderInstance.bytesTotal

Description

Property (read-only); the size of the content, in bytes. The default value is 0 until content
begins loading.

Example

The following code creates a progress bar and a Loader component. It then creates a load listener
object with a progress event handler that shows the progress of the load. The listener is
registered with the loader instance, as follows:
createClassObject(mx.controls.ProgressBar, "pBar", 0);
createClassObject(mx.controls.Loader, "loader", 1);
loadListener = new Object();
loadListener.progress = function(eventObj){

// eventObj.target is the component that generated the progress event,
// that is, the loader
pBar.setProgress(loader.bytesLoaded, loader.bytesTotal); // show progress

}
loader.addEventListener("progress", loadListener);
loader.content = "logo.swf";

See also

Loader.bytesLoaded

Loader.complete

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.
318 Chapter 2: Components Reference

Usage

Usage 1:
on(complete){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.complete = function(eventObject){

...
}
loaderInstance.addEventListener("complete", listenerObject)

Description

Event; broadcast to all registered listeners when the content has finished loading.

The first usage example uses an on() handler and must be attached directly to a Loader instance.
The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the Loader instance
myLoaderComponent, sends “_level0.myLoaderComponent” to the Output panel:
on(complete){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(loaderInstance) dispatches an event (in this case, complete) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following example creates a Loader component and then defines a listener object with a
complete event handler that sets the loader’s visible property to true:
createClassObject(mx.controls.Loader, "loader", 0);
loadListener = new Object();
loadListener.complete = function(eventObj){

loader.visible = true;
}
loader.addEventListener("complete", loadListener);
loader.contentPath = "logo.swf";
Loader component 319

Loader.content

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

loaderInstance.content

Description

Property (read-only); a reference to a movie clip instance that contains the contents of the loaded
file. The value is undefined until the load begins.

See also

Loader.contentPath

Loader.contentPath

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

loaderInstance.contentPath

Description

Property; a string that indicates an absolute or relative URL of the file to load into the loader. A
relative path must be relative to the SWF file that loads the content. The URL must be in the
same subdomain as the loading SWF file.

If you are using Flash Player or test-movie mode in Flash, all SWF files must be stored in the same
folder, and the filenames cannot include folder or disk drive information.

Example

The following example tells the loader instance to display the contents of the logo.swf file:
loader.contentPath = "logo.swf";

Loader.load()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.
320 Chapter 2: Components Reference

Usage

loaderInstance.load([path])

Parameters

path An optional parameter that specifies the value for the contentPath property before the
load begins. If a value is not specified, the current value of contentPath is used as is.

Returns

Nothing.

Description

Method; tells the loader to begin loading its content.

Example

The following code creates a Loader instance and sets the autoload property to false so that the
loader must wait for a call to load() to begin loading content. Next, the contentPath property
is set, which indicates where to load content from. Then other tasks can be performed before the
content is loaded with loader.load().
createClassObject(mx.controls.Loader, "loader", 0);
loader.autoLoad = false;
loader.contentPath = "logo.swf";

// Perform other tasks here and *then* start loading the file.

loader.load();

Loader.percentLoaded

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

loaderInstance.percentLoaded

Description

Property (read-only); a number indicating what percent of the content has loaded. Typically, this
property is used to present the progress to the user in an easily readable form. Use the following
code to round the figure to the nearest integer:
Math.round(bytesLoaded/bytesTotal*100))
Loader component 321

Example

The following example creates a Loader instance and then creates a listener object with a
progress handler that traces the percent loaded and sends it to the Output panel:
createClassObject(Loader, "loader", 0);
loadListener = new Object();
loadListener.progress = function(eventObj){
 // eventObj.target is the component that generated the progress event,
 // that is, the loader
 trace("logo.swf is " + loader.percentLoaded + "% loaded."); // track loading

progress
}
loader.addEventListener("complete", loadListener);
loader.content = "logo.swf";

Loader.progress

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(progress){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.progress = function(eventObject){

...
}
loaderInstance.addEventListener("progress", listenerObject)

Description

Event; broadcast to all registered listeners while content is loading. This event occurs when the
load is triggered by the autoload parameter or by a call to Loader.load(). The progress event is
not always broadcast, and the complete event may be broadcast without any progress events
being dispatched. This can happen if the loaded content is a local file.

The first usage example uses an on() handler and must be attached directly to a Loader instance.
The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the Loader instance
myLoaderComponent, sends “_level0.myLoaderComponent” to the Output panel:
on(progress){

trace(this);
}

322 Chapter 2: Components Reference

The second usage example uses a dispatcher/listener event model. A component instance
(loaderInstance) dispatches an event (in this case, progress) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following code creates a Loader instance and then creates a listener object with an event
handler for the progress event that sends a message to the Output panel telling what percent of
the content has loaded:
createClassObject(mx.controls.Loader, "loader", 0);
loadListener = new Object();
loadListener.progress = function(eventObj){
 // eventObj.target is the component that generated the progress event,
 // that is, the loader
 trace("logo.swf is " + loader.percentLoaded + "% loaded."); // track loading

progress
}
loader.addEventListener("progress", loadListener);
loader.contentPath = "logo.swf";

Loader.scaleContent

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

loaderInstance.scaleContent

Description

Property; indicates whether the content scales to fit the loader (true), or the loader scales to fit the
content (false). The default value is true.

Example

The following code tells the loader to resize itself to match the size of its content:
loader.scaleContent = false;
Loader component 323

Menu component

The Menu component lets a user select an item from a pop-up menu, much like the File or Edit
menu of most software applications.

A Menu component usually opens in an application when a user rolls over or clicks a button-like
menu activator. You can also script a Menu component to open when a user presses a certain key.

Menu components are always created dynamically at runtime. You must add the component to
the document from the Components panel, and delete it to add it to the library. Then, use the
following code to create a menu with ActionScript:
var myMenu = mx.controls.Menu.createMenu(parent, menuDataProvider);

Use the following code to open a menu in an application:
myMenu.show(x, y);

A menuShow event is broadcast to all of the Menu instance’s listeners immediately before the menu
is rendered, so you can update the state of the menu items. Similarly, immediately after a Menu
instance is hidden, a menuHide event is broadcast.

The items in a menu are described by XML. For more information, see “Understanding the
Menu component: view and data” on page 326.

You cannot make the Menu component accessible to screen readers.

Interacting with the Menu component

You can use the mouse and keyboard to interact with a Menu component.

After a Menu component is opened, it remains visible until it is closed by a script or until the user
clicks the mouse outside the menu or inside an enabled item.

Clicking selects a menu item, except with the following types of menu items:

Disabled items or separators Rollovers and clicks have no effect (the menu remains visible).

Anchors for a submenu Rollovers activate the submenu; clicks have no effect; rolling onto any
item other than those of the submenu closes the submenu.

When an item is selected, a Menu.change event is sent to all of the menu’s listeners, the menu is
hidden, and the following actions occur, depending on item type:

check The item’s selected attribute is toggled.

radio The item becomes the current selection of its radio group.

Moving the mouse triggers Menu.rollOut and Menu.rollOver events.

Pressing the mouse outside the menu closes the menu and triggers a Menu.menuHide event.

Releasing the mouse in an enabled item affects item types in the following ways:

check The item’s selected attribute is toggled.
324 Chapter 2: Components Reference

radio The item’s selected attribute is set to true, and the previously selected item’s selected
attribute in the radio group is set to false. The selection property of the corresponding radio
group object is set to refer to the selected menu item.

undefined and the parent of a hierarchical menu The visibility of the hierarchical menu
is toggled.

When a Menu instance has focus either from clicking or tabbing, you can use the following keys
to control it:

Note: If a menu is opened, you can press the Tab key to move out of the menu. You must either make
a selection or dismiss the menu by pressing Escape.

Using the Menu component

You can use the Menu component to create a menu of selectable choices; this menu is like the File
or Edit menu of most software applications. You can also use the Menu component to create
context-sensitive menus that appear when a user clicks a hot spot or a presses a modifier key. Use
the Menu component with the MenuBar component to create a horizontal menu bar with menus
that extend under each menu bar item.

Like standard desktop menus, the Menu component supports menu items whose functions fall
into the following general categories:

Command activators These items trigger events; you write code to handle those events.

Submenu anchors These items are anchors that open submenus.

Radio buttons These items operate in groups; you can select only one item at a time.

Check box items These items represent a Boolean (true or false) value.

Separators These items provide a simple horizontal line that divides the items in a menu into
different visual groups.

Key Description

Down Arrow
Up Arrow

Moves the selection down and up the rows of the menu. The selection cycles at
the top or bottom row.

Right Arrow Opens a submenu, or moves selection to the next menu in a menu bar (if a menu
bar exists).

Left Arrow Closes a submenu and returns focus to the parent menu (if a parent menu exists),
or moves selection to the previous menu in a menu bar (if the menu bar exists).

Enter Opens a submenu. If a submenu does not exist, this key has the same effect as
clicking and releasing on a row.
Menu component 325

Understanding the Menu component: view and data

Conceptually, the Menu component consists of a data model and a view that displays the data.
The Menu class provides the view and contains the visual configuration methods. The
MenuDataProvider class adds methods to the global XML prototype object (much like the
DataProvider API does to the Array object); these methods let you externally construct data
providers and add them to multiple menu instances. The data provider broadcasts any changes to
all of its client views. (See “MenuDataProvider class” on page 354.)

A Menu instance is a hierarchical collection of XML elements that correspond to individual menu
items. The attributes define the behavior and appearance of the corresponding menu item on the
screen. The collection is easily translated to and from XML, which is used to describe menus (the
menu tag) and items (the menuitem tag). The built-in ActionScript XML class is the basis for the
model underlying the Menu component.

A simple menu with two items can be described in XML with two menu item subelements:
<menu>

<menuitem label="Up" />
<menuitem label="Down" />

</menu>

Note: The tag names of the XML nodes (menu and menuitem) are not important; the attributes and
their nesting relationships are used in the menu.

About hierarchical menus

To create hierarchical menus, embed XML elements within a parent XML element, as follows:
<menu>
 <menuitem label="MenuItem A" >
 <menuitem label="SubMenuItem 1-A" />
 <menuitem label="SubMenuItem 2-A" />
 </menuitem>
 <menuitem label="MenuItem B" >
 <menuitem label="SubMenuItem 1-B" />
 <menuitem label="SubMenuItem 2-B" />
 </menuitem>
</menu>

This converts the parent menu item into a pop-up menu anchor, so it does not generate events
when selected.
326 Chapter 2: Components Reference

About menu item XML attributes

The attributes of a menu item XML element determine what is displayed, how the menu item
behaves, and how it is exposed to ActionScript. The following table describes the attributes of an
XML menu item:

Attribute
name

Type Default Description

label String undefined The text that is displayed to represent a menu item.
This attribute is required for all item types, except
separator.

type separator,
check, radio,
normal, or
undefined

undefined The type of menu item: separator, check box, radio
button, or normal (a command or submenu
activator). If this attribute does not exist, the default
value is normal.

icon String undefined The linkage identifier of an image asset. This
attribute is not required and is not available for the
check, radio, or separator type.

instanceName String undefined An identifier that you can use to reference the menu
item instance from the root menu instance. For
example, a menu item named yellow can be
referenced as myMenu.yellow. This attribute is
not required.

groupName String undefined An identifier that you can use to associate several
radio button items in a radio group, and to expose
the state of a radio group from the root menu
instance. For example, a radio group named colors
can be referenced as myMenu.colors. This attribute
is required only for the type radio.

selected A Boolean
value (false or
true) or string
("false" or
"true")

false A Boolean or string value indicating whether a
check or radio item is on (true) or off (false). This
attribute is not required.

enabled A Boolean
value (false or
true) or string
("false" or
"true")

true A Boolean or string value indicating whether this
menu item can be selected (true) or not (false).
This attribute is not required.
Menu component 327

About menu item types

There are four kinds of menu items, specified by the type attribute:
<menu>
 <menuitem label="Normal Item" />
 <menuitem type="separator" />
 <menuitem label="Checkbox Item" type="check" instanceName="check_1"/>
 <menuitem label="RadioButton Item" type="radio" groupName="radioGroup_1" /

>
</menu>

Normal menu items

The Normal Item menu item doesn’t have a type attribute, which means that the type attribute
defaults to normal. Normal items can be command activators or submenu activators, depending
on whether they have nested subitems.

Separator menu items

A menu item whose type attribute is set to separator acts as a visual divider in a menu.
The following XML creates three menu items, Top, Middle, and Bottom, with separators
between them:
<menu>
 <menuitem label="Top" />
 <menuitem type="separator" />
 <menuitem label="Middle" />
 <menuitem type="separator" />
 <menuitem label="Bottom" />
</menu>

All separator items are disabled. Clicking on or rolling over a separator has no effect.

Check box menu items

A menu item whose type attribute is set to check acts as check box item in the menu; when the
selected attribute is set to true, a check mark appears beside the menu item’s label. When a
check box item is selected, its state automatically toggles, and a change event is broadcast to all
listeners on the root menu. The following example defines three check box menu items:
<menu>
 <menuitem label="Apples" type="check" instanceName="buyApples"

selected="true" />
 <menuitem label="Oranges" type="check" instanceName="buyOranges"

selected="false" />
 <menuitem label="Bananas" type="check" instanceName="buyBananas"

selected="false" />
</menu>

You can use the instance names in ActionScript to access the menu items directly from the menu
itself, as in the following example:
myMenu.setMenuItemSelected(myMenu.buyapples, true);
myMenu.setMenuItemSelected(myMenu.buyoranges, false);
328 Chapter 2: Components Reference

Note: The selected attribute should be modified only with the setMenuItemSelected() method. You
can directly examine the selected attribute, but it returns a string value of true or false.

Radio button menu items

Menu items whose type attribute is set to radio can be grouped together so that only one of the
items can be selected at a time. You create a radio group by giving the menu items the same value
for their groupName attribute, as in the following example:
<menu>
 <menuitem label="Center" type="radio" groupName="alignment_group"

instanceName="center_item"/>
 <menuitem type="separator" />
 <menuitem label="Top" type="radio" groupName="alignment_group" />
 <menuitem label="Bottom" type="radio" groupName="alignment_group" />
 <menuitem label="Right" type="radio" groupName="alignment_group" />
 <menuitem label="Left" type="radio" groupName="alignment_group" />
</menu>

When the user selects one of the items, the current selection automatically changes, and a change
event is broadcast to all listeners on the root menu. The currently selected item in a radio group is
available in ActionScript through the selection property, as follows:
var selectedMenuItem = myMenu.alignment_group.selection;
myMenu.alignment_group = myMenu.center_item;

Each groupName value must be unique within the scope of the root menu instance.

Note: The selected attribute should be modified only with the setMenuItemSelected() method. You
can directly examine the selected attribute, but it returns a string value of true or false.

Exposing menu items to ActionScript

You can assign each menu item a unique identifier in the instanceName attribute, which makes
the menu item accessible directly from the root menu. For example, the following XML code
provides instanceName attributes for each menu item:
<menu>
 <menuitem label="Item 1" instanceName="item_1" />
 <menuitem label="Item 2" instanceName="item_2" >
 <menuitem label="SubItem A" instanceName="sub_item_A" />
 <menuitem label="SubItem B" instanceName="sub_item_B" />
 </menuitem>
</menu>

You can use ActionScript to access the corresponding instances and their attributes directly from
the menu component, as follows:
var aMenuItem = myMenu.item_1;
myMenu.setMenuItemEnabled(item_2, true);
var aLabel = myMenu.sub_item_A.label;

Note: Each instanceName attribute must be unique within the scope of the root menu component
instance (including all of the submenus of root).
Menu component 329

About initialization object properties

The initObject (initialization object) parameter is a fundamental concept in creating the layout
for the Menu component. This parameter is an object with properties. Each property represents
one of the possible the XML attributes of a menu item. (For a description of the properties
allowed in the initObject parameter, see “About menu item XML attributes” on page 327.)

The initObject parameter is used in the following methods:

• Menu.addMenuItem()

• Menu.addMenuItemAt()

• MenuDataProvider.addMenuItem()

• MenuDataProvider.addMenuItemAt()

The following example creates an initObject parameter with two properties, label and
instanceName:
var i = myMenu.addMenuItem({label:"myMenuItem", instanceName:"myFirstItem"});

Several of the properties work together to create a particular type of menu item. You assign
specific properties to create certain types of menu items (normal, separator, check box, or
radio button).

For example, you can initialize a normal menu item with the following initObject parameter:
myMenu.addMenuItem({label:"myMenuItem", enabled:true, icon:"myIcon",

instanceName:"myFirstItem"});

You can initialize a separator menu item with the following initObject parameter:
myMenu.addMenuItem({type:"separator"});

You can initialize a check box menu item with the following initObject parameter:
myMenu.addMenuItem({type:"check", label:"myMenuCheck", enabled:false,

selected:true, instanceName:"myFirstCheckItem"})

You can initialize a radio button menu item with the following initObject parameter:
myMenu.addMenuItem({type:"radio", label:"myMenuRadio1", enabled:true,

selected:false, groupName:"myRadioGroup" instanceName:"myFirstRadioItem"})

You should treat the instanceName, groupName, and type attributes of a menu item as read-only.
You should set them only while creating an item (for example, in a call to addMenuItem()).
Modifying these attributes after creation may produce unpredictable results.

Menu parameters

There are no authoring parameters for the Menu component.

You can write ActionScript to control the Menu component using its properties, methods, and
events. For more information, see “Menu class” on page 337.
330 Chapter 2: Components Reference

Creating an application with the Menu component

In the following example, a developer is building an application and uses the Menu component to
expose some of the commands that users can issue, such as Open, Close, and Save.

To create an application with the Menu component:

1. Select File > New and create a Flash document.

2. Drag the Menu component from the Components panel to the Stage and delete it.

This adds the Menu component to the library without adding it to the application. Menus are
created dynamically through ActionScript.

3. Drag a Button component from the Components panel to the Stage.

The button will be used to activate the menu.
4. In the Property inspector, give the button the instance name commandBtn, and change its text

property to Commands.

5. In the Actions panel on the first frame, enter the following code to add an event listener to listen
for click events on the commandBtn instance:
// Create a menu
var myMenu = mx.controls.Menu.createMenu();

// Add some menu items
myMenu.addMenuItem("Open");
myMenu.addMenuItem("Close");
myMenu.addMenuItem("Save");
myMenu.addMenuItem("Revert");

// Add a change-listener to Menu to detect which menu item is selected
var changeListener = new Object();
changeListener.change = function(event) {

var item = event.menuItem;
trace("Item selected: " + item.attributes.label);

}
myMenu.addEventListener("change", changeListener);

// Add a button that displays the menu when the button is clicked
var listener = new Object();
listener.click = function(evtObj) {

var button = evtObj.target;// get reference to the button

// Display the menu at the bottom of the button
_root.myMenu.show(button.x, button.y + button.height);

}
commandBtn.addEventListener("click", listener);

6. Select Control > Test Movie.

Click the Commands button to see the menu appear. When you select a menu item, a
trace() statement reports the selection in the Output panel.
Menu component 331

To use XML data from a server to create and populate a menu:

1. Select File > New and create a Flash document.

2. Drag the Menu component from the Components panel to the Stage and delete it.

This adds the Menu component to the library without adding it to the application. Menus are
created dynamically through ActionScript.

3. In the Actions panel, add the following code to the first frame to create a menu and add
some items:
var myMenu = mx.controls.Menu.createMenu();
// Import an XML file
var loader = new XML();
loader.menu = myMenu;
loader.ignoreWhite = true;
loader.onLoad = function(success) {

// When the data arrives, pass it to the menu
if(success) {

this.menu.dataProvider = this.firstChild;
}

};
loader.load(url);

Note: The menu items are described by the children of the XML document’s first child.

4. Select Control > Test Movie.

To use a well-formed XML string to create and populate a menu:

1. Select File > New and create a Flash document.

2. Drag the Menu component from the Components panel to the Stage and delete it.

This adds the Menu component to the library without adding it to the application. Menus are
created dynamically through ActionScript.

3. In the Actions panel, add the following code to the first frame to create a menu and add
some items:
// Create an XML string containing a menu definition
var s = "";
s += "<menu>";
s += "<menuitem label='Undo' />";
s += "<menuitem type='separator' />";
s += "<menuitem label='Cut' />";
s += "<menuitem label='Copy' />";
s += "<menuitem label='Paste' />";
s += "<menuitem label='Clear' />";
s += "<menuitem type='separator' />";
s += "<menuitem label='Select All' />";
s += "</menu>";
// Create an XML object from the string
var xml = new XML(s);
xml.ignoreWhite = true;
// Create a menu from the XML object's first child
var myMenu = mx.controls.Menu.createMenu(_root, xml.firstChild);

4. Select Control > Test Movie.
332 Chapter 2: Components Reference

To use the MenuDataProvider class to create and populate a menu:

1. Select File > New and create a Flash document.

2. Drag the Menu component from the Components panel to the Stage and delete it.

This adds the Menu component to the library without adding it to the application. Menus are
created dynamically through ActionScript.

3. In the Actions panel, add the following code to the first frame to create a menu and add
some items:

// Create an XML object to act as a factory.
var xml = new XML();

// The item created next will not appear in the menu.
// The createMenu() method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name along
// the way.
var theMenuElement = xml.addMenuItem("Edit");

// Add the menu items.
theMenuElement.addMenuItem({label:"Undo"});
theMenuElement.addMenuItem({type:"separator"});
theMenuElement.addMenuItem({label:"Cut"});
theMenuElement.addMenuItem({label:"Copy"});
theMenuElement.addMenuItem({label:"Paste"});
theMenuElement.addMenuItem({label:"Clear", enabled:"false"});
theMenuElement.addMenuItem({type:"separator"});
theMenuElement.addMenuItem({label:"Select All"});
// Create the Menu object.
var theMenuControl = mx.controls.Menu.createMenu(_root, theMenuElement);

4. Select Control > Test Movie.

Customizing the Menu component

The menu sizes itself horizontally to fit its widest text. You can also call the setSize() method to
size the component. Icons should be sized to a maximum of 16 by 16 pixels.
Menu component 333

Using styles with the Menu component

You can call the setStyle() method to change the style of the menu, its items, and its
submenus.The Menu component supports the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values are
"haloGreen", "haloBlue", and "haloOrange". The default
value is "haloGreen".

alternatingRowColors Both Specifies colors for rows in an alternating pattern. The value
can be an array of two or more colors, for example,
0xFF00FF, 0xCC6699, and 0x996699. Unlike single-
value color styles, alternatingRowColors does not accept
color names; the values must be numeric color codes. By
default, this style is not set, and backgroundColor is used in
its place for all rows.

backgroundColor Both The background color of the menu. The default color is
white and is defined on the class style declaration. This style
is ignored if alternatingRowColors is specified.

backgroundDisabledColor Both The background color when the component’s enabled
property is set to "false". The default value is 0xDDDDDD
(medium gray).

border styles Both The Menu component uses a RectBorder instance as its
border and responds to the styles defined on that class. See
“RectBorder class” in Flash Help.

The default border style is "menuBorder".

color Both The text color.

disabledColor Both The color for text when the component is disabled. The
default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to
true if fontFamily refers to an embedded font. Otherwise,
the embedded font will not be used. If this style is set to true
and fontFamily does not refer to an embedded font, no text
will be displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bold". The default value
is "none". All components can also accept the value
"normal" in place of "none" during a setStyle() call, but
subsequent calls to getStyle() will return "none".

textAlign Both The text alignment: either "left", "right", or "center". The
default value is "left".
334 Chapter 2: Components Reference

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

textIndent Both A number indicating the text indent. The default value is 0.

defaultIcon Both The name of the default icon to display on each row. The
default value is undefined, which means no icon is
displayed.

popupDuration Both The duration of the transition as a menu opens. The value is
specified in milliseconds; 0 indicates no transition. The
default value is 150.

rollOverColor Both The background color of a rolled-over row. The default
value is 0xE3FFD6 (bright green) with the Halo theme and
0xAAAAAA (light gray) with the Sample theme.

When themeColor is changed through a setStyle() call, the
framework sets rollOverColor to a value related to the
themeColor chosen.

selectionColor Both The background color of a selected row. The default value is
a 0xCDFFC1 (light green) with the Halo theme and
0xEEEEEE (very light gray) with the Sample theme.

When themeColor is changed through a setStyle() call, the
framework sets selectionColor to a value related to the
themeColor chosen.

selectionDuration Both The length of the transition from a normal to selected state,
in milliseconds. The default value is 200.

selectionEasing Both A reference to the easing equation used to control the
transition between selection states. The default equation
uses a sine in/out formula. For more information, see
“Customizing component animations” in Flash Help.

textRollOverColor Both The color of text when the mouse pointer rolls over. The
default value is 0x2B333C (dark gray). This style is
important when you set rollOverColor, because the two
settings must complement each other so that text is easily
viewable during rollover.

textSelectedColor Both The color of text in the selected row. The default value is
0x005F33 (dark gray). This style is important when you set
selectionColor, because the two must complement each
other so that text is easily viewable while selected.

useRollOver Both Determines whether rolling over a row activates
highlighting. The default value is true.

Style Theme Description
Menu component 335

Setting styles for all Menu components in a document

The Menu class inherits from the ScrollSelectList class. The default class-level style properties are
defined on the ScrollSelectList class, which is shared by all List-based components. You can set
new default style values on this class directly, and the new settings will be reflected in all affected
components.
_global.styles.ScrollSelectList.setStyle("backgroundColor", 0xFF00AA);

To set a style property on the Menu components only, you can create a new
CSSStyleDeclaration and store it in _global.styles.Menu.
import mx.styles.CSSStyleDeclaration;
if (_global.styles.Menu == undefined) {

_global.styles.Menu = new CSSStyleDeclaration();
}
_global.styles.Menu.setStyle("backgroundColor", 0xFF00AA);

When creating a new class-level style declaration, you will lose all default values provided by the
ScrollSelectList declaration. This includes backgroundColor, which is required for
supporting mouse events. To create a class-level style declaration and preserve defaults, use a
for..in loop to copy the old settings to the new declaration.
var source = _global.styles.ScrollSelectList;
var target = _global.styles.Menu;
for (var style in source) {

target.setStyle(style, source.getStyle(style));
}

For more information about class-level styles see “Setting styles for a component class” in Flash
Help.

Using skins with the Menu component

The Menu component uses an instance of RectBorder for its border (see “RectBorder class” in
Flash Help).

The Menu component has visual assets for the branch, check mark, radio dot, and separator
graphics. These assets are not dynamically skinnable, but the assets can be copied from the Flash
UI Components 2/Themes/MMDefault/Menu Assets/States folder in both themes and modified
as desired. The linkage identifiers cannot be changed, and all Menu instances must use the same
symbols.

To create movie clip symbols for Menu assets:

1. Create a new FLA file.

2. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on your
operating system, see “About themes” in Flash Help.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault folder
and drag the Menu Assets folder to the library for your document.

4. Expand the Menu Assets/States folder in the library of your document.
336 Chapter 2: Components Reference

5. Open the symbols you want to customize for editing.

For example, open the MenuCheckEnabled symbol.
6. Customize the symbol as desired.

For example, change the image to be an X instead of a check mark.
7. Repeat steps 6-7 for all symbols you want to customize.

8. Click the Back button to return to the main Timeline.

9. Drag a Menu component to the Stage and delete it.

This adds the Menu component to the library and makes it available at runtime.
10. Add ActionScript to the main timline to create a Menu instance at runtime:

var myMenu = mx.controls.Menu.createMenu();
myMenu.addMenuItem({label: "One", type: "check", selected: true});
myMenu.addMenuItem({label: "Two", type: "check"});
myMenu.addMenuItem({label: "Three", type: "check"});
myMenu.show(0, 0);

11. Select Control > Test Movie.

Menu class

Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView >
ScrollSelectList > Menu

ActionScript Class Name mx.controls.Menu

The methods and properties of the Menu class let you create and edit menus at runtime.

Setting a property of the menu class with ActionScript overrides the parameter of the same name
set in the Property inspector or Component inspector.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.controls.Menu.version);

Note: The code trace(myMenuInstance.version); returns undefined.

Method summary for the Menu class

The following table lists methods of the Menu class.

Method Description

Menu.addMenuItem() Adds a menu item to the menu.

Menu.addMenuItemAt() Adds a menu item to the menu at a specific location.

Menu.createMenu() Creates an instance of the Menu class. This is a static method.

Menu.getMenuItemAt() Gets a reference to a menu item at a specified location.

Menu.hide() Closes a menu.
Menu component 337

Methods inherited from the UIObject class

The following table lists the methods the Menu class inherits from the UIObject class. When
calling these methods from the Menu object, use the form MenuInstance.methodName.

Methods inherited from the UIComponent class

The following table lists the methods the Menu class inherits from the UIComponent class.
When calling these methods from the Menu object, use the form MenuInstance.methodName.

Menu.indexOf() Returns the index of a given menu item.

Menu.removeAll() Removes all items from a menu.

Menu.removeMenuItem() Removes the specified menu item.

Menu.removeMenuItemAt() Removes a menu item from a menu at a specified location.

Menu.setMenuItemEnabled() Indicates whether a menu item is enabled (true) or not (false).

Menu.setMenuItemSelected() Indicates whether a menu item is selected (true) or not (false).

Menu.show() Opens a menu at a specific location or at its previous location.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Method Description
338 Chapter 2: Components Reference

Property summary for the Menu class

The following table lists the property of the Menu class.

Properties inherited from the UIObject class

The following table lists the properties the Menu class inherits from the UIObject class. When
accessing these properties from the Menu object, use the form MenuInstance.propertyName.

Properties inherited from the UIComponent class

The following table lists the properties the Menu class inherits from the UIComponent class.
When accessing these properties from the Menu object, use the form
MenuInstance.propertyName.

Property Description

Menu.dataProvider The data source for a menu.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.
Menu component 339

Event summary for the Menu class

The following table lists events of the Menu class.

Events inherited from the UIObject class

The following table lists the events the Menu class inherits from the UIObject class.

Events inherited from the UIComponent class

The following table lists the events the Menu class inherits from the UIComponent class.

Menu.addMenuItem()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Event Description

Menu.change Broadcast when a user causes a change in a menu.

Menu.menuHide Broadcast when a menu closes.

Menu.menuShow Broadcast when a menu opens.

Menu.rollOut Broadcast when the pointer rolls off an item.

Menu.rollOver Broadcast when the pointer rolls over an item.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
340 Chapter 2: Components Reference

Usage

Usage 1:
myMenu.addMenuItem(initObject)

Usage 2:
myMenu.addMenuItem(childMenuItem)

Parameters

initObject An object containing properties that initialize a menu item’s attributes. See “About
menu item XML attributes” on page 327.

childMenuItem An XML node object.

Returns

A reference to the added XML node.

Description

Method; Usage 1 adds a menu item at the end of the menu. The menu item is constructed from
the values supplied in the initObject parameter. Usage 2 adds a menu item that is a prebuilt
XML node (in the form of an XML object) at the end of the menu. Adding a preexisting node
removes the node from its previous location.

Example

Usage 1: The following example appends a menu item to a menu:
myMenu.addMenuItem({label:"Item 1", type:"radio", selected:false,

enabled:true, instanceName:"radioItem1", groupName:"myRadioGroup"});

Usage 2: The following example moves a node from one menu to the root of another menu:
myMenu.addMenuItem(mySecondMenu.getMenuItemAt(3));

Menu.addMenuItemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myMenu.addMenuItemAt(index, initObject)

Usage 2:
myMenu.addMenuItemAt(index, childMenuItem)
Menu component 341

Parameters

index An integer indicating the index position (among the child nodes) at which the item is
added.

initObject An object containing properties that initialize a menu item’s attributes. See “About
menu item XML attributes” on page 327.

childMenuItem An XML node object.

Returns

A reference to the added XML node.

Description

Method; Usage 1 adds a menu item (child node) at the specified location in the menu. The menu
item is constructed from the values supplied in the initObject parameter. Usage 2 adds a menu
item that is a prebuilt XML node (in the form of an XML object) at a specified location in the
menu. Adding a preexisting node removes the node from its previous location.

Example

Usage 1: The following example adds a new node as the second child of the root of the menu:
myMenu.addMenuItemAt(1, {label:"Item 1", instanceName:"radioItem1",

type:"radio", selected:false, enabled:true, groupName:"myRadioGroup"});

Usage 2: The following example moves a node from one menu to the fourth child of the root of
another menu:
myMenu.addMenuItemAt(3, mySecondMenu.getMenuItemAt(3));

Menu.change

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.change = function(eventObject){

// insert your code here
}
myMenu.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners whenever a user causes a change in the menu.

Version 2 components use a dispatcher-listener event model. When a Menu component
broadcasts a change event, the event is handled by a function (also called a handler) that is
attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.
342 Chapter 2: Components Reference

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The Menu.change event’s event object has
the following additional properties:

• menuBar A reference to the MenuBar instance that is the parent of the target menu. When
the target menu does not belong to a MenuBar instance, this value is undefined.

• menu A reference to the Menu instance where the target item is located.
• menuItem An XML node that is the menu item that was selected.
• groupName A string indicating the name of the radio button group to which the item

belongs. If the item is not in a radio button group, this value is undefined.

For more information, see “EventDispatcher class” in Flash Help.

Example

In the following example, a handler called listener is defined and passed to
myMenu.addEventListener() as the second parameter. The event object is captured by the
change handler in the evt parameter. When the change event is broadcast, a trace statement is
sent to the Output panel.
listener = new Object();
listener.change = function(evt){
 trace("Menu item chosen: "+evt.menuItem.attributes.label);
}
myMenu.addEventListener("change", listener);

Menu.createMenu()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Menu.createMenu([parent [, mdp]])

Parameters

parent A MovieClip instance. The movie clip is the parent component that contains the new
Menu instance. This parameter is optional.

mdp The MenuDataProvider instance that describes this Menu instance. This parameter
is optional.

Returns

A reference to the new menu instance.
Menu component 343

Description

Method (static); instantiates a Menu instance, and optionally attaches it to the specified parent,
with the specified MenuDataProvider as the data source for the menu items.

If the parent parameter is omitted or null, the Menu is attached to the _root Timeline.

If the mdp parameter is omitted or null, the menu does not have any items; you must call
addMenu() or setDataProvider() to populate the menu.

Example

In the following example, line 1 creates a MenuDataProvider instance, which is an XML object
that has the methods of the MenuDataProvider class.

In the following example, the first line creates an XML object instance, which is given the
methods of the MenuDataProvider class (because the MenuDataProvider class is a decorator class
of the XMLNode class). The next line adds a menu item (New) with a submenu (File, Project,
and Resource). The next block of code adds more items to the main menu. The third block of
code creates an empty menu attached to myParentClip, fills it with the data source myMDP, and
opens it at the coordinates (100,20):

var myMDP:XML = new XML();
var newItem:Object = myMDP.addMenuItem({label:"New"});

newItem.addMenuItem({label:"File..."});
newItem.addMenuItem({label:"Project..."});
newItem.addMenuItem({label:"Resource..."});

myMDP.addMenuItem({label:"Open", instanceName:"miOpen"});
myMDP.addMenuItem({label:"Save", instanceName:"miSave"});
myMDP.addMenuItem({type:"separator"});
myMDP.addMenuItem({label:"Quit", instanceName:"miQuit"});

var myMenu:mx.controls.Menu = mx.controls.Menu.createMenu(myParentClip,
myMDP);

myMenu.show(100, 20);

To test this code, place it in the Actions panel on Frame 1 of the main Timeline. Drag a Menu
component from the Components panel to the Stage and delete it. (This adds it to the library
without placing it in the document.)

Menu.dataProvider

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenu.dataProvider
344 Chapter 2: Components Reference

Description

Property; the data source for items in a Menu component.

Menu.dataProvider is an XML node object. Setting this property replaces the existing data
source of the menu.

The default value is undefined.

Note: All XML or XMLNode instances are automatically given the methods and properties of the
MenuDataProvider class when they are used with the Menu component.

Example

The following example imports an XML file and assigns it to the Menu.dataProvider property:
var myMenuDP = new XML();
myMenuDP.load("http://myServer.myDomain.com/source.xml");
myMenuDP.onLoad = function(){

myMenuControl.dataProvider = myMenuDP;
}

Menu.getMenuItemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenu.getMenuItemAt(index)

Parameters

index An integer indicating the index of the node in the menu.

Returns

A reference to the specified node.

Description

Method; returns a reference to the specified child node of the menu.

Example

The following example gets a reference to the second child node in myMenu and copies the value
into the variable myItem:
var myItem = myMenu.getMenuItemAt(1);
Menu component 345

Menu.hide()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenu.hide()

Parameters

None.

Returns

Nothing.

Description

Method; closes a menu.

Example

The following example retracts an extended menu:
myMenu.hide();

See also

Menu.show()

Menu.indexOf()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenu.indexOf(item)

Parameters

item A reference to an XML node that describes a menu item.

Returns

The index of the specified menu item, or undefined if the item does not belong to this menu.

Description

Method; returns the index of the specified menu item within this menu instance.
346 Chapter 2: Components Reference

Example

The following example adds a menu item to a parent item and then gets the item’s index within
its parent:
var myItem = myMenu.addMenuItem({label:"That item"});
var myIndex = myMenu.indexOf(myItem);

Menu.menuHide

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.menuHide = function(eventObject){

// insert your code here
}
myMenu.addEventListener("menuHide", listenerObject)

Description

Event; broadcast to all registered listeners whenever a menu closes.

Version 2 components use a dispatcher-listener event model. When a Menu component
dispatches a menuHide event, the event is handled by a function (also called a handler) that is
attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler and the name of the listener
object as parameters.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The Menu.menuHide event’s event object has
two additional properties:

• menuBar A reference to the MenuBar instance that is the parent of the target menu. When
the target menu does not belong to a MenuBar instance, this value is undefined.

• menu A reference to the Menu instance that is hidden.

For more information, see “EventDispatcher class” in Flash Help.

Example

In the following example, a handler called form is defined and passed to
myMenu.addEventListener() as the second parameter. The event object is captured by the
menuHide handler in the evt parameter. When the menuHide event is broadcast, a trace
statement is sent to the Output panel.
Menu component 347

form = new Object();
form.menuHide = function(evt){
 trace("Menu closed: "+evt.menu);
}
myMenu.addEventListener("menuHide", form);

See also

Menu.menuShow

Menu.menuShow

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.menuShow = function(eventObject){

// insert your code here
}
myMenu.addEventListener("menuShow", listenerObject)

Description

Event; broadcast to all registered listeners whenever a menu opens. All parent nodes open menus
to show their children.

Version 2 components use a dispatcher-listener event model. When a Menu component
dispatches a menuShow event, the event is handled by a function (also called a handler) that is
attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler and listener object as
parameters.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The Menu.menuShow event’s event object has
two additional properties:

• menuBar A reference to the MenuBar instance that is the parent of the target menu. When
the target menu does not belong to a MenuBar instance, this value is undefined.

• menu A reference to the Menu instance that is shown.

For more information, see “EventDispatcher class” in Flash Help.

Example

In the following example, a handler called form is defined and passed to
myMenu.addEventListener() as the second parameter. The event object is captured by the
menuShow handler in the evt parameter. When the menuShow event is broadcast, a trace
statement is sent to the Output panel.
348 Chapter 2: Components Reference

form = new Object();
form.menuShow = function(evt){
 trace("Menu opened: "+evt.menu);
}
myMenu.addEventListener("menuShow", form);

See also

Menu.menuHide

Menu.removeAll()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenu.removeAll()

Parameters

None.

Returns

Nothing.

Description

Method; removes all items and refreshes the menu.

Example

The following example removes all nodes from the menu:
myMenu.removeAll();

Menu.removeMenuItem()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenuItem.removeMenuItem()

Returns

A reference to the returned menu item (XML node). This value is undefined if there is no item
in that position.
Menu component 349

Description

Method; removes the specified menu item and all its children, and refreshes the menu.

Example

The following example removes the menu item referenced by the variable theItem:
theItem.removeMenuItem();

Menu.removeMenuItemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenu.removeMenuItemAt(index)

Parameters

index The index of the menu item to remove.

Returns

A reference to the returned menu item (XML node). This value is undefined if there is no item
in that position.

Description

Method; removes the menu item and all its children at the specified index. If there is no menu
item at that index, calling this method has no effect.

Example

The following example removes a menu item at index 3:
var item = myMenu.removeMenuItemAt(3);

Menu.rollOut

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.rollOut = function(eventObject){

// insert your code here
}
myMenu.addEventListener("rollOut", listenerObject)
350 Chapter 2: Components Reference

Description

Event; broadcast to all registered listeners when the pointer rolls off a menu item.

Version 2 components use a dispatcher-listener event model. When a Menu component
broadcasts a rollOut event, the event is handled by a function (also called a handler) that is
attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The Menu.rollOut event’s event object has
one additional property: menuItem, which is a reference to the menu item (XML node) that the
pointer rolled off.

For more information, see “EventDispatcher class” in Flash Help.

Example

In the following example, a handler called form is defined and passed to
myMenu.addEventListener() as the second parameter. The event object is captured by the
rollOut handler in the evt parameter. When the rollOut event is broadcast, a trace statement
is sent to the Output panel.
form = new Object();
form.rollOut = function(evt){
 trace("Menu rollOut: "+evt.menuItem.attributes.label);
}
myMenu.addEventListener("rollOut", form);

Menu.rollOver

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.rollOver = function(eventObject){

// insert your code here
}
myMenu.addEventListener("rollOver", listenerObject)

Description

Event; broadcast to all registered listeners when the pointer rolls over a menu item.

Version 2 components use a dispatcher-listener event model. When a Menu component
broadcasts a rollover event, the event is handled by a function (also called a handler) that is
attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.
Menu component 351

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The Menu.rollOver event’s event object has
one additional property: menuItem, which is a reference to the menu item (XML node) that the
pointer rolled over.

For more information, see “EventDispatcher class” in Flash Help.

Example

In the following example, a handler called form is defined and passed to
myMenu.addEventListener() as the second parameter. The event object is captured by the
rollOver handler in the evt parameter. When the rollOver event is broadcast, a trace
statement is sent to the Output panel.
form = new Object();
form.rollOver = function(evt){
 trace("Menu rollOver: "+evt.menuItem.attributes.label);
}
myMenu.addEventListener("rollOver", form);

Menu.setMenuItemEnabled()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenu.setMenuItemEnabled(item, enable)

Parameters

item An XML node; the target menu item’s node in the data provider.

enable A Boolean value indicating whether the item is enabled (true) or not (false).

Returns

Nothing.

Description

Method; changes the target item’s enabled attribute to the state specified in the enable
parameter. If this call results in a change of state, the item is redrawn with the new state.

Example

The following example disables the second child of myMenu:
var myItem = myMenu.getMenuItemAt(1);
myMenu.setMenuItemEnabled(myItem, false);
352 Chapter 2: Components Reference

See also

Menu.setMenuItemSelected()

Menu.setMenuItemSelected()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenu.setMenuItemSelected(item, select)

Parameters

item An XML node. The target menu item’s node in the data provider.

select A Boolean value indicating whether the item is selected (true) or not (false). If the
item is a check box, its check mark is visible or not visible. If a selected item is a radio button, it
becomes the current selection in the radio group.

Returns

Nothing.

Description

Method; changes the selected attribute of the item to the state specified by the select
parameter. If this call results in a change of state, the item is redrawn with the new state. This is
only meaningful for items whose type attribute is set to "radio" or "check", because it causes
their dot or check to appear or disappear. If you call this method on an item whose type is
"normal" or "separator", it has no effect.

Example

The following example deselects the second child of myMenu:
var myItem = myMenu.getMenuItemAt(1);
myMenu.setMenuItemSelected(myItem, false);

Menu.show()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenu.show(x, y)
Menu component 353

Parameters

x The x coordinate.

y The y coordinate.

Returns

Nothing.

Description

Method; opens a menu at a specific location. The menu is automatically resized so that all of its
top-level items are visible, and the upper left corner is placed at the specified location in the
coordinate system provided by the component’s parent.

If the x and y parameters are omitted, the menu is shown at its previous location.

Example

The following example displays a menu 10 pixels down and to the right of the (0,0) origin point
of the component’s parent:
myMenu.show(10, 10);

See also

Menu.hide()

MenuDataProvider class

ActionScript Class Name mx.controls.menuclasses.MenuDataProvider

The MenuDataProvider class is a decorator (mix-in) class that adds functionality to the
XMLNode global class. This functionality lets XML instances assigned to a Menu.dataProvider
property use the MenuDataProvider methods and properties to manipulate their own data as well
as the associated menu views.

Keep in mind these concepts about the MenuDataProvider class:

• MenuDataProvider is a decorator (mix-in) class. You do not need to instantiate it to use it.
• Menus natively accept XML as a dataProvider property value.
• If a Menu class is instantiated, all XML instances in the SWF file are decorated by the

MenuDataProvider class.
• Only MenuDataProvider methods broadcast events to the Menu components. You can still use

native XML methods, but they do not broadcast events that refresh the Menu views. To
control the data model, use MenuDataProvider methods. For read-only operations like moving
through the Menu hierarchy, use XML methods.

• All items in the Menu component are XML objects decorated with the MenuDataProvider
class.

• Changes to item attributes are not reflected in the onscreen menu until redrawing occurs.
354 Chapter 2: Components Reference

Method summary for the MenuDataProvider class

The following table lists the methods of the MenuDataProvider class.

MenuDataProvider.addMenuItem()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myMenuDataProvider.addMenuItem(initObject)

Usage 2:
myMenuDataProvider.addMenuItem(childMenuItem)

Parameters

initObject An object containing the attributes that initialize a Menu item’s attributes. For
more information, see “About menu item XML attributes” on page 327.

childMenuItem An XML node.

Returns

A reference to an XMLNode object.

Description

Method; Usage 1 adds a child item to the end of a parent menu item (which could be the menu
itself). The menu item is constructed from the values passed in the initObject parameter.
Usage 2 adds a child item that is defined in the specified XML childMenuItem parameter to the
end of a parent menu item.

Any node or menu item in a MenuDataProvider instance can call the methods of the
MenuDataProvider class.

Method Description

MenuDataProvider.addMenuItem() Adds a child item.

MenuDataProvider.addMenuItemAt() Adds a child item at a specified location.

MenuDataProvider.getMenuItemAt() Gets a reference to a menu item at a specified location.

MenuDataProvider.indexOf() Returns the index of a specified menu item.

MenuDataProvider.removeMenuItem() Removes a menu item.

MenuDataProvider.removeMenuItemAt() Removes a menu item at a specified location.
Menu component 355

Example

The following example adds a new node to a specified node in the menu:
var item0 = myMenuDP.getMenuItemAt(0);
item0.addMenuItem("Inbox", { label:"Item 1", icon:"radioItemIcon",

type:"radio", selected:false, enabled:true, instanceName:"radioItem1",
groupName:"myRadioGroup" });

MenuDataProvider.addMenuItemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myMenuDataProvider.addMenuItemAt(index, initObject)

Usage 2:
myMenuDataProvider.addMenuItemAt(index, childMenuItem)

Parameters

index An integer.

initObject An object containing the specific attributes that initialize a Menu item’s attributes.
For more information, see “About menu item XML attributes” on page 327.

childMenuItem An XML node.

Returns

A reference to the added XML node.

Description

Method; Usage 1 adds a child item at the specified index position in the parent menu item (which
could be the menu itself). The menu item is constructed from the values passed in the
initObject parameter. Usage 2 adds a child item that is defined in the specified XML
childMenuItem parameter to the specified index of a parent menu item.

Any node or menu item in a MenuDataProvider instance can call the methods of the
MenuDataProvider class.

Example

Usage 1: The following example adds a new node as the second child of the root of the menu:
myMenuDataProvider.addMenuItemAt(1, {label:"Item 1", type:"radio",

selected:false, enabled:true, instanceName:"radioItem1",
groupName:"myRadioGroup"});
356 Chapter 2: Components Reference

MenuDataProvider.getMenuItemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenuDataProvider.getMenuItemAt(index)

Parameters

index An integer indicating the position of the menu.

Returns

A reference to the specified XML node.

Description

Method; returns a reference to the specified child menu item of the current menu item.

Any node or menu item in a MenuDataProvider instance can call the methods of the
MenuDataProvider class.

Example

The following example finds the node you want to get, and then gets the second child of
myMenuItem:
var myMenuItem = myMenuDP.firstChild.firstChild;
myMenuItem.getMenuItemAt(1);

MenuDataProvider.indexOf()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenuDataProvider.indexOf(item)

Parameters

item A reference to the XML node that describes the menu item.

Returns

The index of the specified menu item; returns undefined if the item does not belong to
this menu.
Menu component 357

Description

Method; returns the index of the specified menu item in this parent menu item.

Any node or menu item in a MenuDataProvider instance can call the methods of the
MenuDataProvider class.

Example

The following example adds a menu item to a parent item and gets the item’s index:
var myMenuItem = myParentMenuItem.addMenuItem({label:"That item"});
var myIndex = myParentMenuItem.indexOf(myItem);

MenuDataProvider.removeMenuItem()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenuDataProvider.removeMenuItem()

Parameters

None.

Returns

A reference to the removed Menu item (XML node); undefined if an error occurs.

Description

Method; removes the target item and any child nodes.

Any node or menu item in a MenuDataProvider instance can call the methods of the
MenuDataProvider class.

Example

The following example removes myMenuItem from its parent:
myMenuItem.removeMenuItem();

MenuDataProvider.removeMenuItemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenuDataProvider.removeMenuItemAt(index)
358 Chapter 2: Components Reference

Parameters

index The index of the menu item.

Returns

A reference to the removed menu item. This value is undefined if there is no item in that
position.

Description

Method; removes the child item of the menu item specified by the index parameter. If there is no
menu item at that index, calling this method has no effect.

Any node or menu item in a MenuDataProvider instance can call the methods of the
MenuDataProvider class.

Example

The following example removes the fourth item:
myMenuDataProvider.removeMenuItemAt(3);

MenuBar component

The MenuBar component lets you create a horizontal menu bar with pop-up menus and
commands, just like the menu bars that contain File and Edit menus in common software
applications. The MenuBar component complements the Menu component by providing a
clickable interface to show and hide menus that behave as a group for mouse and keyboard
interactivity.

The MenuBar component lets you create an application menu in a few steps. To build a menu
bar, you can either assign an XML data provider to the menu bar that describes a series of menus,
or use the MenuBar.addMenu() method to add menu instances one at a time.

Each menu in the menu bar is composed of two parts: the menu and the button that causes the
menu to open (called the menu activator). These clickable menu activators appear in the menu
bar as a text label with inset and outset border highlight states that react to interaction from the
mouse and keyboard.

When a menu activator is clicked, the corresponding menu opens below it. The menu stays active
until the activator is clicked again, or until a menu item is selected or a click occurs outside the
menu area.

In addition to creating menu activators that show and hide menus, the MenuBar component
creates group behavior among a series of menus. This lets a user scan a large number of command
choices by rolling over the series of activators or by using the arrow keys to move through the lists.
Mouse and keyboard interactivity work together to let the user jump from menu to menu in the
menu bar.

A user cannot scroll through menus on a menu bar. If menus exceed the width of the menu bar,
they are masked.

You cannot make the MenuBar component accessible to screen readers.
MenuBar component 359

Interacting with the MenuBar component

You can use the mouse and keyboard to interact with a MenuBar component.

Rolling over a menu activator displays an outset border highlight around the activator label.

When a MenuBar instance has focus either from clicking or tabbing, you can use the following
keys to control it:

Note: If a menu is open, you can’t press the Tab key to close it. You must either make a selection or
close the menu by pressing Escape.

Using the MenuBar component

You can use the MenuBar component to add a set of menus (for example, File, Edit, Special,
Window) to the top edge of an application.

MenuBar parameters

You can set the following authoring parameter for each MenuBar component instance in the
Property inspector or in the Component inspector:

Labels An array that adds menu activators with the specified labels to the MenuBar
component. The default value is [] (an empty array).

You cannot access the Labels parameter using ActionScript. However, you can write ActionScript
to control additional options for the MenuBar component using its properties, methods, and
events. For more information, see “MenuBar class” on page 363.

Creating an application with the MenuBar component

In this example, you drag a MenuBar component to the Stage, add code to fill the instance with
menus, and attach listeners to the menus to respond to menu item selection.

To use a MenuBar component in an application:

1. Select File > New and create a new Flash document.

2. Drag the MenuBar component from the Components panel to the Stage.

3. Position the menu at the top of the Stage for a standard layout.

4. Select the MenuBar instance, and in the Property inspector, enter the instance name
myMenuBar.

Key Description

Down Arrow Moves the selection down a menu row.

Up Arrow Moves the selection up a menu row.

Right Arrow Moves the selection to the next button.

Left Arrow Moves the selection to the previous button.

Enter/Escape Closes an open menu.
360 Chapter 2: Components Reference

5. In the Actions panel on Frame 1, enter the following code:
var menu = myMenuBar.addMenu("File");
menu.addMenuItem({label:"New", instanceName:"newInstance"});
menu.addMenuItem({label:"Open", instanceName:"openInstance"});
menu.addMenuItem({label:"Close", instanceName:"closeInstance"});

This code adds a File menu to the MenuBar instance. It then uses a Menu method to add three
menu items: New, Open, and Close.

6. In the Actions panel on Frame 1, enter the following code:
var listen = new Object();
listen.change = function(evt){

var menu = evt.menu;
var item = evt.menuItem
if (item == menu.newInstance){

myNew();
trace(item);

}else if (item == menu.openInstance){
myOpen()
trace(item);

}
}
menu.addEventListener("change",listen);

This code creates a listener object, listen, that uses the event object, evt, to catch menu
item selections.

Note: You must call the addEventListener() method to register the listener with the menu
instance, not with the menu bar instance.

7. Select Control > Test Movie to test the MenuBar component.

Customizing the MenuBar component

This component sizes itself according to the activator labels that are supplied through the
dataProvider property or the methods of the MenuBar class. When an activator button is in a
menu bar, it remains at a fixed size that is dependent on the font styles and the text length.

Using styles with the MenuBar component

The MenuBar component creates an activator label for each menu in a group. You can use styles
to change the look of the activator labels. A MenuBar component supports the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values are
"haloGreen", "haloBlue", and "haloOrange". The default value is
"haloGreen".

color Both The text color. The default value is 0x0B333C for the Halo theme and
blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The default color is
0x848384 (dark gray).
MenuBar component 361

The MenuBar component also forwards all style settings for Menu style properties to the
composed Menu instances. For a list of Menu style properties, see “Using styles with the Menu
component” on page 334.

Using skins with the MenuBar component

The MenuBar component uses three skins to represent its background, uses a movie clip symbol
for highlighting individual items, and contains a Menu component as the pop-up which itself is
skinnable. The MenuBar skins are described below. For information on skinning the Menu
component, see “Using skins with the Menu component” on page 336.

The MenuBar component supports the following skin properties.

To create movie clip symbols for MenuBar skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on your
operating system, see “About themes” in Flash Help.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault folder
and drag the MenuBar Assets folder to the library for your document.

4. Expand the MenuBar Assets/Elements folder in the library of your document.

embedFonts Both A Boolean value that indicates whether the font specified in fontFamily
is an embedded font. This style must be set to true if fontFamily refers to
an embedded font. Otherwise, the embedded font will not be used. If this
style is set to true and fontFamily does not refer to an embedded font,
no text will be displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value is "normal".

fontWeight Both The font weight: either "none" or "bold". The default value is "none". All
components can also accept the value "normal" in place of "none"
during a setStyle() call, but subsequent calls to getStyle() will return
"none".

textDecoration Both The text decoration: either "none" or "underline". The default value is
"none".

Property Description

menuBarBackLeftName The up state of the pop-up icon.

menuBarBackRightName The down state of the pop-up icon.

menuBarBackMiddleName The disabled state of the pop-up icon.

Style Theme Description
362 Chapter 2: Components Reference

5. Open the symbols you want to customize for editing.

For example, open the MenuBarBackLeft symbol.
6. Customize the symbol as desired.

For example, change the outer edge to blank.
7. Repeat steps 5-6 for all symbols you want to customize.

For example, set the outer edges for the middle and right symbols to black.
8. Click the Back button to return to the main Timeline.

9. Drag a MenuBar component to the Stage.

10. Set MenuBar properties so that they display items on the bar.

11. Select Control > Test Movie.

Note: The border used to highlight individual items in a MenuBar component is an instance of
ActivatorSkin found in the Flash UI Components 2/Themes/MMDefault/Button Assets folder. This
symbol can be customized to point to a different class to provide a different border. However, the
symbol name cannot be modified, and you cannot use a different symbol for different MenuBar
instances in a single document.

MenuBar class

Inheritance MovieClip > UIObject class > UIComponent class > MenuBar

ActionScript Class Name mx.controls.MenuBar

The methods and properties of the MenuBar class let you create a horizontal menu bar with pop-
up menus and commands. These methods and properties complement those of the Menu class by
allowing you to create a clickable interface to show and hide menus that behave as a group for
mouse and keyboard interactivity.

Method summary for the MenuBar class

The following table lists methods of the MenuBar class.

Method Description

MenuBar.addMenu() Adds a menu to the menu bar.

MenuBar.addMenuAt() Adds a menu at a specified location to the menu bar.

MenuBar.getMenuAt() Gets a reference to a menu at a specified location.

MenuBar.getMenuEnabledAt() Returns a Boolean value indicating whether a menu is enabled
(true) or not (false).

MenuBar.removeMenuAt() Removes a menu at a specified location from a menu bar.

MenuBar.setMenuEnabledAt() A Boolean value indicating whether a menu is can be chosen (true)
or not (false).
MenuBar component 363

Methods inherited from the UIObject class

The following table lists the methods the MenuBar class inherits from the UIObject class. When
calling these methods from the MenuBar object, use the form MenuBar.methodName.

Methods inherited from the UIComponent class

The following table lists the methods the MenuBar class inherits from the UIComponent class.
When calling these methods from the MenuBar object, use the form MenuBar.methodName.

Property summary for the MenuBar class

The following table lists properties of the MenuBar class.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

MenuBar.dataProvider The data model for a menu bar.

MenuBar.labelField A string that determines which attribute of each XMLNode to use
as the label text of the menu.

MenuBar.labelFunction A function that determines what to display in each menu’s label.
364 Chapter 2: Components Reference

Properties inherited from the UIObject class

The following table lists the properties the MenuBar class inherits from the UIObject class. When
calling these properties from the MenuBar object, use the form MenuBar.propertyName.

Properties inherited from the UIComponent class

The following table lists the properties the MenuBar class inherits from the UIComponent class.
When calling these properties from the MenuBar object, use the form MenuBar.propertyName.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.
MenuBar component 365

Event summary for the MenuBar class

There are no events exclusive to the MenuBar class.

Events inherited from the UIObject class

The following table lists the events the MenuBar class inherits from the UIObject class. When
calling these events from the MenuBar object, use the form MenuBar.eventName.

Events inherited from the UIComponent class

The following table lists the events the MenuBar class inherits from the UIComponent class.
When calling these events from the MenuBar object, use the form MenuBar.eventName.

MenuBar.addMenu()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myMenuBar.addMenu(label)

Usage 2:
myMenuBar.addMenu(label, menuDataProvider)

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
366 Chapter 2: Components Reference

Parameters

label A string indicating the label of the new menu.

menuDataProvider An XML or XMLNode instance that describes the menu and its items. If
the value is an XML instance, the instance’s first child is used.

Returns

A reference to the new Menu object.

Description

Method; Usage 1 adds a single menu and menu activator at the end of the menu bar and uses the
specified label. Usage 2 adds a single menu and menu activator that are defined in the specified
XML menuDataProvider parameter.

Example

Usage 1: The following example adds a File menu and then uses Menu.addMenuItem() to add the
menu items New and Open:
var myMenuBar:mx.controls.MenuBar;
var myMenu:mx.controls.Menu;

myMenu = myMenuBar.addMenu("File");
myMenu.addMenuItem({label:"New", instanceName:"newInstance"});
myMenu.addMenuItem({label:"Open", instanceName:"openInstance"})

Usage 2: The following example adds a Font menu with the menu items Bold and Italic that are
defined in the MenuDataProvider instance myMenuDP2:
var myMenuDP2 = new XML();
myMenuDP2.addMenuItem({type:"check", label:"Bold", instanceName:"check1"});
myMenuDP2.addMenuItem({type:"check", label:"Italic", instanceName:"check2"});
menu = myMenuBar.addMenu("Font",myMenuDP2);

MenuBar.addMenuAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myMenuBar.addMenuAt(index, label)

Usage 2:
myMenuBar.addMenuAt(index, label, menuDataProvider)
MenuBar component 367

Parameters

index An integer indicating the position where the menu should be inserted. The first position
is 0. To append to the end of the menu, call MenuBar.addMenu(label).

label A string indicating the label of the new menu.

menuDataProvider An XML or XMLNode instance that describes the menu. If the value is an
XML instance, the instance’s first child is used.

Returns

A reference to the new Menu object.

Description

Method; Usage 1 adds a single menu and menu activator at the specified index with the specified
label. Usage 2 adds a single menu and a labeled menu activator at the specified index. The content
for the menu is defined in the menuDataProvider parameter.

Example

Usage 1: The following example places a menu to the left of all MenuBar menus:
menu = myMenuBar.addMenuAt(0,"Toreador");
menu.addMenuItem("About Macromedia Flash", instanceName:"aboutInst");
menu.addMenuItem("Preferences", instanceName:"PrefInst");

Usage 2: The following example adds an Edit menu with the menu items Undo, Redo, Cut, and
Copy, which are defined in the MenuDataProvider instance myMenuDP:
var myMenuDP = new XML();
myMenuDP.addMenuItem({label:"Undo", instanceName:"undoInst"});
myMenuDP.addMenuItem({label:"Redo", instanceName:"redoInst"});
myMenuDP.addMenuItem({type:"separator"});
myMenuDP.addMenuItem({label:"Cut", instanceName:"cutInst"});
myMenuDP.addMenuItem({label:"Copy", instanceName:"copyInst"});

myMenuBar.addMenuAt(0,"Edit",myMenuDP);

MenuBar.dataProvider

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenuBar.dataProvider

Description

Property; the data model for items in a MenuBar component.
368 Chapter 2: Components Reference

MenuBar.dataProvider is an XML node object. Setting this property replaces the existing data
model of the MenuBar component. Whatever child nodes the data provider might have are used
as the items for the menu bar itself; any subnodes of these child nodes are used as the items for
their respective menus.

The default value is undefined.

Note: All XML or XMLNode instances are automatically given the methods and properties of the
MenuDataProvider class when they are used with the MenuBar component.

Example

The following example imports an XML file and assigns it to the
MenuBar.dataProvider property:
var myMenuBarDP = new XML();
myMenuBarDP.load("http://myServer.myDomain.com/source.xml");
myMenuBarDP.onLoad = function(success){

if(success){
myMenuBar.dataProvider = myMenuBarDP;

} else {
trace("error loading XML file");
}

}

MenuBar.getMenuAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenuBar.getMenuAt(index)

Parameters

index An integer indicating the position of the menu.

Returns

A reference to the menu at the specified index. This value is undefined if there is no menu at
that position.

Description

Method; returns a reference to the menu at the specified index.
MenuBar component 369

Example

Because getMenuAt() returns an instance, it is possible to add items to a menu at the specified
index. In the following example, after using the Labels authoring parameter to create the menu
activators File, Edit, and View, the following code adds New and Open items to the File menu at
runtime:
menu = myMenuBar.getMenuAt(0);
menu.addMenuItem({label:"New",instanceName:"newInst"});
menu.addMenuItem({label:"Open",instanceName:"openInst"});

MenuBar.getMenuEnabledAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenuBar.getMenuEnabledAt(index)

Parameters

index The index of the menu in the menu bar.

Returns

A Boolean value that indicates whether this menu can be chosen (true) or not (false).

Description

Method; returns a Boolean value that indicates whether this menu can be chosen (true) or
not (false).

Example

The following example calls the method on the menu in the first position of myMenuBar:
myMenuBar.getMenuEnabledAt(0);

MenuBar.labelField

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenuBar.labelField
370 Chapter 2: Components Reference

Description

Property; a string that determines which attribute of each XML node to use as the label text of the
menu. This property is also passed to any menus that are created from the menu bar. The default
value is "label".

After the dataProvider property is set, this property is read-only.

Example

The following example uses the name attribute of each node as the label text:
myMenuBar.labelField = "name";

MenuBar.labelFunction

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenuBar.labelFunction

Description

Property; a function that determines what to display in each menu’s label text. The function
accepts the XML node associated with an item as a parameter and returns a string to be used as
label text. This property is passed to any menus created from the menu bar. The default value
is undefined.

After the dataProvider property is set, this property is read-only.

 Example

The following example of a label function builds and returns a custom label from the node
attributes:
myMenuBar.labelFunction = function(node){
var a = node.attributes;
return "The Price for " + a.name + " is " + a.price;
};

MenuBar.removeMenuAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenuBar.removeMenuAt(index)
MenuBar component 371

Parameters

index The index of the menu to be removed from the menu bar.

Returns

A reference to the menu at the specified index in the menu bar. This value is undefined if there is
no menu in that position in the menu bar.

Description

Method; removes the menu at the specified index. If there is no menu item at that index, calling
this method has no effect.

Example

The following example removes the menu at index 4:
myMenuBar.removeMenuAt(4);

MenuBar.setMenuEnabledAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myMenuBar.setMenuEnabledAt(index, boolean)

Parameters

index The index of the menu item to set in the MenuBar instance.

boolean A Boolean value indicating whether the menu item at the specified index is enabled
(true) or not (false).

Returns

Nothing.

Description

Method; enables the menu at the specified index. If there is no menu at that index, calling this
method has no effect.

Example

The following example enables the item at index 3 in the MenuBar object myMenuBar:
myMenuBar.setMenuEnabledAt(3, true);
372 Chapter 2: Components Reference

NumericStepper component

The NumericStepper component allows a user to step through an ordered set of numbers. The
component consists of a number in a text box displayed beside small up and down arrow buttons.
When a user presses the buttons, the number is raised or lowered incrementally according to the
unit specified in the stepSize parameter, until the user releases the buttons or until the
maximum or minimum value is reached. The text in the NumericStepper component’s text box is
also editable.

The NumericStepper component handles only numeric data. Also, you must resize the stepper
while authoring to display more than two numeric places (for example, the numbers 5246 or
1.34).

A stepper can be enabled or disabled in an application. In the disabled state, a stepper doesn’t
receive mouse or keyboard input. An enabled stepper receives focus if you click it or tab to it and
its internal focus is set to the text box. When a NumericStepper instance has focus, you can use
the following keys control it:

For more information about controlling focus, see “Creating custom focus navigation” in Flash
Help or “FocusManager class” on page 231.

A live preview of each stepper instance reflects the setting of the value parameter in the Property
inspector or Component inspector during authoring. However, there is no mouse or keyboard
interaction with the stepper’s arrow buttons in the live preview.

When you add the NumericStepper component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.NumericStepperAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances you have of
the component.

Using the NumericStepper component

You can use the NumericStepper anywhere you want a user to select a numeric value. For
example, you could use a NumericStepper component in a form to allow a user to set a credit card
expiration date. You could also use a NumericStepper component to allow a user to increase or
decrease a font size.

Key Description

Down Arrow Value changes by one unit.

Left Arrow Moves the insertion point to the left within the text box.

Right Arrow Moves the insertion point to the right within the text box.

Shift+Tab Moves focus to the previous object.

Tab Moves focus to the next object.

Up Arrow Value changes by one unit.
NumericStepper component 373

NumericStepper parameters

You can set the following authoring parameters for each NumericStepper instance in the Property
inspector or in the Component inspector:

value sets the value displayed in the text area of the stepper. The default value is 0.

minimum sets the minimum value that can be displayed in the stepper. The default value is 0.

maximum sets the maximum value that can be displayed in the stepper. The default value is 10.

stepSize sets the unit by which the stepper increases or decreases with each click. The default
value is 1.

You can write ActionScript to control these and additional options for the NumericStepper
component using its properties, methods, and events. For more information, see
“NumericStepper class” on page 377.

Creating an application with the NumericStepper component

The following procedure explains how to add a NumericStepper component to an application
while authoring. In this example, the stepper allows a user to pick a movie rating from 0 to 5 stars
with half-star increments.

To create an application with the NumericStepper component:

1. Drag a NumericStepper component from the Components panel to the Stage.

2. In the Property inspector, enter the instance name starStepper.

3. In the Property inspector, do the following:

■ Enter 0 for the minimum parameter.
■ Enter 5 for the maximum parameter.
■ Enter .5 for the stepSize parameter.
■ Enter 0 for the value parameter.

4. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
movieRate = new Object();
movieRate.change = function (eventObject){

starChart.value = eventObject.target.value;
}
starStepper.addEventListener("change", movieRate);

The last line of code adds a change event handler to the starStepper instance. The handler
sets the starChart movie clip to display the amount of stars indicated by the starStepper
instance. (To see this code work, you must create a starChart movie clip with a value
property that displays the stars.)
374 Chapter 2: Components Reference

Customizing the NumericStepper component

You can transform a NumericStepper component horizontally and vertically while authoring and
at runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()) or any applicable properties and methods of the NumericStepper class.
(See “NumericStepper class” on page 377.)

Resizing the NumericStepper component does not change the size of the down and up arrow
buttons. If the stepper is resized to be greater than the default height, the arrow buttons are
pinned to the top and bottom of the component. The arrow buttons always appear to the right of
the text box.

Using styles with the NumericStepper component

You can set style properties to change the appearance of a NumericStepper instance. If the name
of a style property ends in “Color”, it is a color style property and behaves differently than
noncolor style properties. For more information, see “Using styles to customize component color
and text” in Flash Help.

A NumericStepper component supports the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values are
"haloGreen", "haloBlue", and "haloOrange". The default value
is "haloGreen".

color Both The text color. The default value is 0x0B333C for the Halo
theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The default
color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to
true if fontFamily refers to an embedded font. Otherwise, the
embedded font will not be used. If this style is set to true and
fontFamily does not refer to an embedded font, no text will be
displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bold". The default value
is "none". All components can also accept the value "normal"
in place of "none" during a setStyle() call, but subsequent
calls to getStyle() will return "none".

textAlign Both The text alignment: either "left", "right", or "center". The
default value is "center".
NumericStepper component 375

Using skins with the NumericStepper component

The NumericStepper component uses skins to represent its up and down button states. To skin
the NumericStepper component while authoring, modify skin symbols in the Flash UI
Components 2/Themes/MMDefault/Stepper Assets/States folder in the library. For more
information, see “About skinning components” in Flash Help.

If a stepper is enabled, the down and up buttons display their over states when the pointer moves
over them. The buttons display their down state when pressed. The buttons return to their over
state when the mouse is released. If the pointer moves off the buttons while the mouse is pressed,
the buttons return to their original state.

If a stepper is disabled, it displays its disabled state, regardless of user interaction.

A NumericStepper component supports the following skin properties:

textDecoration Both The text decoration: either "none" or "underline". The default
value is "none".

repeatDelay Both The number of milliseconds of delay between when a user first
presses a button and when the action begins to repeat. The
default value is 500 (half a second).

repeatInterval Both The number of milliseconds between automatic clicks when a
user holds the mouse button down on a button. The default
value is 35.

symbolColor Sample The color of the arrows. The default value is 0x2B333C (dark
gray).

Property Description

upArrowUp The up arrow button’s up state. The default value is StepUpArrowUp.

upArrowDown The up arrow button’s pressed state. The default value is
StepUpArrowDown.

upArrowOver The up arrow button’s over state. The default value is
StepUpArrowOver.

upArrowDisabled The up arrow button’s disabled state. The default value is
StepUpArrowDisabled.

downArrowUp The down arrow button’s up state. The default value is
StepDownArrowUp.

downArrowDown The down arrow button’s down state. The default value is
StepDownArrowDown.

downArrowOver The down arrow button’s over state. The default value is
StepDownArrowOver.

downArrowDisabled The down arrow button’s disabled state. The default value is
StepDownArrowDisabled.

Style Theme Description
376 Chapter 2: Components Reference

To create movie clip symbols for NumericStepper skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on your
operating system, see “About themes” in Flash Help.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault folder
and drag the Stepper Assets folder to the library for your document.

4. Expand the Stepper Assets folder in the library of your document.

5. Expand the Stepper Assets/States folder in the library of your document.

6. Open the symbols you want to customize for editing.

For example, open the StepDownArrowDisabled symbol.
7. Customize the symbol as desired.

For example, change the white inner graphics to a light gray.
8. Repeat steps 6-7 for all symbols you want to customize.

For example, repeat the same change on the up arrow.
9. Click the Back button to return to the main Timeline.

10. Drag a NumericStepper component to the Stage.

This example has customized the disabled skins, so use ActionScript to set the NumericStepper
instance to be disabled in order to see the modified skins.

11. Select Control > Test Movie.

Note: The Stepper Assets/States folder also contains a StepTrack symbol, which is used as a spacer
between the up and down skins if the total height of the NumericStepper instance is greater than the
sum of the two arrow heights. This symbol linkage identifier is not available for modification through a
skin property, but the library symbol can be modified provided the linkage identifier remains
unchanged.

NumericStepper class

Inheritance MovieClip > UIObject class > UIComponent class > NumericStepper

ActionScript Class Name mx.controls.NumericStepper

The properties of the NumericStepper class let you set the following at runtime: the minimum
and maximum values displayed in the stepper, the unit by which the stepper increases or decreases
in response to a click, and the current value displayed in the stepper.

Setting a property of the NumericStepper class with ActionScript overrides the parameter of the
same name set in the Property inspector or Component inspector.

The NumericStepper component uses the Focus Manager to override the default Flash Player
focus rectangle and draw a custom focus rectangle with rounded corners. For more information,
see “Creating custom focus navigation” in Flash Help.
NumericStepper component 377

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.controls.NumericStepper.version);

Note: The code trace(myNumericStepperInstance.version); returns undefined.

Method summary for the NumericStepper class

There are no methods exclusive to the NumericStepper class.

Methods inherited from the UIObject class

The following table lists the methods the NumericStepper class inherits from the UIObject class.
When calling these methods from the NumericStepper object, use the form
NumericStepper.methodName.

Methods inherited from the UIComponent class

The following table lists the methods the NumericStepper class inherits from the UIComponent
class. When calling these methods from the NumericStepper object, use the form
NumericStepper.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.
378 Chapter 2: Components Reference

Property summary for the NumericStepper class

The following table lists properties of the NumericStepper class.

Properties inherited from the UIObject class

The following table lists the properties the NumericStepper class inherits from the UIObject class.
When calling these properties from the NumericStepper object, use the form
NumericStepper.propertyName.

Property Description

NumericStepper.maximum A number indicating the maximum range value.

NumericStepper.minimum A number indicating the minimum range value.

NumericStepper.nextValue A number indicating the next sequential value. This property is
read-only.

NumericStepper.previousValue A number indicating the previous sequential value. This property is
read-only.

NumericStepper.stepSize A number indicating the unit of change for each click.

NumericStepper.value A number indicating the current value of the stepper.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.
NumericStepper component 379

Properties inherited from the UIComponent class

The following table lists the properties the NumericStepper class inherits from the UIComponent
class. When calling these properties from the NumericStepper object, use the form
NumericStepper.propertyName.

Event summary for the NumericStepper class

The following table lists the event of the NumericStepper class.

Events inherited from the UIObject class

The following table lists the events the NumericStepper class inherits from the UIObject class.
When calling these events from the NumericStepper object, use the form
NumericStepper.eventName.

Events inherited from the UIComponent class

The following table lists the events the NumericStepper class inherits from the UIComponent
class. When calling these events from the NumericStepper object, use the form
NumericStepper.eventName.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event Description

NumericStepper.change Triggered when the value of the stepper changes.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
380 Chapter 2: Components Reference

NumericStepper.change

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(click){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

...
}
stepperInstance.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners when the value of the stepper is changed.

The first usage example uses an on() handler and must be attached directly to a NumericStepper
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the stepper myStepper, sends
“_level0.myStepper” to the Output panel:
on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(stepperInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.
NumericStepper component 381

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
stepper called myNumericStepper is changed. The first line of code creates a listener object called
form. The second line defines a function for the change event on the listener object. Inside the
function is a trace() statement that uses the event object that is automatically passed to the
function, in this example eventObj, to generate a message. The target property of an event
object is the component that generated the event—in this example, myNumericStepper. The
NumericStepper.value property is accessed from the event object’s target property. The last
line calls EventDispatcher.addEventListener() from myNumericStepper and passes it the
change event and the form listener object as parameters.
form = new Object();
form.change = function(eventObj){

// eventObj.target is the component that generated the change event,
// i.e., the numeric stepper.
trace("Value changed to " + eventObj.target.value);

}
myNumericStepper.addEventListener("change", form);

NumericStepper.maximum

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

stepperInstance.maximum

Description

Property; the maximum range value of the stepper. This property can contain a number of up to
three decimal places. The default value is 10.

Example

The following example sets the maximum value of the stepper range to 20:
myStepper.maximum = 20;

See also

NumericStepper.minimum

NumericStepper.minimum

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.
382 Chapter 2: Components Reference

Usage

stepperInstance.minimum

Description

Property; the minimum range value of the stepper. This property can contain a number of up to
three decimal places. The default value is 0.

Example

The following example sets the minimum value of the stepper range to 100:
myStepper.minimum = 100;

See also

NumericStepper.maximum

NumericStepper.nextValue

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

stepperInstance.nextValue

Description

Property (read-only); the next sequential value. This property can contain a number of up to
three decimal places.

Example

The following example sets the stepSize property to 1 and the starting value to 4, which would
make the value of nextValue 5:
myStepper.stepSize = 1;
myStepper.value = 4;
trace(myStepper.nextValue);

See also

NumericStepper.previousValue

NumericStepper.previousValue

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.
NumericStepper component 383

Usage

stepperInstance.previousValue

Description

Property (read-only); the previous sequential value. This property can contain a number of up to
three decimal places.

Example

The following example sets the stepSize property to 1 and the starting value to 4, which would
make the value of nextValue 3:
myStepper.stepSize = 1;
myStepper.value = 4;
trace(myStepper.previousValue);

See also

NumericStepper.nextValue

NumericStepper.stepSize

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

stepperInstance.stepSize

Description

Property; the unit amount to change from the current value. The default value is 1. This value
cannot be 0. This property can contain a number of up to three decimal places.

Example

The following example sets the current value property to 2 and the stepSize unit to 2. The
value of nextValue is 4:
myStepper.value = 2;
myStepper.stepSize = 2;
trace(myStepper.nextValue);

NumericStepper.value

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.
384 Chapter 2: Components Reference

Usage

stepperInstance.value

Description

Property; the current value displayed in the text area of the stepper. The value is not assigned if it
does not correspond to the stepper’s range and step increment as defined in the stepSize
property. This property can contain a number of up to three decimal places.

Example

The following example sets the current value of the stepper to 10 and sends the value to the
Output panel:
myStepper.value = 10;
trace(myStepper.value);

ProgressBar component

The ProgressBar component displays the progress of loading content. The loading process can be
determinate or indeterminate. A determinate progress bar is a linear representation of a task’s
progress over time and is used when the amount of content to load is known. An indeterminate
progress bar is used when the amount of content to load is unknown. You can add a label to
display the progress of the loading content.

By default, components are set to export in the first frame. This means that components are
loaded into an application before the first frame is rendered. If you want to create a preloader for
an application, you must deselect Export in First Frame in each component’s Linkage Properties
dialog box (available from the Library options menu). The progress bar, however, should be set to
Export in First Frame, because it must appear first, while other content streams into Flash Player.

The ProgressBar component contains a left cap, a right cap, and a progress track. The caps are
simply the ends of the progress bar, where the progress track visually ends. A live preview of each
ProgressBar instance reflects changes made to parameters in the Property inspector or Component
inspector during authoring. The following parameters are reflected in the live preview:
conversion, direction, label, labelPlacement, mode, and source.

Using the ProgressBar component

A progress bar lets you display the progress of content as it loads. This is essential feedback for
users as they interact with an application.

There are several modes in which to use the ProgressBar component; you set the mode with the
mode parameter. The most commonly used modes are event mode and polled mode. These
modes use the source parameter to specify a loading process that either emits progress and
complete events (event mode), or exposes getBytesLoaded() and getsBytesTotal() methods
(polled mode). You can also use the ProgressBar component in manual mode by manually setting
the maximum, minimum, and indeterminate properties along with calls to the
ProgressBar.setProgress() method.
ProgressBar component 385

ProgressBar parameters

You can set the following authoring parameters for each ProgressBar instance in the Property
inspector or in the Component inspector:

mode is the mode in which the progress bar operates. This value can be one of the following:
event, polled, or manual. The default value is event.

source is a string to be converted into an object representing the instance name of the source.

direction indicates the direction toward which the progress bar fills. This value can be right or
left; the default value is right.

label is the text indicating the loading progress. This parameter is a string in the format "%1 out
of %2 loaded (%3%%)". In this string, %1 is a placeholder for the current bytes loaded, %2 is a
placeholder for the total bytes loaded, and %3 is a placeholder for the percent of content loaded.
The characters “%%” are a placeholder for the “%” character. If a value for %2 is unknown, it is
replaced by two question marks (??). If a value is undefined, the label doesn’t display.

labelPlacement indicates the position of the label in relation to the progress bar. This parameter
can be one of the following values: top, bottom, left, right, center. The default value is bottom.

conversion is a number by which to divide the %1 and %2 values in the label string before they
are displayed. The default value is 1.

You can write ActionScript to control these and additional options for the ProgressBar
component using its properties, methods, and events. For more information, see “ProgressBar
class” on page 390.

Creating an application with the ProgressBar component

The following procedure explains how to add a ProgressBar component to an application while
authoring. In this example, the progress bar is used in event mode. In event mode, the loading
content must emit progress and complete events that the progress bar uses to display progress.
(These events are emitted by the Loader component. For more information, see “Loader
component” in Flash Help.)

To create an application with the ProgressBar component in event mode:

1. Drag a ProgressBar component from the Components panel to the Stage.

2. In the Property inspector, do the following:

■ Enter the instance name pBar.
■ Select Event for the mode parameter.

3. Drag a Loader component from the Components panel to the Stage.

4. In the Property inspector, enter the instance name loader.

5. Select the progress bar on the Stage and, in the Property inspector, enter loader for the
source parameter.
386 Chapter 2: Components Reference

6. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code, which
loads a JPEG file into the Loader component:
loader.autoLoad = false;
loader.contentPath = "http://imagecache2.allposters.com/images/86/

017_PP0240.jpg";
pBar.source = loader;
// loading does not start until load() is invoked
loader.load();

In the following example, the progress bar is used in polled mode. In polled mode, the
ProgressBar uses the getBytesLoaded() and getBytesTotal() methods of the source object to
display its progress.

To create an application with the ProgressBar component in polled mode:

1. Drag a ProgressBar component from the Components panel to the Stage.

2. In the Property inspector, do the following:

■ Enter the instance name pBar.
■ Select Polled for the mode parameter.
■ Enter loader for the source parameter.

3. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code, which
creates a Sound object called loader and calls loadSound() to load a sound into the Sound
object:
var loader:Object = new Sound();
loader.loadSound("http://soundamerica.com/sounds/sound_fx/A-E/air.wav",

true);

In the following example, the progress bar is used in manual mode. In manual mode, you must set
the maximum, minimum, and indeterminate properties in conjunction with the setProgress()
method to display progress. You do not set the source property in manual mode.

To create an application with the ProgressBar component in manual mode:

1. Drag a ProgressBar component from the Components panel to the Stage.

2. In the Property inspector, do the following:

■ Enter the instance name pBar.
■ Select Manual for the mode parameter.

3. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code, which
updates the progress bar manually on every file download by using calls to setProgress():
for(var:Number i=1; i <= total; i++){

// insert code to load file
pBar.setProgress(i, total);
}

ProgressBar component 387

Customizing the ProgressBar component

You can transform a ProgressBar component horizontally while authoring and at runtime. While
authoring, select the component on the Stage and use the Free Transform tool or any of the
Modify > Transform commands. At runtime, use UIObject.setSize().

The progress bar’s left cap, right cap, and track graphic are set at a fixed size. When you resize a
progress bar, its middle portion is resized to fit between the two caps. If a progress bar is too small,
it may not render correctly.

Using styles with the ProgressBar component

You can set style properties to change the appearance of a progress bar instance. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than noncolor
style properties. For more information, see “Using styles to customize component color and text”
in Flash Help.

A ProgressBar component supports the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values are
"haloGreen", "haloBlue", and "haloOrange". The default value is
"haloGreen".

color Both The text color. The default value is 0x0B333C for the Halo theme and
blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The default color is
0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to true if
fontFamily refers to an embedded font. Otherwise, the embedded
font will not be used. If this style is set to true and fontFamily does not
refer to an embedded font, no text will be displayed. The default value
is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bold". The default value is "none".
All components can also accept the value "normal" in place of "none"
during a setStyle() call, but subsequent calls to getStyle() will return
"none".

textDecoration Both The text decoration: either "none" or "underline". The default value is
"none".
388 Chapter 2: Components Reference

Using skins with the ProgressBar component

The ProgressBar component uses skins to represent the progress bar track, the completed bar, and
an indeterminate bar. To skin the ProgressBar component while authoring, modify symbols in the
Flash UI Components 2/Themes/MMDefault/ProgressBar Elements folder. For more
information, see “About skinning components” in Flash Help.

The track and bar graphics are each made up of three skins corresponding to the left and right
caps and the middle. The caps are used “as is,” and the middle is resized horizontally to fit the
width of the ProgressBar instance.

The indeterminate bar is used when the ProgressBar instance’s indeterminate property is set to
true. The skin is resized horizontally to fit the width of the progress bar.

A ProgressBar component supports the following skin properties:

To create movie clip symbols for ProgressBar skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on your
operating system, see “About themes” in Flash Help.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault folder
and drag the ProgressBar Assets folder to the library for your document.

4. Expand the ProgressBar Assets/Elements folder in the library of your document.

5. Open the symbols you want to customize for editing.

For example, open the ProgIndBar symbol.

barColor Sample The foreground color in denoting the percent complete. The default
color is white. To set the bar color on a Halo-themed component, set
the themeColor style property.

trackColor Sample The background color for the bar. The default value is 0x666666
(dark gray).

Property Description

progTrackMiddleName The expandable middle of the track. The default value is
ProgTrackMiddle.

progTrackLeftName The fixed-size left cap. The default value is ProgTrackLeft.

progTrackRightName The fixed-size right cap. The default value is ProgTrackRight.

progBarMiddleName The expandable middle bar graphic. The default value is
ProgBarMiddle.

progBarLeftName The fixed-size left bar cap. The default value is ProgBarLeft.

progBarRightName The fixed-size right bar cap. The default value is ProgBarRight.

progIndBarName The indeterminate bar graphic. The default value is ProgIndBar.

Style Theme Description
ProgressBar component 389

6. Customize the symbol as desired.

For example, flip the track horizontally.
7. Repeat steps 5-6 for all symbols you want to customize.

8. Click the Back button to return to the main Timeline.

9. Drag a ProgressBar component to the Stage.

To view the skins modified in this example, use ActionScript to set the indeterminate
property to true.

10. Select Control > Test Movie.

ProgressBar class

Inheritance MovieClip > UIObject class > ProgressBar

ActionScript Class Name mx.controls.ProgressBar

Setting a property of the ProgressBar class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component inspector.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.controls.ProgressBar.version);

Note: The code trace(myProgressBarInstance.version); returns undefined.

Method summary for the ProgressBar class

The following table lists the method of the ProgressBar class.

Methods inherited from the UIObject class

The following table lists the methods the ProgressBar class inherits from the UIObject class.
When calling these methods from the ProgressBar object, use the form
ProgressBar.methodName.

Method Description

ProgressBar.setProgress() Sets the state of the progress bar to reflect the amount of progress
made when the progress bar is in manual mode

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.
390 Chapter 2: Components Reference

Property summary for the ProgressBar class

The following table lists properties of the ProgressBar class.

Properties inherited from the UIObject class

The following table lists the properties the ProgressBar class inherits from the UIObject class.
When calling these properties from the ProgressBar object, use the form
ProgressBar.propertyName.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Property Description

ProgressBar.conversion A number used to convert the current bytes loaded value and the
total bytes loaded values.

ProgressBar.direction The direction in which the progress bar fills.

ProgressBar.indeterminate Indicates whether the size of the loading source is unknown.

ProgressBar.label The text that accompanies the progress bar.

ProgressBar.labelPlacement The location of the label in relation to the progress bar.

ProgressBar.maximum The maximum value of the progress bar in manual mode.

ProgressBar.minimum The minimum value of the progress bar in manual mode.

ProgressBar.mode The mode in which the progress bar loads content.

ProgressBar.percentComplete Read-only; a number indicating the percent loaded.

ProgressBar.source The content to load.

ProgressBar.value Read-only; indicates the amount of progress that has been made.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

Method Description
ProgressBar component 391

Event summary for the ProgressBar class

The following table lists events of the ProgressBar class.

Events inherited from the UIObject class

The following table lists the events the ProgressBar class inherits from the UIObject class. When
calling these events from the ProgressBar object, use the form ProgressBar.eventName.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Event Description

ProgressBar.complete Triggered when loading is complete.

ProgressBar.progress Triggered as content loads in manual or polled mode.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Property Description
392 Chapter 2: Components Reference

ProgressBar.complete

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(complete){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.complete = function(eventObject){

...
}
pBar.addEventListener("complete", listenerObject)

Event object

In addition to the standard event object properties, there are two additional properties defined
for the ProgressBar.complete event: current (the loaded value equals total), and total (the
total value).

Description

Event; broadcast to all registered listeners when the loading progress has completed.

The first usage example uses an on() handler and must be attached directly to a ProgressBar
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the instance pBar, sends
“_level0.pBar” to the Output panel:
on(complete){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance (pBar)
dispatches an event (in this case, complete) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is triggered.
When the event is triggered, it automatically passes an event object (eventObject) to the listener
object method. Each event object has properties that contain information about the event. You
can use these properties to write code that handles the event. Finally, you call the
EventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information, see “EventDispatcher class” in Flash Help.
ProgressBar component 393

Example

This example creates a form listener object with a complete callback function that sends a
message to the Output panel with the value of the pBar instance:
form.complete = function(eventObj){
 // eventObj.target is the component that generated the complete event,
 // i.e., the progress bar.
 trace("Current ProgressBar value = " + eventObj.target.value);
}
pBar.addEventListener("complete", form);

See also

EventDispatcher.addEventListener() in Flash Help

ProgressBar.conversion

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

pBarInstance.conversion

Description

Property; a number that sets a conversion value for the incoming values. It divides the current and
total values, floors them, and displays the converted value in the label property. The default
value is 1.

Note: The floor is the closest integer value that is less than or equal to the specified value. For
example, the number 4.6 becomes 4.

Example

The following code displays the value of the loading progress in kilobytes:
pBar.conversion = 1024;

ProgressBar.direction

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

pBarInstance.direction
394 Chapter 2: Components Reference

Description

Property; indicates the fill direction for the progress bar. The default value is "right".

Example

The following code makes the progress bar fill from right to left:
pBar.direction = "left";

ProgressBar.indeterminate

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

pBarInstance.indeterminate

Description

Property; a Boolean value that indicates whether the progress bar has a striped fill and a loading
source of unknown size (true), or a solid fill and a loading source of a known size (false). For
example, you might use this property if you are loading a large data set into a SWF file and do not
know the size of the data you are loading.

Example

The following code creates a determinate progress bar with a solid fill that moves from left
to right. Drag an instance of the ProgressBar component onto the Stage, and enter the instance
name my_pb in the Property inspector. Drag an instance of the Loader component onto the Stage,
and enter the instance name my_ldr in the Property inspector. Add the following code to Frame 1
of the Timeline:
var my_pb:mx.controls.ProgressBar;
var my_ldr:mx.controls.Loader;

var pbListener:Object = new Object();
pbListener.complete = function(evt:Object) {

evt.target._visible = false;
};
my_pb.addEventListener("complete", pbListener);
my_pb.mode = "polled";
my_pb.indeterminate = true;
my_pb.source = my_ldr;

my_ldr.autoLoad = false;
my_ldr.scaleContent = false;
my_ldr.load("http://www.macromedia.com/software/flex/images/

flex_presentation_eyes.jpg");
ProgressBar component 395

ProgressBar.label

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

pBarInstance.label

Description

Property; text that indicates the loading progress. This property is a string in the format "%1 out
of %2 loaded (%3%%)". In this string, %1 is a placeholder for the current bytes loaded, %2 is a
placeholder for the total bytes loaded, and %3 is a placeholder for the percentage of content
loaded. (The characters %% allow Flash to display a single % character.) If a value for %2 is
unknown, it is replaced by ??. If a value is undefined, the label doesn’t display. The default value
is "LOADING %3%%".

Example

The following code lets your application display progress bar text that reads “3 files loaded,” “4
files loaded,” and so on as the files load:
pBar.label = "%1 files loaded";

See also

ProgressBar.labelPlacement

ProgressBar.labelPlacement

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

pBarInstance.labelPlacement

Description

Property; sets the placement of the label in relation to the progress bar. The possible values are
"left", "right", "top", "bottom", and "center".

Example

The following code specifies that the text label appears above the progress bar:
pBar.label = "%1 out of %2 loaded (%3%%)";
pBar.labelPlacement = "top";
396 Chapter 2: Components Reference

See also

ProgressBar.label

ProgressBar.maximum

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

pBarInstance.maximum

Description

Property; the largest value for the progress bar when the ProgressBar.mode property is set
to "manual".

Example

The following code sets the maximum property to the total frames of a Flash application
that’s loading:
pBar.maximum = _totalframes;

See also

ProgressBar.minimum, ProgressBar.mode

ProgressBar.minimum

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

pBarInstance.minimum

Description

Property; the smallest value for the progress bar when the ProgressBar.mode property is set to
"manual".

Example

The following code sets the minimum value for the progress bar:
pBar.minimum = 0;

See also

ProgressBar.maximum, ProgressBar.mode
ProgressBar component 397

ProgressBar.mode

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

pBarInstance.mode

Description

Property; the mode in which the progress bar loads content. This value can be "event",
"polled", or "manual".

Event mode and polled mode are the most common modes. In event mode, the source property
specifies loading content that emits progress and complete events; you should use a Loader
object in this mode. In polled mode, the source property specifies loading content (such as a
MovieClip object) that exposes getBytesLoaded() and getsBytesTotal() methods. Any
object that exposes these methods can be used as a source in polled mode (including a custom
object or the root Timeline).

You can also use the ProgressBar component in manual mode by manually setting the maximum,
minimum, and indeterminate properties and making calls to the ProgressBar.setProgress()
method.

Example

The following code sets the progress bar to event mode. Drag an instance of the ProgressBar
component onto the Stage, and enter the instance name my_pb in the Property inspector. Drag an
instance of the Loader component onto the Stage, and enter an instance name my_ldr in the
Property inspector. Add the following code to Frame 1 of the Timeline:
var my_pb:mx.controls.ProgressBar;
var my_ldr:mx.controls.Loader;

var pbListener:Object = new Object();
pbListener.complete = function(evt:Object) {

evt.target._visible = false;
};

my_pb.addEventListener("complete", pbListener);
my_pb.mode = "polled";
my_pb.indeterminate = true;
my_pb.source = my_ldr;

my_ldr.autoLoad = false;
my_ldr.scaleContent = false;
my_ldr.load("http://www.macromedia.com/software/flex/images/

flex_presentation_eyes.jpg");
398 Chapter 2: Components Reference

ProgressBar.percentComplete

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

pBarInstance.percentComplete

Description

Property (read-only); tells what percentage of the content has been loaded. This value is floored.
(The floor is the closest integer value that is less than or equal to the specified value. For example,
the number 7.8 becomes 7.) The following formula is used to calculate the percentage:
100*(value-minimum)/(maximum-minimum)

Example

The following code sends the value of the percentComplete property to the Output panel:
trace("percent complete = " + pBar.percentComplete);

ProgressBar.progress

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(progress){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.progress = function(eventObject){

...
}
pBarInstance.addEventListener("progress", listenerObject)

Event object

In addition to the standard event object properties, there are two additional properties defined
for the ProgressBar.progress event: current (the loaded value equals total), and total (the
total value).
ProgressBar component 399

Description

Event; broadcast to all registered listeners whenever the value of a progress bar changes. This event
is broadcast only when ProgressBar.mode is set to "manual" or "polled".

The first usage example uses an on() handler and must be attached directly to a ProgressBar
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the instance myPBar, sends
“_level0.myPBar” to the Output panel:
on(progress){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(pBarInstance) dispatches an event (in this case, progress) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

This example creates a listener object, form, and defines a progress event handler on it. The
form listener is registered to the pBar instance in the last line of code. When the progress event
is triggered, pBar broadcasts the event to the form listener, which calls the progress callback
function.
var form:Object = new Object();
form.progress = function(eventObj){
 // eventObj.target is the component that generated the progress event,
 // i.e., the progress bar.
 trace("Current progress value = " + eventObj.target.value);
}
pBar.addEventListener("progress", form);

See also

EventDispatcher.addEventListener() in Flash Help

ProgressBar.setProgress()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.
400 Chapter 2: Components Reference

Usage

pBarInstance.setProgress(completed, total)

Parameters

completed A number indicating the amount of progress that has been made. You can use the
ProgressBar.label and ProgressBar.conversion properties to display the number in
percentage form or any units you choose, depending on the source of the progress bar.

total A number indicating the total progress that must be made to reach 100%.

Returns

A number indicating the amount of progress that has been made.

Description

Method; sets the state of the progress bar to reflect the amount of progress made when the
ProgressBar.mode property is set to "manual". You can call this method to make the bar reflect
the state of a process other than loading. For example, you might want to explicitly set the
progress bar to zero progress.

The completed parameter is assigned to the value property and the total parameter is assigned
to the maximum property. The minimum property is not altered.

Example

The following code calls setProgress() according to the progress of a Flash application’s
Timeline:
pBar.setProgress(_currentFrame, _totalFrames);

ProgressBar.source

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

pBarInstance.source

Description

Property; a reference to the instance to be loaded whose loading process will be displayed. The
loading content should emit a progress event from which the current and total values are
retrieved. This property is used only when ProgressBar.mode is set to "event" or "polled".
The default value is undefined.

The ProgressBar component can be used with content within an application, including _root.
ProgressBar component 401

Example

This example sets the pBar instance to display the loading progress of a Loader component with
the instance name loader:
pBar.source = loader;

See also

ProgressBar.mode

ProgressBar.value

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

pBarInstance.value

Description

Property (read-only); indicates the amount of progress that has been made. This property is a
number between the value of ProgressBar.minimum and ProgressBar.maximum. The default
value is 0.

RadioButton component

The RadioButton component lets you force a user to make a single choice within a set of choices.
This component must be used in a group of at least two RadioButton instances. Only one
member of the group can be selected at any given time. Selecting one radio button in a group
deselects the currently selected radio button in the group. You set the groupName parameter to
indicate which group a radio button belongs to.

A radio button can be enabled or disabled. A disabled radio button doesn’t receive mouse or
keyboard input. When the user clicks or tabs into a RadioButton component group, only the
selected radio button receives focus. The user can then use the following keys control it:

For more information about controlling focus, see “Creating custom focus navigation” in Flash
Help or “FocusManager class” on page 231.

Key Description

Up Arrow/Right
Arrow

The selection moves to the previous radio button within the radio button group.

Down Arrow/
Left Arrow

The selection moves to the next radio button within the radio button group.

Tab Moves focus from the radio button group to the next component.
402 Chapter 2: Components Reference

A live preview of each RadioButton instance on the Stage reflects changes made to parameters in
the Property inspector or Component inspector during authoring. However, the mutual exclusion
of selection does not display in the live preview. If you set the selected parameter to true for two
radio buttons in the same group, they both appear selected even though only the last instance
created will appear selected at runtime. For more information, see “RadioButton parameters”
on page 403.

When you add the RadioButton component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.RadioButtonAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances you have of
the component.

Using the RadioButton component

A radio button is a fundamental part of any form or web application. You can use radio buttons
wherever you want a user to make one choice from a group of options. For example, you would
use radio buttons in a form to ask which credit card a customer wants to use.

RadioButton parameters

You can set the following authoring parameters for each RadioButton component instance in the
Property inspector or in the Component inspector:

label sets the value of the text on the button; the default value is Radio Button.

data is the value associated with the radio button. There is no default value.

groupName is the group name of the radio button. The default value is radioGroup.

selected sets the initial value of the radio button to selected (true) or unselected (false). A
selected radio button displays a dot inside it. Only one radio button in a group can have a selected
value of true. If more than one radio button in a group is set to true, the radio button that is
instantiated last is selected. The default value is false.

labelPlacement orients the label text on the button. This parameter can be one of four values:
left, right, top, or bottom; the default value is right. For more information, see
RadioButton.labelPlacement.

You can write ActionScript to set additional options for RadioButton instances using the
methods, properties, and events of the RadioButton class. For more information, see
“RadioButton class” on page 407.

Creating an application with the RadioButton component

The following procedure explains how to add RadioButton components to an application while
authoring. In this example, the radio buttons are used to present the yes-or-no question “Are you
a Flashist?”. The data from the radio group is displayed in a TextArea component with the
instance name theVerdict.
RadioButton component 403

To create an application with the RadioButton component:

1. Drag two RadioButton components from the Components panel to the Stage.

2. Select one of the radio buttons. In the Component inspector, do the following:

■ Enter Yes for the label parameter.
■ Enter Flashist for the data parameter.

3. Select the other radio button. In the Component inspector, do the following:

■ Enter No for the label parameter.
■ Enter Anti-Flashist for the data parameter.

4. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
flashistListener = new Object();
flashistListener.click = function (evt){

theVerdict.text = evt.target.selection.data
}
radioGroup.addEventListener("click", flashistListener);

The last line of code adds a click event handler to the radioGroup radio button group. The
handler sets the text property of theVerdict (a TextArea instance) to the value of the data
property of the selected radio button in the radioGroup radio button group. For more
information, see RadioButton.click.

Customizing the RadioButton component

You can transform a RadioButton component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()).

The bounding box of a RadioButton component is invisible and also designates the hit area for
the component. If you increase the size of the component, you also increase the size of the
hit area.

If the component’s bounding box is too small to fit the component label, the label is clipped to fit.

Using styles with the RadioButton component

You can set style properties to change the appearance of a RadioButton. If the name of a style
property ends in “Color”, it is a color style property and behaves differently than noncolor style
properties. For more information, see “Using styles to customize component color and text” in
Flash Help.
404 Chapter 2: Components Reference

A RadioButton component uses the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible
values are "haloGreen", "haloBlue", and
"haloOrange". The default value is "haloGreen".

color Both The text color. The default value is 0x0B333C for the
Halo theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled.
The default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This
style must be set to true if fontFamily refers to an
embedded font. Otherwise, the embedded font will
not be used. If this style is set to true and fontFamily
does not refer to an embedded font, no text will be
displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default
value is "normal".

fontWeight Both The font weight: either "none" or "bold". The default
value is "none". All components can also accept the
value "normal" in place of "none" during a setStyle()
call, but subsequent calls to getStyle() will return
"none".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

symbolBackgroundColor Sample The background color of the radio button. The default
value is 0xFFFFFF (white).

symbolBackgroundDisabledColor Sample The background color of the radio button when
disabled. The default value is 0xEFEEEF (light gray).

symbolBackgroundPressedColor Sample The background color of the radio button when
pressed. The default value is 0xFFFFFF (white).

symbolColor Sample The color of the dot in the radio button. The default
value is 0x000000 (black).

symbolDisabledColor Sample The color of the dot in the radio button when the
component is disabled. The default value is
0x848384 (dark gray).
RadioButton component 405

Using skins with the RadioButton component

You can skin the RadioButton component while authoring by modifying the component’s
symbols in the library. The skins for the RadioButton component are located in the following
folder in the library of HaloTheme.fla or SampleTheme.fla: Flash UI Components 2/Themes/
MMDefault/RadioButton Assets/States. See “About skinning components” in Flash Help.

If a radio button is enabled and unselected, it displays its rollover state when a user moves the
pointer over it. When a user clicks an unselected radio button, the radio button receives input
focus and displays its false pressed state. When a user releases the mouse, the radio button displays
its true state and the previously selected radio button in the group returns to its false state. If a
user moves the pointer off a radio button while pressing the mouse, the radio button’s appearance
returns to its false state and it retains input focus.

If a radio button or radio button group is disabled, it displays its disabled state, regardless of
user interaction.

A RadioButton component uses the following skin properties:

Each of these skins correspond to the icon indicating the RadioButton state. The RadioButton
does not have a border or background.

To create movie clip symbols for RadioButton skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on your
operating system, see “About themes” in Flash Help.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault folder
and drag the RadioButton Assets folder to the library for your document.

4. Expand the RadioButton Assets/States folder in the library of your document.

5. Open the symbols you want to customize for editing.

For example, open the RadioFalseDisabled symbol.
6. Customize the symbol as desired.

For example, change the inner white circle to a light gray.

Name Description

falseUpIcon The unselected state. The default value is RadioFalseUp.

falseDownIcon The pressed-unselected state. The default value is RadioFalseDown.

falseOverIcon The over-unselected state. The default value is RadioFalseOver.

falseDisabledIcon The disabled-unselected state. The default value is
RadioFalseDisabled.

trueUpIcon The selected state. The default value is RadioTrueUp.

trueDisabledIcon The disabled-selected state. The default value is RadioTrueDisabled.
406 Chapter 2: Components Reference

7. Repeat steps 5-6 for all symbols you want to customize.

For example, repeat the color change for the inner circle of the RadioTrueDisabled symbol.
8. Click the Back button to return to the main Timeline.

9. Drag a RadioButton component to the Stage.

For this example, drag two instances to show the two new skin symbols.
10. Set the RadioButton instance properties as desired.

For this example, set one RadioButton to selected, and use ActionScript to set both
RadioButton instances to disabled.

11. Select Control > Test Movie.

RadioButton class

Inheritance MovieClip > UIObject class > UIComponent class > SimpleButton class > Button
component > RadioButton

ActionScript Package Name mx.controls.RadioButton

The properties of the RadioButton class allow you at runtime to create a text label and position it
in relation to the radio button. You can also assign data values to radio buttons, assign them to
groups, and select them based on data value or instance name.

Setting a property of the RadioButton class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component inspector.

The RadioButton component uses the Focus Manager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For information about
creating focus navigation, see “Creating custom focus navigation” in Flash Help.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.controls.RadioButton.version);

Note: The code trace(myRadioButtonInstance.version); returns undefined.

Method summary for the RadioButton class

There are no methods exclusive to the RadioButton class.

Methods inherited from the UIObject class

The following table lists the methods the RadioButton class inherits from the UIObject class.
When calling these methods from the RadioButton object, use the form
RadioButtonInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.
RadioButton component 407

Methods inherited from the UIComponent class

The following table lists the methods the RadioButton class inherits from the UIComponent
class. When calling these methods from the RadioButton object, use the form
RadioButtonInstance.methodName.

Property summary for the RadioButton class

The following table lists properties of the RadioButton class.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

RadioButton.data The value associated with a radio button instance.

RadioButton.groupName The group name for a radio button group instance or radio button
instance.

RadioButton.label The text that appears next to a radio button.

RadioButton.labelPlacement The orientation of the label text in relation to a radio button or radio
button group.

RadioButton.selected Selects the radio button, and deselects the previously selected
radio button. This property can be used with a RadioButton
instance or a RadioButtonGroup instance.

RadioButton.selectedData Selects the radio button with the specified data value in a radio
button group.

RadioButton.selection A reference to the currently selected radio button in a radio
button group. This property can be used with a RadioButton
instance or a RadioButtonGroup instance.

Method Description
408 Chapter 2: Components Reference

Properties inherited from the UIObject class

The following table lists the properties the RadioButton class inherits from the UIObject class.
When accessing these properties from the RadioButton object, use the form
RadioButtonInstance.propertyName.

Properties inherited from the UIComponent class

The following table lists the properties the RadioButton class inherits from the UIComponent
class. When accessing these properties from the RadioButton object, use the form
RadioButtonInstance.propertyName.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.
RadioButton component 409

Properties inherited from the SimpleButton class

The following table lists the properties RadioButton class inherits from the SimpleButton class.
When accessing these properties from the RadioButton object, use the form
RadioButtonInstance.propertyName.

Properties inherited from the Button class

The following table lists the properties the RadioButton class inherits from the Button class.
When accessing these properties from the RadioButton object, use the form
RadioButtonInstance.propertyName.

Event summary for the RadioButton class

The following table lists the event of the RadioButton class.

Events inherited from the UIObject class

The following table lists the events the RadioButton class inherits from the UIObject class.

Property Description

SimpleButton.emphasized Indicates whether a button has the appearance of a
default push button.

SimpleButton.emphasizedStyleDeclaration The style declaration when the emphasized property is
set to true.

SimpleButton.selected A Boolean value indicating whether the button is
selected (true) or not (false). The default value is
false.

SimpleButton.toggle A Boolean value indicating whether the button
behaves as a toggle switch (true) or not (false). The
default value is false.

Property Description

Button.icon Specifies an icon for a button instance.

Button.label Specifies the text that appears in a button.

Button.labelPlacement Specifies the orientation of the label text in relation to an icon.

Event Description

RadioButton.click Triggered when the mouse is clicked over a radio button or radio
button group.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.
410 Chapter 2: Components Reference

Events inherited from the UIComponent class

The following table lists the events the RadioButton class inherits from the UIComponent class.

Events inherited from the SimpleButton class

The following table lists the event the RadioButton class inherits from the SimpleButton class.

RadioButton.click

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(click){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.click = function(eventObject){

...
}
radioButtonGroup.addEventListener("click", listenerObject)

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description

SimpleButton.click Broadcast when the mouse is clicked (released) over a button or if
the button has focus and the Spacebar is pressed.

Event Description
RadioButton component 411

Description

Event; broadcast to all registered listeners when the mouse is clicked (pressed and released) over
the radio button or if the radio button is selected by means of the arrow keys. The event is also
broadcast if the Spacebar or arrow keys are pressed when a radio button group has focus, but none
of the radio buttons in the group are selected.

The first usage example uses an on() handler and must be attached directly to a RadioButton
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the radio button
myRadioButton, sends “_level0.myRadioButton” to the Output panel:
on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(radioButtonInstance) dispatches an event (in this case, click) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. The event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
radio button in radioGroup is clicked. The first line of code creates a listener object called form.
The second line defines a function for the click event on the listener object. Inside the function
is a trace() statement that uses the event object (eventObj) that is automatically passed to the
function to generate a message. The target property of an event object is the component that
generated the event. You can access instance properties from the target property (in this
example, the RadioButton.selection property is accessed). The last line calls
EventDispatcher.addEventListener() from radioGroup and passes it the click event and
the form listener object as parameters.
form = new Object();
form.click = function(eventObj){

trace("The selected radio instance is " + eventObj.target.selection);
}
radioGroup.addEventListener("click", form);

The following code also sends a message to the Output panel when radioButtonInstance
is clicked. The on() handler must be attached directly to radioButtonInstance.
on(click){

trace("radio button component was clicked");
}

412 Chapter 2: Components Reference

RadioButton.data

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

radioButtonInstance.data

Description

Property; specifies the data to associate with a RadioButton instance. Setting this property
overrides the data parameter value set during authoring. The data property can be of any data
type.

Example

The following example assigns the data value "#FF00FF" to the radioOne radio button instance:
radioOne.data = "#FF00FF";

RadioButton.groupName

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

radioButtonInstance.groupName

radioButtonGroup.groupName

Description

Property; sets the group name for a radio button instance or group. You can use this property to
get or set a group name for a radio button instance or for a radio button group. Calling this
method overrides the groupName parameter value set during authoring. The default value is
"radioGroup".

Example

The following example sets the group name of a radio button instance to colorChoice and then
changes the group name to sizeChoice. To test this example, place a radio button on the Stage,
name the instance name myRadioButton, and enter the following code on Frame 1:
myRadioButton.groupName = "colorChoice";
trace(myRadioButton.groupName);
colorChoice.groupName = "sizeChoice";
trace(colorChoice.groupName);
RadioButton component 413

RadioButton.label

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

radioButtonInstance.label

Description

Property; specifies the text label for the radio button. By default, the label appears to the right of
the radio button. Calling this method overrides the label parameter specified during authoring. If
the label text is too long to fit within the bounding box of the component, the text is clipped.

Example

The following example sets the label property of the instance radioButton:
radioButton.label = "Remove from list";

RadioButton.labelPlacement

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

radioButtonInstance.labelPlacement

radioButtonGroup.labelPlacement

Description

Property; a string that indicates the position of the label in relation to a radio button. You can set
this property for an individual instance or for a radio button group. If you set the property for a
group, the label is placed in the appropriate position for each radio button in the group.

The following are the four possible values:

• "right" The radio button is pinned to the upper left corner of the bounding area. The label
is placed to the right of the radio button.

• "left" The radio button is pinned to the upper right corner of the bounding area. The label
is placed to the left of the radio button.

• "bottom" The label is placed below the radio button. The radio button and label grouping
are centered horizontally and vertically. If the bounding box of the radio button isn’t large
enough, the label is clipped.
414 Chapter 2: Components Reference

• "top" The label is placed above the radio button. The radio button and label grouping are
centered horizontally and vertically. If the bounding box of the radio button isn’t large enough,
the label is clipped.

Example

The following code places the label to the left of each radio button in radioGroup:
radioGroup.labelPlacement = "left";

RadioButton.selected

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

radioButtonInstance.selected

radioButtonGroup.selected

Description

Property; a Boolean value that sets the state of the radio button to selected (true) and deselects
the previously selected radio button, or sets the radio button to deselected (false).

Example

The first line of code sets the mcButton instance to true. The second line of code returns the
value of the selected property.
mcButton.selected = true;
trace(mcButton.selected);

RadioButton.selectedData

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

radioButtonGroup.selectedData

Description

Property; selects the radio button with the specified data value and deselects the previously
selected radio button. If the data property is not specified for a selected instance, the label value
of the selected instance is selected and returned. The selectedData property can be of any
data type.
RadioButton component 415

Example

The following example selects the radio button with the value "#FF00FF" from the radio group
colorGroup and sends the value to the Output panel:
colorGroup.selectedData = "#FF00FF";
trace(colorGroup.selectedData);

RadioButton.selection

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

radioButtonInstance.selection

radioButtonGroup.selection

Description

Property; behaves differently depending on whether you get or set the property. If you get the
property, it returns the object reference of the currently selected radio button in a radio button
group. If you set the property, it selects the specified radio button (passed as an object reference)
in a radio button group and deselects the previously selected radio button.

Example

The following example selects the radio button with the instance name color1 and sends its
instance name to the Output panel:
colorGroup.selection = color1;
trace(colorGroup.selection._name)

RoundIconButton component

The RoundIconButton component lets you create a simple, round push button with a custom
icon or a plus (+) sign or a minus (-) sign.

RoundIconButton component with a custom icon

Using the RoundIconButton component

Round icon buttons look pressable, and each one has an icon on its face. Round icon buttons
typically perform an action when they are clicked by the user.

The default icon for the RoundIconButton component is a plus (+) sign or a minus (-) sign that
you can use in your application to perform tasks that, for example, allow users to add items to or
remove items from a list.
416 Chapter 2: Components Reference

RoundIconButton parameters

You can set the following parameters for each RoundIconButton component instance:

Built-In Icon has three possible values: icon_add, an icon with a plus (+) sign; icon_remove, an
icon with a minus (-) sign; or Custom.

Custom Icon is the symbol ID of the image file to be used for a custom icon; for example,
logo.jpg.

You can set additional options and functionality for instances of this component by using its
methods.

About RoundIconButton states

The RoundIconButton component has the following states: active, over, press, default, default
over, disabled. The component in all states has a green border to indicate its status to the user,
except for the active and disabled states. The disabled button is dimmed and is unavailable to
the user.

Method summary for the MRoundIconButton component

The following table summarizes the methods for the MRoundIconButton class:

MRoundIconButton.getEnabled()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myRoundIconButton.getEnabled()

Parameters

None.

Method Description

MRoundIconButton.getEnabled() Returns true if enabled and false if disabled.

MRoundIconButton.getIcon() Returns an instance of the icon inside the button.

MRoundIconButton.setChangeHandler() Assigns a function that is called every time the push button
is released (toggle state is false).

MRoundIconButton.setClickHandler() Specifies a function that is called when the component is
clicked.

MRoundIconButton.setEnabled() Enables or disables the push button.

MRoundIconButton.setIcon() Sets the icon that is displayed in the push button.
RoundIconButton component 417

Returns

A Boolean value.

Description

Method; indicates whether the RoundIconButton instance is enabled (true) or disabled (false).

Example

The following example returns the enabled state of the RoundIconButton1 instance to the
Output panel:
trace(RoundIconButton1.getEnabled());

MRoundIconButton.getIcon()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myRoundIconButton.getIcon()

Parameters

None.

Returns

A reference to the movie clip in RoundIconButton.

Description

Method; returns an instance of the icon that is displayed in the icon button.

Example

The following example retrieves a reference to the movie clip inside the RoundIconButton1
object, stores the reference in a variable, and sets the rotation property to 45:
var icon = RoundIconButton1.getIcon();
icon._rotation=45;

MRoundIconButton.setChangeHandler()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myRoundIconButton.setChangeHandler(callBack)
418 Chapter 2: Components Reference

Parameters

callBack The string name of the function that is called. The function that it calls should reside
on the same Timeline as the RoundIconButton component.

Returns

Nothing.

Description

Method; specifies a change handler function to call when the icon button is released. The
function always accepts, as a parameter, the instance of the component that has changed. Calling
this method overrides the Change Handler parameter value specified in the Property inspector.

Example

The following example sets a change handler function for the RoundIconButton1 object:
RoundIconButton1.setChangeHandler("On");

MRoundIconButton.setClickHandler()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myRoundIconButton.setClickHandler(function)

Parameters

function The string name of the function that is called. The function that it calls should reside
on the same Timeline as the RoundIconButton component.

Returns

Nothing.

Description

Method; specifies a click handler function to call when the user clicks the icon button. The
function always accepts, as a parameter, the instance of the component that has changed.

Example

The following example sets a click handler for the RoundIconButton1 object:
RoundIconButton1.setClickHandler("On");
RoundIconButton component 419

MRoundIconButton.setEnabled()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myRoundIconButton.setEnabled(state)

Parameters

state A Boolean value: true enables the icon button; false disables it. The default value is
true.

Returns

Nothing.

Description

Method; specifies whether the icon button is enabled (true) or disabled (false). If an icon
button is disabled, it does not accept mouse or keyboard interaction from the user.

Example

The following example disables the button:
myRoundIconButton.setEnabled(false);

MRoundIconButton.setIcon()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myRoundIconButton.setIcon(linkage)

Parameters

linkage A string listing the linkage name or instance reference of the movie clip target.

Returns

Nothing.
420 Chapter 2: Components Reference

Description

Method; sets the icon for the icon button. If the icon movie clip is composed of frames labeled
“_up,” “_over,” “_down,” and “disabled,” the content of each frame is displayed with the
corresponding button state. Calling this method overrides the Icon parameter value set in
authoring.

Example

The following example applies the icon movie clip that has the linkage named foo:
RoundIconButton1.setIcon("foo");

ScrollPane component

The ScrollPane component displays movie clips, JPEG files, and SWF files in a scrollable area. By
using a scroll pane, you can limit the amount of screen area occupied by these media types. The
scroll pane can display content that is loaded from a local disk or from the Internet. You can set
this content while authoring and at runtime by using ActionScript.

Once the scroll pane has focus, if its content has valid tab stops, those markers receive focus. After
the last tab stop in the content, focus shifts to the next component. The vertical and horizontal
scroll bars in the scroll pane never receive focus.

A ScrollPane instance receives focus if a user clicks it or tabs to it. When a ScrollPane instance has
focus, you can use the following keys to control it:

For more information about controlling focus, see “Creating custom focus navigation” in Flash
Help or “FocusManager class” on page 231.

A live preview of each ScrollPane instance reflects changes made to parameters in the Property
inspector or Component inspector during authoring.

Using the ScrollPane component

You can use a scroll pane to display any content that is too large for the area into which it is
loaded. For example, if you have a large image and only a small space for it in an application, you
could load it into a scroll pane.

Key Description

Down Arrow Content moves up one vertical line scroll.

End Content moves to the bottom of the scroll pane.

Left Arrow Content moves right one horizontal line scroll.

Home Content moves to the top of the scroll pane.

Page Down Content moves up one vertical page scroll.

Page Up Content moves down one vertical page scroll.

Right Arrow Content moves left one horizontal line scroll.

Up Arrow Content moves down one vertical line scroll.
ScrollPane component 421

You can set up a scroll pane to allow users to drag the content within the pane by setting the
scrollDrag parameter to true; a pointing hand appears on the content. Unlike most other
components, events are broadcast when the mouse button is pressed and continue broadcasting
until the button is released. If the contents of a scroll pane have valid tab stops, you must
set scrollDrag to false; otherwise each mouse interaction with the contents will invoke
scroll dragging.

ScrollPane parameters

You can set the following authoring parameters for each ScrollPane instance in the Property
inspector or in the Component inspector:

contentPath indicates the content to load into the scroll pane. This value can be a relative path to
a local SWF or JPEG file, or a relative or absolute path to a file on the Internet. It can also be the
linkage identifier of a movie clip symbol in the library that is set to Export for ActionScript.

hLineScrollSize indicates the number of units a horizontal scroll bar moves each time an arrow
button is clicked. The default value is 5.

hPageScrollSize indicates the number of units a horizontal scroll bar moves each time the track
is clicked. The default value is 20.

hScrollPolicy displays the horizontal scroll bars. The value can be on, off, or auto. The default
value is auto.

scrollDrag is a Boolean value that determines whether scrolling occurs (true) or not (false)
when a user drags on the content within the scroll pane. The default value is false.

vLineScrollSize indicates the number of units a vertical scroll bar moves each time a scroll arrow
is clicked. The default value is 5.

vPageScrollSize indicates the number of units a vertical scroll bar moves each time the scroll bar
track is clicked. The default value is 20.

vScrollPolicy displays the vertical scroll bars. The value can be on, off, or auto. The default
value is auto.

You can write ActionScript to control these and additional options for a ScrollPane component
using its properties, methods, and events. For more information, see “UIScrollBar class”
on page 561.

Creating an application with the ScrollPane component

The following procedure explains how to add a ScrollPane component to an application while
authoring. In this example, the scroll pane loads a SWF file that contains a logo.

To create an application with the ScrollPane component:

1. Drag a ScrollPane component from the Components panel to the Stage.

2. In the Property inspector, enter the instance name myScrollPane.

3. In the Property inspector, enter logo.swf for the contentPath parameter.
422 Chapter 2: Components Reference

4. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
scrollListener = new Object();
scrollListener.scroll = function (evt){

txtPosition.text = myScrollPane.vPosition;
}
myScrollPane.addEventListener("scroll", scrollListener);
completeListener = new Object;
completeListener.complete = function() {

trace("logo.swf has completed loading.");
}
myScrollPane.addEventListener("complete", completeListener);

The first block of code is a scroll event handler on the myScrollPane instance that displays
the value of the vPosition property in a TextField instance called txtPosition. The second
block of code creates an event handler for the complete event that sends a message to the
Output panel.

Customizing the ScrollPane component

You can transform a ScrollPane component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()) or any applicable properties and methods of the ScrollPane class.

Bear in mind these points about the ScrollPane component:

• The ScrollPane places the registration point of its content in the upper left corner of the pane.
• When the horizontal scroll bar is turned off, the vertical scroll bar is displayed from top to

bottom along the right side of the scroll pane. When the vertical scroll bar is turned off, the
horizontal scroll bar is displayed from left to right along the bottom of the scroll pane. You can
also turn off both scroll bars.

• If the scroll pane is too small, the content may not display correctly.
• When the scroll pane is resized, the buttons remain the same size. The scroll track and scroll

box (thumb) expand or contract, and their hit areas are resized.

Using styles with the ScrollPane component

The ScrollPane supports the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values are
"haloGreen", "haloBlue", and "haloOrange". The default value
is "haloGreen".

border styles Both The ScrollPane component uses a RectBorder instance as its
border and responds to the styles defined on that class. See
“RectBorder class” in Flash Help.

The default border style is "inset".
ScrollPane component 423

Using skins with the ScrollPane component

The ScrollPane component uses an instance of RectBorder for its border and scroll bars for scroll
assets. For more information about skinning these visual elements, see “RectBorder class” in Flash
Help and “Using skins with the ScrollPane component” on page 424.

ScrollPane class

Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView >
ScrollPane

ActionScript Class Name mx.containers.ScrollPane

The properties of the ScrollPane class let you do the following at runtime: set the content,
monitor the loading progress, and adjust the scroll amount.

Setting a property of the ScrollPane class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component inspector.

You can set up a scroll pane so that users can drag the content within the pane. To do this, set the
scrollDrag property to true; a pointing hand appears on the content. Unlike most other
components, events are broadcast when the mouse button is pressed and continue broadcasting
until the button is released. If the contents of a scroll pane have valid tab stops, you must set
scrollDrag to false; otherwise, each mouse interaction with the contents will invoke
scroll dragging.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.containers.ScrollPane.version);

Note: The code trace(myScrollPaneInstance.version); returns undefined.

Method summary for the ScrollPane class

The following table lists methods of the ScrollPane class.

scrollTrackColor Sample The background color for the scroll track. The default value is
0xCCCCCC (light gray).

symbolColor Sample The color of the check mark. The default value is 0x000000
(black).

symbolDisabledColor Sample The color of the disabled check mark. The default value is
0x848384 (dark gray).

Method Description

ScrollPane.getBytesLoaded() Returns the number of bytes of content loaded.

ScrollPane.getBytesTotal() Returns the total number of bytes of content to be loaded.

ScrollPane.refreshPane() Reloads the contents of the scroll pane.

Style Theme Description
424 Chapter 2: Components Reference

Methods inherited from the UIObject class

The following table lists the methods the ScrollPane class inherits from the UIObject class. When
calling these methods from the ScrollPane object, use the form
ScrollPaneInstance.methodName.

Methods inherited from the UIComponent class

The following table lists the methods the ScrollPane class inherits from the UIComponent class.
When calling these methods from the ScrollPane object, use the form
ScrollPaneInstance.methodName.

Property summary for the ScrollPane class

The following table lists properties of the ScrollPane class.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Method Description

ScrollPane.content A reference to the content loaded into the scroll pane.

ScrollPane.contentPath An absolute or relative URL of the SWF or JPEG file to load into
the scroll pane.

ScrollPane.hLineScrollSize The amount of content to scroll horizontally when a scroll arrow
is clicked.

ScrollPane.hPageScrollSize The amount of content to scroll horizontally when the scroll track
is clicked.
ScrollPane component 425

Properties inherited from the UIObject class

The following table lists the properties the ScrollPane class inherits from the UIObject class.
When accessing these properties from the ScrollPane object, use the form
ScrollPaneInstance.propertyName.

ScrollPane.hPosition The horizontal pixel position of the scroll pane’s horizontal scroll
bar.

ScrollPane.hScrollPolicy The status of the horizontal scroll bar. It can be always on ("on"),
always off ("off"), or on when needed ("auto"). The default value
is "auto".

ScrollPane.scrollDrag Indicates whether scrolling occurs (true) or not (false) when a user
drags on content within the scroll pane. The default value is false.

ScrollPane.vLineScrollSize The amount of content to scroll vertically when a scroll arrow
is clicked.

ScrollPane.vPageScrollSize The amount of content to scroll vertically when the scroll track is
clicked.

ScrollPane.vPosition The pixel position of the scroll pane’s vertical scroll bar.

ScrollPane.vScrollPolicy The status of the vertical scroll bar. It can be always on ("on"),
always off ("off"), or on when needed ("auto"). The default value
is "auto".

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Method Description
426 Chapter 2: Components Reference

Properties inherited from the UIComponent class

The following table lists the properties the ScrollPane class inherits from the UIComponent class.
When accessing these properties from the ScrollPane object, use the form
ScrollPaneInstance.propertyName.

Event summary for the ScrollPane class

The following table lists events of the ScrollPane class.

Events inherited from the UIObject class

The following table lists the events the ScrollPane class inherits from the UIObject class.

Events inherited from the UIComponent class

The following table lists the events the ScrollPane class inherits from the UIComponent class.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event Description

ScrollPane.complete Broadcast when the scroll pane content is loaded.

ScrollPane.progress Broadcast while the scroll pane content is loading.

ScrollPane.scroll Broadcast when the scroll bar is clicked.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
ScrollPane component 427

ScrollPane.complete

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(complete){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.complete = function(eventObject){

...
}
scrollPaneInstance.addEventListener("complete", listenerObject)

Description

Event; broadcast to all registered listeners when the content has finished loading.

The first usage example uses an on() handler and must be attached directly to a ScrollPane
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the ScrollPane instance
myScrollPaneComponent, sends “_level0.myScrollPaneComponent” to the Output panel:
on(complete){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(scrollPaneInstance) dispatches an event (in this case, complete) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.
428 Chapter 2: Components Reference

Example

The following example creates a listener object with a complete event handler for the
scrollPane instance:
form.complete = function(eventObj){

// insert code to handle the event
}
scrollPane.addEventListener("complete",form);

ScrollPane.content

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollPaneInstance.content

Description

Property (read-only); a reference to the content of the scroll pane. The value is undefined until
the load begins.

Example

This example sets the mcLoaded variable to the value of the content property:
var mcLoaded = scrollPane.content;

See also

ScrollPane.contentPath

ScrollPane.contentPath

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollPaneInstance.contentPath

Description

Property; a string that indicates an absolute or relative URL of the SWF or JPEG file to load into
the scroll pane. A relative path must be relative to the SWF file that loads the content.
ScrollPane component 429

If you load content using a relative URL, the loaded content must be relative to the location of
the SWF file that contains the scroll pane. For example, an application using a ScrollPane
component that resides in the directory /scrollpane/nav/example.swf could load contents from
the directory /scrollpane/content/flash/logo.swf by using the following contentPath property:
"../content/flash/logo.swf"

Example

The following example tells the scroll pane to display the contents of an image from the Internet:
scrollPane.contentPath ="http://imagecache2.allposters.com/images/43/

033_302.jpg";

The following example tells the scroll pane to display the contents of a symbol from the library:
scrollPane.contentPath ="movieClip_Name";

The following example tells the scroll pane to display the contents of the local file logo.swf:
scrollPane.contentPath ="logo.swf";

See also

ScrollPane.content

ScrollPane.getBytesLoaded()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollPaneInstance.getBytesLoaded()

Parameters

None.

Returns

The number of bytes loaded in the scroll pane.

Description

Method; returns the number of bytes loaded in the ScrollPane instance. You can call this method
at regular intervals while loading content to check its progress.

Example

This example creates a ScrollPane instance called scrollPane. It then defines a listener object
called loadListener with a progress event handler that calls getBytesLoaded() to help
determine the progress of the load:
createClassObject(mx.containers.ScrollPane, "scrollPane", 0);
loadListener = new Object();
430 Chapter 2: Components Reference

loadListener.progress = function(eventObj){
// eventObj.target is the component that generated the change event
var bytesLoaded = scrollPane.getBytesLoaded();
var bytesTotal = scrollPane.getBytesTotal();
var percentComplete = Math.floor(bytesLoaded/bytesTotal);

if (percentComplete < 5) // loading begins
{

trace(" Starting loading contents from Internet");
}
else if(percentComplete = 50) // 50% complete
{

trace(" 50% contents downloaded ");
}

}
scrollPane.addEventListener("progress", loadListener);
scrollPane.contentPath = "http://www.geocities.com/hcls_matrix/Images/

homeview5.jpg";

ScrollPane.getBytesTotal()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollPaneInstance.getBytesTotal()

Parameters

None.

Returns

A number.

Description

Method; returns the total number of bytes to be loaded into the ScrollPane instance.

See also

ScrollPane.getBytesLoaded()

ScrollPane.hLineScrollSize

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.
ScrollPane component 431

Usage

scrollPaneInstance.hLineScrollSize

Description

Property; the number of pixels to move the content when an arrow in the horizontal scroll bar is
clicked. The default value is 5.

Example

This example increases the horizontal scroll unit to 10:
scrollPane.hLineScrollSize = 10;

ScrollPane.hPageScrollSize

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollPaneInstance.hPageScrollSize

Description

Property; the number of pixels to move the content when the track in the horizontal scroll bar is
clicked. The default value is 20.

Example

This example increases the horizontal page scroll unit to 30:
scrollPane.hPageScrollSize = 30;

ScrollPane.hPosition

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollPaneInstance.hPosition

Description

Property; the pixel position of the scroll pane’s horizontal scroll box (thumb). The 0 position is at
the extreme left end of the scroll track, which causes the left edge of the scroll pane content to be
visible in the scroll pane.
432 Chapter 2: Components Reference

Example

This example positions the scroll bar at pixel 20:
scrollPane.hPosition = 20;

ScrollPane.hScrollPolicy

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollPaneInstance.hScrollPolicy

Description

Property; determines whether the horizontal scroll bar is always present ("on"), is never present
("off"), or appears automatically according to the size of the image ("auto"). The default value
is "auto".

Example

The following code turns scroll bars on all the time:
scrollPane.hScrollPolicy = "on";

ScrollPane.progress

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(progress){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.progress = function(eventObject){

...
}
scrollPaneInstance.addEventListener("progress", listenerObject)
ScrollPane component 433

Description

Event; broadcast to all registered listeners while content is loading. The progress event is not
always broadcast; the complete event may be broadcast without any progress events being
dispatched. This can happen especially if the loaded content is a local file. Your application
triggers the progress event when the content starts loading by setting the value of the
contentPath property.

The first usage example uses an on() handler and must be attached directly to a ScrollPane
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the ScrollPane component
instance mySPComponent, sends “_level0.mySPComponent” to the Output panel:
on(progress){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(scrollPaneInstance) dispatches an event (in this case, progress) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following code creates a ScrollPane instance called scrollPane. It then creates a listener
object with an event handler for the progress event that sends a message to the Output panel
about how much content has loaded.
createClassObject(mx.containers.ScrollPane, "scrollPane", 0);
loadListener = new Object();
loadListener.progress = function(eventObj){

// eventObj.target is the component that generated the progress event
// --in this case, scrollPane
trace("logo.swf has loaded " + scrollPane.getBytesLoaded() + " Bytes.");
// track loading progress

}
scrollPane.addEventListener("complete", loadListener);
scrollPane.contentPath = "logo.swf";
434 Chapter 2: Components Reference

ScrollPane.refreshPane()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollPaneInstance.refreshPane()

Parameters

None.

Returns

Nothing.

Description

Method; refreshes the scroll pane after content is loaded. This method reloads the content. You
could use this method if, for example, you’ve loaded a form into a scroll pane and an input
property (for example, a text field) has been changed by ActionScript. In this case, you would call
refreshPane() to reload the same form with the new values for the input properties.

Example

The following example refreshes the scroll pane instance sp:
sp.refreshPane();

ScrollPane.scroll

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(scroll){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.scroll = function(eventObject){

...
}
scrollPaneInstance.addEventListener("scroll", listenerObject)
ScrollPane component 435

Event object

In addition to the standard event object properties, there are two additional properties defined for
the scroll event: a type property whose value is "scroll", and a direction property whose
value can be "vertical" or "horizontal".

In addition to the standard event object properties, there are two additional properties defined
for the ProgressBar.progress event: current (the loaded value equals total), and total (the
total value).

Description

Event; broadcast to all registered listeners when a user clicks the scroll bar buttons, scroll box
(thumb), or scroll track. Unlike other events, the scroll event is broadcast when a user presses
the mouse button on the scroll bar and continues broadcasting until the mouse is released.

The first usage example uses an on() handler and must be attached directly to a ScrollPane
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the instance sp, sends
“_level0.sp” to the Output panel:
on(scroll){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(scrollPaneInstance) dispatches an event (in this case, scroll) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

This example creates a form listener object with a scroll callback function that’s registered to the
spInstance instance. You must fill spInstance with content.
spInstance.contentPath = "mouse3.jpg";
form = new Object();
form.scroll = function(eventObj){

trace("ScrollPane scrolled");
}
spInstance.addEventListener("scroll", form);

See also

EventDispatcher.addEventListener() in Flash Help
436 Chapter 2: Components Reference

ScrollPane.scrollDrag

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollPaneInstance.scrollDrag

Description

Property; a Boolean value that indicates whether scrolling occurs (true) or not (false) when a
user drags within the scroll pane. The default value is false.

Example

This example causes the content to scroll when the user drags within the scroll pane:
scrollPane.scrollDrag = true;

ScrollPane.vLineScrollSize

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollPaneInstance.vLineScrollSize

Description

Property; the number of pixels to move the content in the display area when the user clicks a
scroll arrow in a vertical scroll bar. The default value is 5.

Example

This code causes the content in the display area to move 10 pixels when the vertical scroll arrows
are clicked:
scrollPane.vLineScrollSize = 10;

ScrollPane.vPageScrollSize

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.
ScrollPane component 437

Usage

scrollPaneInstance.vPageScrollSize

Description

Property; the number of pixels to move the content in the display area when the user clicks the
track in a vertical scroll bar. The default value is 20.

Example

This code causes the content in the display area to move 30 pixels when the vertical scroll track is
clicked:
scrollPane.vPageScrollSize = 30;

ScrollPane.vPosition

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollPaneInstance.vPosition

Description

Property; the pixel position of the scroll pane’s vertical scroll bar. The default value is 0.

ScrollPane.vScrollPolicy

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollPaneInstance.vScrollPolicy

Description

Property; determines whether the vertical scroll bar is always present ("on"), is never present
("off"), or appears automatically according to the size of the image ("auto"). The default value
is "auto".

Example

The following code turns vertical scroll bars on all the time:
scrollPane.vScrollPolicy = "on";
438 Chapter 2: Components Reference

SimpleButton class

Inheritance MovieClip > UIObject class > UIComponent class > SimpleButton

ActionScript Class Name mx.controls.SimpleButton

The properties of the SimpleButton class let you control the following at runtime:

• Whether a button has the emphasized look of a default push button
• Whether the button acts as a push button or as a toggle switch
• Whether a button is selected

Method summary for the SimpleButton class

There are no methods exclusive to the SimpleButton class.

Methods inherited from the UIObject class

The following table lists the methods the SimpleButton class inherits from the UIObject class.
When calling these methods from the SimpleButton class, use the form
buttonInstance.methodName.

Methods inherited from the UIComponent class

The following table lists the methods the SimpleButton class inherits from the UIComponent
class. When calling these methods from the SimpleButton object, use the form
buttonInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.
SimpleButton class 439

Property summary for the SimpleButton class

The following table lists properties of the SimpleButton class.

Properties inherited from the UIObject class

The following table lists the properties the SimpleButton class inherits from the UIObject class.
When accessing these properties from the SimpleButton object, use the form
buttonInstance.propertyName.

Property Description

SimpleButton.emphasized Indicates whether a button has the appearance of a
default push button.

SimpleButton.emphasizedStyleDeclaration The style declaration when the emphasized property is
set to true.

SimpleButton.selected A Boolean value indicating whether the button is
selected (true) or not (false). The default value is
false.

SimpleButton.toggle A Boolean value indicating whether the button
behaves as a toggle switch (true) or not (false). The
default value is false.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.
440 Chapter 2: Components Reference

Properties inherited from the UIComponent class

The following table lists the properties the SimpleButton class inherits from the UIComponent
class. When accessing these properties from the SimpleButton object, use the form
buttonInstance.propertyName.

Event summary for the SimpleButton class

The following table lists the event of the SimpleButton class.

Events inherited from the UIObject class

The following table lists the events the SimpleButton class inherits from the UIObject class.

Events inherited from the UIComponent class

The following table lists the events the SimpleButton class inherits from the UIComponent class.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event Description

SimpleButton.click Broadcast when a button is clicked.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
SimpleButton class 441

SimpleButton.click

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(click){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.click = function(eventObject){

...
}
buttonInstance.addEventListener("click", listenerObject)

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the button or
if the button has focus and the Spacebar is pressed.

The first usage example uses an on() handler and must be attached directly to a Button
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the Button
component instance myButtonComponent, sends “_level0.myButtonComponent” to the
Output panel:
on(click){

trace(this);
}

The behavior of this is different when used inside an on() handler attached to a regular Flash
button symbol. In that situation, this refers to the Timeline that contains the button. For
example, the following code, attached to the button symbol instance myButton, sends “_level0”
to the Output panel:
on(release){

trace(this);
}

Note: The built-in ActionScript Button object doesn’t have a click event; the closest event
is release.
442 Chapter 2: Components Reference

The second usage example uses a dispatcher/listener event model. A component instance
(buttonInstance) dispatches an event (in this case, click) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event occurs. When the event occurs, it automatically passes an event object (eventObject) to
the listener object method. The event object has properties that contain information about the
event. You can use these properties to write code that handles the event. Finally, you call
addEventListener() (see EventDispatcher.addEventListener() in Flash Help) on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
button called buttonInstance is clicked. The first line specifies that the button act like a toggle
switch. The second line creates a listener object called form. The third line defines a function for
the click event on the listener object. Inside the function is a trace() statement that uses the
event object that is automatically passed to the function (in this example, eventObj) to generate a
message. The target property of an event object is the component that generated the event (in
this example, buttonInstance). The SimpleButton.selected property is accessed from the
event object’s target property. The last line calls addEventListener() from buttonInstance
and passes it the click event and the form listener object as parameters.
buttonInstance.toggle = true;
form = new Object();
form.click = function(eventObj){

trace("The selected property has changed to " + eventObj.target.selected);
}
buttonInstance.addEventListener("click", form);

The following code also sends a message to the Output panel when buttonInstance is clicked.
The on() handler must be attached directly to buttonInstance.
on(click){

trace("button component was clicked");
}

SimpleButton.emphasized

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

buttonInstance.emphasized
SimpleButton class 443

Description

Property; indicates whether the button is in an emphasized state (true) or not (false). The
emphasized state is equivalent to the appearance of a default push button. In general, use the
FocusManager.defaultPushButton property instead of setting the emphasized property
directly. The default value is false.

If you aren’t using FocusManager.defaultPushButton, you might just want to set a button to
the emphasized state, or use the emphasized state to change text from one color to another. The
following example sets the emphasized property for the button instance myButton:
_global.styles.foo = new CSSStyleDeclaration();
_global.styles.foo.color = 0xFF0000;
SimpleButton.emphasizedStyleDeclaration = "neutralStyle";
myButton.emphasized = true;

See also

SimpleButton.emphasizedStyleDeclaration

SimpleButton.emphasizedStyleDeclaration

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

buttonInstance.emphasizedStyleDeclaraion

Description

Property (static); a string indicating the style declaration that formats a button when the
emphasized property is set to true.

The emphasizedStyleDeclaration property is a static property of the SimpleButton class.
Therefore, you must access it directly from SimpleButton, rather than from a buttonInstance,
as in the following:
SimpleButton.emphasizedStyleDeclaration = "3dEmphStyle";

See also

SimpleButton.emphasized

SimpleButton.selected

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.
444 Chapter 2: Components Reference

Usage

buttonInstance.selected

Description

Property; a Boolean value that indicates whether the button is selected (true) or not (false).
The default value is false.

SimpleButton.toggle

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

buttonInstance.toggle

Description

Property; a Boolean value that indicates whether the button acts as a toggle switch (true) or not
(false). The default value is false.

If a button acts as a toggle switch, it stays pressed until you click it again to release it.

TextInput component

The TextInput component is a single-line text component that is a wrapper for the native
ActionScript TextField object. You can use styles to customize the TextInput component; when
an instance is disabled, its contents appear in a color represented by the disabledColor style.
A TextInput component can also be formatted with HTML, or as a password field that disguises
the text.

A TextInput component can be enabled or disabled in an application. In the disabled state, it
doesn’t receive mouse or keyboard input. When enabled, it follows the same focus, selection, and
navigation rules as an ActionScript TextField object. When a TextInput instance has focus, you
can also use the following keys to control it:

For more information about controlling focus, see “Creating custom focus navigation” in Flash
Help or “FocusManager class” on page 231.

A live preview of each TextInput instance reflects changes made to parameters in the Property
inspector or Component inspector during authoring. Text is not selectable in the live preview,
and you cannot enter text in the component instance on the Stage.

Key Description

Arrow keys Move the insertion point one character left and right.

Shift+Tab Moves focus to the previous object.

Tab Moves focus to the next object.
TextInput component 445

When you add the TextInput component to an application, you can use the Accessibility panel to
make it accessible to screen readers.

Using the TextInput component

You can use a TextInput component wherever you need a single-line text field. If you need a
multiline text field, use the TextArea component. For example, you could use a TextInput
component as a password field in a form. You could also set up a listener that checks if the field
has enough characters when a user tabs out of the field. That listener could display an error
message indicating that the proper number of characters must be entered.

TextInput parameters

You can set the following authoring parameters for each TextInput component instance in the
Property inspector or in the Component inspector:

text specifies the contents of the TextInput component. You cannot enter carriage returns in the
Property inspector or Component inspector. The default value is "" (an empty string).

editable indicates whether the TextInput component is editable (true) or not (false). The
default value is true.

password indicates whether the field is a password field (true) or not (false). The default value
is false.

You can write ActionScript to control these and additional options for the TextInput component
using its properties, methods, and events. For more information, see “TextInput class”
on page 449.

Creating an application with the TextInput component

The following procedure explains how to add a TextInput component to an application while
authoring. In this example, the component is a password field with an event listener that
determines if the proper number of characters has been entered.

To create an application with the TextInput component:

1. Drag a TextInput component from the Components panel to the Stage.

2. In the Property inspector, do the following:

■ Enter the instance name passwordField.
■ Leave the text parameter blank.
■ Set the editable parameter to true.
■ Set the password parameter to true.
446 Chapter 2: Components Reference

3. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
textListener = new Object();
textListener.handleEvent = function (evt){

if (evt.type == "enter"){
trace("You must enter at least 8 characters");

}
}
passwordField.addEventListener("enter", textListener);

This code sets up an enter event handler on the TextInput passwordField instance that verifies
that the user entered the proper number of characters.

4. Once text is entered in the passwordField instance, you can get its value as follows:
var login = passwordField.text;

Customizing the TextInput component

You can transform a TextInput component horizontally while authoring and at runtime. While
authoring, select the component on the Stage and use the Free Transform tool or any of the
Modify > Transform commands. At runtime, use UIObject.setSize() or any applicable
properties and methods of the TextInput class.

When a TextInput component is resized, the border is resized to the new bounding box. The
TextInput component doesn’t use scroll bars, but the insertion point scrolls automatically as the
user interacts with the text. The text field is then resized within the remaining area; there are no
fixed-size elements in a TextInput component. If the TextInput component is too small to display
the text, the text is clipped.

Using styles with the TextInput component

The TextInput component has its backgroundColor and borderStyle style properties defined
on a class style declaration. Class styles override global styles; therefore, if you want to set the
backgroundColor and borderStyle style properties, you must create a different custom style
declaration or define it on the instance.

A TextInput component supports the following styles:

Style Theme Description

backgroundColor The background color. The default color is white.

border styles Both The TextArea component uses a RectBorder instance as its
border and responds to the styles defined on that class. See
“RectBorder class” in Flash Help.

The default border style is "inset".

marginLeft Both A number indicating the left margin for text. The default value
is 0.

marginRight Both A number indicating the right margin for text. The default value
is 0.
TextInput component 447

The TextArea and TextInput components both use the same styles and are often used in the same
manner. Thus, by default they share the same class-level style declaration. For example, the
following code sets a style on the TextArea declaration but it affects both TextArea and TextInput
components.
_global.styles.TextArea.setStyle("disabledColor", 0xBBBBFF);

To separate the components and provide class-level styles for one and not the other, create a new
style declaration.
import mx.styles.CSSStyleDeclaration;
_global.styles.TextInput = new CSSStyleDeclaration();
_global.styles.TextInput.setStyle("disabledColor", 0xFFBBBB);

Notice how this example does not check if _global.styles.TextInput existed before
overwriting it; in this example, you know it exists and you want to overwrite it.

Using skins with the TextInput component

The TextArea component uses an instance of RectBorder for its border. For more information
about skinning these visual elements, see “RectBorder class” in Flash Help.

color Both The text color. The default value is 0x0B333C for the Halo
theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The default
color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to
true if fontFamily refers to an embedded font. Otherwise, the
embedded font will not be used. If this style is set to true and
fontFamily does not refer to an embedded font, no text will be
displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bold". The default value
is "none". All components can also accept the value "normal"
in place of "none" during a setStyle() call, but subsequent
calls to getStyle() will return "none".

textAlign Both The text alignment: either "left", "right", or "center". The
default value is "left".

textIndent Both A number indicating the text indent. The default value is 0.

textDecoration Both The text decoration: either "none" or "underline". The default
value is "none".

Style Theme Description
448 Chapter 2: Components Reference

TextInput class

Inheritance MovieClip > UIObject class > UIComponent class > TextInput

ActionScript Class Name mx.controls.TextInput

The properties of the TextInput class let you set the text content, formatting, and horizontal
position at runtime. You can also indicate whether the field is editable, and whether it is a
“password” field. You can also restrict the characters that a user can enter.

Setting a property of the TextInput class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component inspector.

The TextInput component uses the Focus Manager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For more information, see
“FocusManager class” on page 231.

The TextInput component supports CSS styles and any additional HTML styles supported by
Flash Player. For information about CSS support, see the W3C specification at www.w3.org/TR/
REC-CSS2/.

You can manipulate the text string by using the string returned by the text object.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.controls.TextInput.version);

Note: The code trace(myTextInputInstance.version); returns undefined.

Method summary for the TextInput class

There are no methods exclusive to the TextInput class.

Methods inherited from the UIObject class

The following table lists the methods the TextInput class inherits from the UIObject class. When
calling these methods from the TextInput object, use the form
TextInputInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.
TextInput component 449

http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/

Methods inherited from the UIComponent class

The following table lists the methods the TextInput class inherits from the UIComponent class.
When calling these methods from the TextInput object, use the form
TextInputInstance.methodName.

Property summary for the TextInput class

The following table lists properties of the TextInput class.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

TextInput.editable A Boolean value indicating whether the field is editable (true) or
not (false).

TextInput.hPosition The horizontal scrolling position of the text in the field.

TextInput.length The number of characters in a TextInput component. This property
is read-only.

TextInput.maxChars The maximum number of characters that a user can enter in the text
field.

TextInput.maxHPosition The maximum possible value for TextField.hPosition. This
property is read-only.

TextInput.password A Boolean value that indicates whether the text field is a password
field that hides the entered characters.

TextInput.restrict Indicates which characters a user can enter in a text field.

TextInput.text Sets the text content of a TextInput component.

Method Description
450 Chapter 2: Components Reference

Properties inherited from the UIObject class

The following table lists the properties the TextInput class inherits from the UIObject class.
When accessing these properties from the TextInput object, use the form
TextInputInstance.propertyName.

Properties inherited from the UIComponent class

The following table lists the properties the TextInput class inherits from the UIComponent class.
When accessing these properties from the TextInput object, use the form
TextInputInstance.propertyName.

Event summary for the TextInput class

The following table lists events of the TextInput class.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event Description

TextInput.change Broadcast when the TextInput field changes.

TextInput.enter Broadcast when the Enter key is pressed.
TextInput component 451

Events inherited from the UIObject class

The following table lists the events the TextInput class inherits from the UIObject class.

Events inherited from the UIComponent class

The following table lists the events the TextInput class inherits from the UIComponent class.

TextInput.change

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(change){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

...
}
textInputInstance.addEventListener("change", listenerObject)

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
452 Chapter 2: Components Reference

Description

Event; notifies listeners that text has changed. This event is broadcast after the text has changed.
This event cannot be used to prevent certain characters from being added to the component’s text
field; for that purpose, use TextInput.restrict. This event is triggered only by user input, not
by programmatic change.

The first usage example uses an on() handler and must be attached directly to a TextInput
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the instance myTextInput,
sends “_level0.myTextInput” to the Output panel:
on(change){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(textInputInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

This example sets a flag in the application that indicates if contents in the TextInput field have
changed:
form.change = function(eventObj){
 // note: eventObj.target refers to the component that generated the change
 // event, i.e., the TextInput component.
 myFormChanged.visible = true; // set a change indicator if the contents

changed;
}
myInput.addEventListener("change", form);

See also

EventDispatcher.addEventListener() in Flash Help

TextInput.editable

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.
TextInput component 453

Usage

textInputInstance.editable

Description

Property; a Boolean value that indicates whether the component is editable (true) or not
(false). The default value is true.

TextInput.enter

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(enter){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.enter = function(eventObject){

...
}
textInputInstance.addEventListener("enter", listenerObject)

Description

Event; notifies listeners that the Enter key has been pressed.

The first usage example uses an on() handler and must be attached directly to a TextInput
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the instance myTextInput,
sends “_level0.myTextInput” to the Output panel:
on(enter){

trace(this);
}

454 Chapter 2: Components Reference

The second usage example uses a dispatcher/listener event model. A component instance
(textInputInstance) dispatches an event (in this case, enter) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

This example sets a flag in the application that indicates if contents in the TextInput field
have changed:
form.enter = function(eventObj){
 // note: eventObj.target refers the component that generated the enter event,
 // i.e., the TextInput component.

myFormChanged.visible = true;
// set a change indicator if the user presses Enter;

}
myInput.addEventListener("enter", form);

See also

EventDispatcher.addEventListener() in Flash Help

TextInput.hPosition

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textInputInstance.hPosition

Description

Property; defines the horizontal position of the text in the field. The default value is 0.

Example

The following code displays the leftmost character in the field:
myTextInput.hPosition = 0;
TextInput component 455

TextInput.length

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

inputInstance.length

Description

Property (read-only); a number that indicates the number of characters in a TextInput
component. A character such as tab ("\t") counts as one character. The default value is 0.

Example

The following code determines the number of characters in the myTextInput string and copies it
to the length variable:
var length = myTextInput.length;

TextInput.maxChars

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textInputInstance.maxChars

Description

Property; the maximum number of characters that the text field can contain. A script may insert
more text than the maxChars property allows; this property indicates only how much text a user
can enter. If this property is null, there is no limit to the amount of text a user can enter. The
default value is null.

Example

The following example limits the number of characters a user can enter to 255:
myTextInput.maxChars = 255;
456 Chapter 2: Components Reference

TextInput.maxHPosition

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textInputInstance.maxHPosition

Description

Property (read-only); indicates the maximum value of TextInput.hPosition. The default value
is 0.

Example

The following code scrolls to the far right:
myTextInput.hPosition = myTextInput.maxHPosition;

TextInput.password

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textInputInstance.password

Description

Property; a Boolean value indicating whether the text field is a password field (true) or not
(false). If this property is true, the text field is a password text field and hides the input
characters. If this property is false, the text field is not a password text field. The default value is
false.

Example

The following code makes the text field a password field that displays all characters as asterisks (*):
myTextInput.password = true;

TextInput.restrict

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.
TextInput component 457

Usage

textInputInstance.restrict

Description

Property; indicates the set of characters that a user can enter in the text field. The default value is
undefined. If this property is null or an empty string (""), a user can enter any character. If this
property is a string of characters, the user can enter only characters in the string; the string is
scanned from left to right. You can specify a range by using a dash (-).

If the string begins with ^, all characters that follow the ^ are considered unacceptable characters.
If the string does not begin with ^, the characters in the string are considered acceptable. The ^
can also be used as a toggle between acceptable and unacceptable characters.

For example, the following code allows A-Z except X and Q:
Ta.restrict = "A-Z^XQ";

You can use the backslash (\) to enter a hyphen (-), caret (^), or backslash (\) character, as shown
here:
\^
\-
\\

When you enter the \ character in the Actions panel within double quotation marks, it has a
special meaning for the Actions panel’s double-quote interpreter. It signifies that the character
following the \ should be treated as is. For example, you could use the following code to enter a
single quotation mark:
var leftQuote = "\’";

The Actions panel’s restrict interpreter also uses \ as an escape character. Therefore, you may
think that the following should work:
myText.restrict = "0-9\-\^\\";

However, since this expression is surrounded by double quotation marks, the following value is
sent to the restrict interpreter: 0-9-^\, and the restrict interpreter doesn’t understand this value.

Because you must enter this expression within double quotation marks, you must not only
provide the expression for the restrict interpreter, but you must also escape the Actions panel’s
built-in interpreter for double quotation marks. To send the value 0-9\-\^\\ to the restrict
interpreter, you must enter the following code:
myText.restrict = "0-9\\-\\^\\\\";

The restrict property restricts only user interaction; a script may put any text into the text
field. This property does not synchronize with the Embed Font Outlines check boxes in the
Property inspector.
458 Chapter 2: Components Reference

Example

In the following example, the first line of code limits the text field to uppercase letters, numbers,
and spaces. The second line of code allows all characters except lowercase letters.
my_txt.restrict = "A-Z 0-9";
my_txt.restrict = "^a-z";

The following code allows a user to enter the characters “0 1 2 3 4 5 6 7 8 9 - ^ \” in the instance
myText. You must use a double backslash to escape the characters -, ^, and \. The first \ escapes
the double quotation marks, and the second \ tells the interpreter that the next character should
not be treated as a special character.
myText.restrict = "0-9\\-\\^\\\\";

TextInput.text

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textInputInstance.text

Description

Property; the text contents of a TextInput component. The default value is "" (an empty string).

Example

The following code places a string in the myTextInput instance, and then traces that string to the
Output panel:
myTextInput.text = "The Royal Nonesuch";
trace(myTextInput.text); // traces "The Royal Nonesuch"

TextArea component

The TextArea component wraps the native ActionScript TextField object. You can use styles to
customize the TextArea component; when an instance is disabled, its contents display in a color
represented by the disabledColor style. A TextArea component can also be formatted with
HTML, or as a password field that disguises the text.
TextArea component 459

A TextArea component can be enabled or disabled in an application. In the disabled state, it
doesn’t receive mouse or keyboard input. When enabled, it follows the same focus, selection, and
navigation rules as an ActionScript TextField object. When a TextArea instance has focus, you can
use the following keys to control it:

For more information about controlling focus, see “Creating custom focus navigation” in Flash
Help or “FocusManager class” on page 231.

A live preview of each TextArea instance reflects changes made to parameters in the Property
inspector or Component inspector during authoring. If a scroll bar is needed, it appears in the live
preview, but it does not function. Text is not selectable in the live preview, and you cannot enter
text in the component instance on the Stage.

When you add the TextArea component to an application, you can use the Accessibility panel to
make it accessible to screen readers.

Using the TextArea component

You can use a TextArea component wherever you need a multiline text field. If you need a single-
line text field, use the TextInput component. For example, you could use a TextArea component
as a comment field in a form. You could set up a listener that checks if the field is empty when a
user tabs out of the field. That listener could display an error message indicating that a comment
must be entered in the field.

TextArea parameters

You can set the following authoring parameters for each TextArea component instance in the
Property inspector or in the Component inspector:

text indicates the contents of the TextArea component. You cannot enter carriage returns in the
Property inspector or Component inspector. The default value is "" (an empty string).

html indicates whether the text is formatted with HTML (true) or not (false). The default
value is false.

editable indicates whether the TextArea component is editable (true) or not (false). The
default value is true.

wordWrap indicates whether the text wraps (true) or not (false). The default value is true.

Key Description

Arrow keys Move the insertion point one line up, down, left, or right.

Page Down Moves one screen down.

Page Up Moves one screen up.

Shift+Tab Moves focus to the previous object.

Tab Moves focus to the next object.
460 Chapter 2: Components Reference

You can write ActionScript to control these and additional options for the TextArea component
using its properties, methods, and events. For more information, see “TextArea class”
on page 463.

Creating an application with the TextArea component

The following procedure explains how to add a TextArea component to an application while
authoring. In this example, the component is a Comment field with an event listener that
determines if a user has entered text.

To create an application with the TextArea component:

1. Drag a TextArea component from the Components panel to the Stage.

2. In the Property inspector, enter the instance name comment.

3. In the Property inspector, set parameters as you wish. However, leave the text parameter blank,
the editable parameter set to true, and the password parameter set to false.

4. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
textListener = new Object();
textListener.handleEvent = function (evt){

if (comment.length < 1) {
Alert(_root, "Error", "You must enter at least a comment in this field",
mxModal | mxOK);
}

}
comment.addEventListener("focusOut", textListener);

This code sets up a focusOut event handler on the TextArea comment instance that verifies
that the user typed something in the text field.

5. Once text is entered in the comment instance, you can get its value as follows:
var login = comment.text;

Customizing the TextArea component

You can transform a TextArea component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use UIObject.setSize() or any
applicable properties and methods of the TextArea class.

When a TextArea component is resized, the border is resized to the new bounding box. The scroll
bars are placed on the bottom and right edges if they are required. The text field is then resized
within the remaining area; there are no fixed-size elements in a TextArea component. If the
TextArea component is too small to display the text, the text is clipped.

Using styles with the TextArea component

The TextArea component supports one set of component styles for all text in the field. However,
you can also display HTML that is compatible with Flash Player HTML rendering. To display
HTML text, set TextArea.html to true.
TextArea component 461

The TextArea component has its backgroundColor and borderStyle style properties defined on
a class style declaration. Class styles override global styles; therefore, if you want to set the
backgroundColor and borderStyle style properties, you must create a different custom style
declaration on the instance.

If the name of a style property ends in “Color”, it is a color style property and behaves differently
than noncolor style properties. For more information, see “Using styles to customize component
color and text” in Flash Help.

A TextArea component supports the following styles:

Style Theme Description

backgroundColor Both The background color. The default color is white.

border styles Both The TextArea component uses a RectBorder instance as its
border and responds to the styles defined on that class. See
“RectBorder class” in Flash Help.

The default border style is "inset".

marginLeft Both A number indicating the left margin for text. The default value
is 0.

marginRight Both A number indicating the right margin for text. The default value
is 0.

color Both The text color. The default value is 0x0B333C for the Halo
theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The default
color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to
true if fontFamily refers to an embedded font. Otherwise, the
embedded font will not be used. If this style is set to true and
fontFamily does not refer to an embedded font, no text will be
displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bold". The default value
is "none". All components can also accept the value "normal"
in place of "none" during a setStyle() call, but subsequent
calls to getStyle() will return "none".

textAlign Both The text alignment: either "left", "right", or "center". The
default value is "left".

textIndent Both A number indicating the text indent. The default value is 0.

textDecoration Both The text decoration: either "none" or "underline". The default
value is "none".
462 Chapter 2: Components Reference

The TextArea and TextInput components use exactly the same styles and are often used in the
same manner. Thus, by default they share the same class-level style declaration. For example, the
following code sets a style on the TextInput declaration, but it affects both TextInput and
TextArea components.
_global.styles.TextInput.setStyle("disabledColor", 0xBBBBFF);

To separate the components and provide class-level styles for one and not the other, create a new
style declaration.
import mx.styles.CSSStyleDeclaration;
_global.styles.TextArea = new CSSStyleDeclaration();
_global.styles.TextArea.setStyle("disabledColor", 0xFFBBBB);

This example does not check if _global.styles.TextArea existed before overwriting it; it
assumes you know it exists and want to overwrite it.

Using skins with the TextArea component

The TextArea component uses an instance of RectBorder for its border and scroll bars for
scrolling images. For more information about skinning these visual elements, see “RectBorder
class” in Flash Help and “Using skins with the TextArea component” on page 463.

TextArea class

Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView >
TextArea

ActionScript Class Name mx.controls.TextArea

The properties of the TextArea class let you set the text content, formatting, and horizontal and
vertical position at runtime. You can also indicate whether the field is editable, and whether it is a
“password” field. You can also restrict the characters that a user can enter.

Setting a property of the TextArea class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component inspector.

The TextArea component overrides the default Flash Player focus rectangle and draws a custom
focus rectangle with rounded corners.

The TextArea component supports CSS styles and any additional HTML styles supported by
Flash Player.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.controls.TextArea.version);

Note: The code trace(myTextAreaInstance.version); returns undefined.

Method summary for the TextArea class

There are no methods exclusive to the TextArea class.
TextArea component 463

Methods inherited from the UIObject class

The following table lists the methods the TextArea class inherits from the UIObject class. When
calling these methods from the TextArea object, use the form TextAreaInstance.methodName.

Methods inherited from the UIComponent class

The following table lists the methods the TextArea class inherits from the UIComponent class.
When calling these methods from the TextArea object, use the form
TextAreaInstance.methodName.

Property summary for the TextArea class

The following table lists properties of the TextArea class.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

TextArea.editable A Boolean value indicating whether the field is editable (true) or
not (false).

TextArea.hPosition Defines the horizontal position of the text in the field.

TextArea.hScrollPolicy Indicates whether the horizontal scroll bar is always on ("on"), is
never on ("off"), or turns on when needed ("auto").

TextArea.html A Boolean value that indicates whether the text field can be
formatted with HTML.

TextArea.length Read-only; the number of characters in the text field.
464 Chapter 2: Components Reference

Properties inherited from the UIObject class

The following table lists the properties the TextArea class inherits from the UIObject class. When
accessing these properties from the TextArea object, use the form
TextAreaInstance.propertyName.

TextArea.maxChars The maximum number of characters that the text field can contain.

TextArea.maxHPosition Read-only; the maximum value of TextArea.hPosition.

TextArea.maxVPosition Read-only; the maximum value of TextArea.vPosition.

TextArea.password A Boolean value indicating whether the field is a password field
(true) or not (false).

TextArea.restrict The set of characters that a user can enter in the text field.

TextArea.styleSheet Attaches a style sheet to the specified TextArea component.

TextArea.text The text contents of a TextArea component.

TextArea.vPosition A number indicating the vertical scrolling position.

TextArea.vScrollPolicy Indicates whether the vertical scroll bar is always on ("on"), is never
on ("off"), or turns on when needed ("auto").

TextArea.wordWrap A Boolean value indicating whether the text wraps (true) or not
(false).

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description
TextArea component 465

Properties inherited from the UIComponent class

The following table lists the properties the TextArea class inherits from the UIComponent class.
When accessing these properties from the TextArea object, use the form
TextAreaInstance.propertyName.

Event summary for the TextArea class

The following table lists the event of the TextArea class.

Events inherited from the UIObject class

The following table lists the events the TextArea class inherits from the UIObject class.

Events inherited from the UIComponent class

The following table lists the events the TextArea class inherits from the UIComponent class.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event Description

TextArea.change Notifies listeners that text has changed.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
466 Chapter 2: Components Reference

TextArea.change

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(change){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

...
}
textAreaInstance.addEventListener("change", listenerObject)

Description

Event; notifies listeners that text has changed. This event is broadcast after the text has changed.
This event cannot be used to prevent certain characters from being added to the component’s text
field; for this purpose, use TextArea.restrict.

The first usage example uses an on() handler and must be attached directly to a TextArea
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the instance myTextArea,
sends “_level0.myTextArea” to the Output panel:
on(change){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(textAreaInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.
TextArea component 467

Example

This example uses the dispatcher/listener event model to track the total of number of times the
text field has changed in a TextArea component named myTextArea:
// define a listener object
var myTextAreaListener:Object = new Object();

// create a Number variable to track the number of changes to the TextArea
var changeCount:Number = 0;

// define a function that is executed whenever the listener receives
// notification of a change in the TextArea component
myTextAreaListener.change = function(eventObj) {

changeCount++;
trace("Text has changed " + changeCount + " times now!");
trace("It now contains: " + eventObj.target.text);

}

// register the listener object with the TextArea component instance
myTextArea.addEventListener("change", myTextAreaListener);

See also

EventDispatcher.addEventListener() in Flash Help

TextArea.editable

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textAreaInstance.editable

Description

Property; a Boolean value that indicates whether the component is editable (true) or not
(false). The default value is true.

TextArea.hPosition

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textAreaInstance.hPosition
468 Chapter 2: Components Reference

Description

Property; defines the horizontal position of the text in the field. The default value is 0.

Example

The following code displays the leftmost characters in the field:
myTextArea.hPosition = 0;

TextArea.hScrollPolicy

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textAreaInstance.hScrollPolicy

Description

Property; determines whether the horizontal scroll bar is always present ("on"), is never present
("off"), or appears automatically according to the size of the field ("auto"). The default value
is "auto".

Example

The following code turns horizontal scroll bars on all the time:
text.hScrollPolicy = "on";

TextArea.html

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textAreaInstance.html

Description

Property; a Boolean value that indicates whether the text field is formatted with HTML (true) or
not (false). If the html property is true, the text field is an HTML text field. If html is false,
the text field is a non-HTML text field. The default value is false.
TextArea component 469

Example

The following example makes the myTextArea field an HTML text field and then formats the
text with HTML tags:
myTextArea.html = true;
myTextArea.text = "The Royal Nonesuch"; // displays "The Royal

Nonesuch"

TextArea.length

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textAreaInstance.length

Description

Property (read-only); indicates the number of characters in a text field. This property returns the
same value as the ActionScript text.length property, but is faster. A character such as tab
("\t") counts as one character. The default value is 0.

Example

The following example gets the length of the text field and copies it to the length variable:
var length = myTextArea.length; // find out how long the text string is

TextArea.maxChars

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textAreaInstance.maxChars

Description

Property; the maximum number of characters that the text field can contain. A script may insert
more text than the maxChars property allows; the property indicates only how much text a user
can enter. If the value of this property is null, there is no limit to the amount of text a user can
enter. The default value is null.
470 Chapter 2: Components Reference

Example

The following example limits the number of characters a user can enter to 255:
myTextArea.maxChars = 255;

TextArea.maxHPosition

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textAreaInstance.maxHPosition

Description

Property (read-only); the maximum value of TextArea.hPosition. The default value is 0.

Example

The following code causes the text to scroll to the far right:
myTextArea.hPosition = myTextArea.maxHPosition;

See also

TextArea.vPosition

TextArea.maxVPosition

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textAreaInstance.maxVPosition

Description

Property (read-only); indicates the maximum value of TextArea.vPosition. The default value
is 0.

Example

The following code causes the text to scroll to the bottom of the component:
myTextArea.vPosition = myTextArea.maxVPosition;

See also

TextArea.hPosition
TextArea component 471

TextArea.password

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textAreaInstance.password

Description

Property; a Boolean value indicating whether the text field is a password field (true) or not
(false). If password is true, the text field is a password text field and hides the input characters.
If password is false, the text field is not a password text field. The default value is false.

Example

The following code makes the text field a password field that displays all characters as asterisks (*):
myTextArea.password = true;

TextArea.restrict

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textAreaInstance.restrict

Description

Property; indicates the set of characters that users can enter in the text field. The default value is
undefined. If this property is null, users can enter any character. If this property is an empty
string, no characters can be entered. If this property is a string of characters, users can enter only
characters in the string; the string is scanned from left to right. You can specify a range by using a
dash (-).

If the string begins with ^, all characters that follow the ^ are considered unacceptable characters.
If the string does not begin with ^, the characters in the string are considered acceptable. The ^
can also be used as a toggle between acceptable and unacceptable characters.

For example, the following code allows A-Z except X and Q:
Ta.restrict = "A-Z^XQ";

The restrict property only restricts user interaction; a script may put any text into the text
field. This property does not synchronize with the Embed Font Outlines check boxes in the
Property inspector.
472 Chapter 2: Components Reference

Example

In the following example, the first line of code limits the text field to uppercase letters, numbers,
and spaces. The second line of code allows all characters except lowercase letters.
my_txt.restrict = "A-Z 0-9"; // limit control to uppercase letters, numbers,

and spaces
my_txt.restrict = "^a-z"; // allow all characters, except lowercase letters

TextArea.styleSheet

Availability

Flash Player 7.

Usage

TextAreaInstance.styleSheet = TextFieldStyleSheetObject

Description

Property; attaches a style sheet to the TextArea component specified by TextAreaInstance.

The style sheet associated with a TextArea component may be changed at any time. If the style
sheet in use is changed, the TextArea component is redrawn with the new style sheet. The style
sheet may be set to null or undefined to remove the style sheet. If the style sheet in use is
removed, the TextArea component is redrawn without a style sheet. The formatting done by a
style sheet is not retained if the style sheet is removed.

Example

The following code creates a new StyleSheet object named styles with the new
TextField.StyleSheet constructor. It then defines styles for <html>, <body> and <td> tags. It
then uses LoadVars.load to load an HTML file named myText.htm. That file contains text
within <html>, <body> and <td> tags. When the text is displayed in the TextArea instance
MyTextArea, the text within those tags is styled according to the StyleSheet object styles.
// create the new StyleSheet object
var styles = new TextField.StyleSheet();

// define styles for <html>, <body>, and <td>...
styles.setStyle("html",

{fontFamily: 'Arial,Helvetica,sans-serif',
fontSize: '12px',
color: '#0000FF'});

styles.setStyle("body",
{color: '#00CCFF',
textDecoration: 'underline'});

styles.setStyle("td",
{fontFamily: 'Arial,Helvetica,sans-serif',
fontSize: '24px',
color: '#006600'});

// set the TextAreaInstance.styleSheet property to the newly defined
// styleSheet object named styles
TextArea component 473

myTextArea.styleSheet=styles;
myTextArea.html=true;

// Load text to display and define onLoad handler
var myVars:LoadVars = new LoadVars();
myVars.load("myText.htm");
myVars.onData = function(content) {

_root.myTextArea.text = content;
};

TextArea.text

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textAreaInstance.text

Description

Property; the text contents of a TextArea component. The default value is "" (an empty string).

Example

The following code places a string in the myTextArea instance, and then traces that string to the
Output panel:
myTextArea.text = "The Royal Nonesuch";
trace(myTextArea.text); // traces "The Royal Nonesuch"

TextArea.vPosition

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textAreaInstance.vPosition

Description

Property; defines the vertical scroll position of text in a text field. This property is useful for
directing users to a specific paragraph in a long passage, or creating scrolling text fields. You can
get and set this property. The default value is 0.
474 Chapter 2: Components Reference

Example

The following code displays the topmost characters in a field:
myTextArea.vPosition = 0;

TextArea.vScrollPolicy

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textAreaInstance.vScrollPolicy

Description

Property; determines whether the vertical scroll bar is always present ("on"), is never present
("off"), or appears automatically according to the size of the field ("auto"). The default value
is "auto".

Example

The following code turns vertical scroll bars off all the time:
text.vScrollPolicy = "off";

TextArea.wordWrap

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

textAreaInstance.wordWrap

Description

Property; a Boolean value that indicates whether the text wraps (true) or not (false). The
default value is true.
TextArea component 475

TossButton component

The TossButton component is a small round button with a curved arrow on it. It changes state
when you move a mouse pointer over it. Use this button for sending data from your pod to its
parent application and to start the parent application from the pod. For example, a user might
have the Console open with your application’s pod open to view headlines from a news feed. If
the user wants more detail for a headline in the pod, the user can, with the headline selected, click
the toss button to start the application. The application usually has more space to show detail and
also offers more functionality than the pod.

Toss Button in a pod

Using the TossButton component

The TossButton component has the same methods, properties, and events as the Button object.
For detailed information on the Button object, see the help system in your Flash authoring tool.
However, for most developers, use of the TossButton component will simply require the
onRelease event handler, which is documented here.

MTossButton.onRelease

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

myTossButton.onRelease()

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when the button is released. You must define a function that executes
when the event is invoked.
476 Chapter 2: Components Reference

Example

The following example defines a function for the onRelease method that sends a trace action to
the Output panel:.
myButton.onRelease = function () {

trace ("onRelease called");
};

Tree component

The Tree component allows a user to view hierarchical data. The tree appears in a box like the List
component, but each item in a tree is called a node and can be either a leaf or a branch. By default,
a leaf is represented by a text label beside a file icon, and a branch is represented by a text label
beside a folder icon with an expander arrow (disclosure triangle) that a user can open to expose
children. The children of a branch can be leaves or branches.

The data of a tree component must be provided from an XML data source. For more
information, see “Using the Tree component” on page 478.

When a Tree instance has focus either from clicking or tabbing, you can use the following keys to
control it:

The Tree component cannot be made accessible to screen readers.

Key Description

Down Arrow Moves selection down one item.

Up Arrow Moves selection up one item.

Right Arrow Opens a selected branch node. If a branch is already open, moves to first child node.

Left Arrow Closes a selected branch node. If on a leaf node of a closed branch node, moves to
parent node.

Space Opens or closes a selected branch node.

End Moves selection to the bottom of the list.

Home Moves selection to the top of the list.

Page Down Moves selection down one page.

Page Up Moves selection up one page.

Control Allows multiple noncontiguous selections.

Shift Allows multiple contiguous selections.
Tree component 477

Using the Tree component

The Tree component can be used to represent hierarchical data such as e-mail client folders, file
browser panes, or category browsing systems for inventory. Most often, the data for a tree is
retrieved from a server in the form of XML, but it can also be well-formed XML that is created
during authoring in Flash. The best way to create XML for the tree is to use the TreeDataProvider
interface. You can also use the ActionScript XML class or build an XML string. After you create
an XML data source (or load one from an external source), you assign it to Tree.dataProvider.

The Tree component comprises two sets of APIs: the Tree class and the TreeDataProvider
interface. The Tree class contains the visual configuration methods and properties. The
TreeDataProvider interface lets you construct XML and add it to multiple tree instances. A
TreeDataProvider object broadcasts changes to any trees that use it. In addition, any XML or
XMLNode object that exists on the same frame as a tree or a menu is automatically given the
TreeDataProvider methods and properties. For more information, see “TreeDataProvider
interface (Flash Professional only)” in Flash Help.

Formatting XML for the Tree component

The Tree component is designed to display hierarchical data structures using XML as the data
model. It is important to understand the relationship of the XML data source to the Tree
component.

Consider the following XML data source sample:
<node>
 <node label="Mail">
 <node label="INBOX"/>
 <node label="Personal Folder">
 <node label="Business" isBranch="true" />
 <node label="Demo" isBranch="true" />
 <node label="Personal" isBranch="true" />
 <node label="Saved Mail" isBranch="true" />
 <node label="bar" isBranch="true" />
 </node>
 <node label="Sent" isBranch="true" />
 <node label="Trash"/>
 </node>
</node>

Note: The isBranch attribute is read-only; you cannot set it directly. To set it, call Tree.setIsBranch().

Nodes in the XML data source can have any name. Notice in the previous example that each node
is named with the generic name node. The tree reads through the XML and builds the display
hierarchy according to the nested relationship of the nodes.

Each XML node can be displayed as one of two types in the tree: branch or leaf. Branch nodes can
contain multiple child nodes and appear as a folder icon with an expander arrow that allows users
to open and close the folder. Leaf nodes appear as a file icon and cannot contain child nodes. Both
leaves and branches can be roots; a root node appears at the top level of the tree and has no
parent. The icons are customizable; for more information, see “Using skins with the Tree
component” on page 488.
478 Chapter 2: Components Reference

There are many ways to structure XML, but the Tree component cannot use all types of XML
structures. Do not nest node attributes in a child node; each node should contain all its necessary
attributes. Also, the attributes of each node should be consistent to be useful. For example, to
describe a mailbox structure with a Tree component, use the same attributes on each node
(message, data, time, attachments, and so on). This lets the tree know what it expects to render,
and lets you loop through the hierarchy to compare data.

When a Tree displays a node, it uses the label attribute of the node by default as the text label.
If any other attributes exist, they become additional properties of the node’s attributes within
the tree.

The actual root node is interpreted as the Tree component itself. This means that the first child
(in the previous example, <node label="Mail">), is rendered as the root node in the tree view.
This means that a tree can have multiple root folders. In the example, there is only one root folder
displayed in the tree: Mail. However, if you were to add sibling nodes at that level in the XML,
multiple root nodes would be displayed in the tree.

A data provider for a tree always wants a node that has children it can display. It displays the first
child of the XMLNode object. When the XML is wrapped in an XML object, the structure looks
like the following:
<XMLDocumentObject>

<node>
<node label="Mail">

<node label="INBOX"/>
<node label="Personal Folder">

<node label="Business" isBranch="true" />
<node label="Demo" isBranch="true" />
<node label="Personal" isBranch="true" />
<node label="Saved Mail" isBranch="true" />
<node label="bar" isBranch="true" />

</node>
<node label="Sent" isBranch="true" />
<node label="Trash"/>

</node>
</node>

</XMLDocumentObject>

Flash Player wraps the XML nodes in an extra document node, which is passed to the tree. When
the tree tries to display the XML, it tries to display <node>, which doesn’t have a label, so it
doesn’t display correctly.

To avoid this problem, the data provider for the Tree component should point at the
XMLDocumentObject’s first child, as shown here:
myTree.dataProvider = myXML.firstChild;

Tree parameters

You can set the following authoring parameters for each Tree component instance in the Property
inspector or in the Component inspector:

multipleSelection is a Boolean value that indicates whether a user can select multiple items
(true) or not (false). The default value is false.
Tree component 479

rowHeight indicates the height of each row, in pixels. The default value is 20.

You can write ActionScript to control these and additional options for the Tree component using
its properties, methods, and events. For more information, see “Tree class” on page 488.

You cannot enter data parameters in the Property inspector or in the Component inspector for
the Tree component as you can with other components. For more information, see “Using the
Tree component” on page 478 and “Creating an application with the Tree component”
on page 480.

Creating an application with the Tree component

The following procedures show how to use a Tree component to display mailboxes in an e-mail
application.

The Tree component does not allow you to enter data parameters in the Property inspector or
Component inspector. Because of the complexity of a Tree component’s data structure, you must
either import an XML object at runtime or build one in Flash while authoring. To create XML in
Flash, you can use the TreeDataProvider interface, use the ActionScript XML object, or build an
XML string. Each of these options is explained in the following procedures.

To add a Tree component to an application and load XML:

1. In Flash, select File > New and select Flash Document.

2. Save the document as treeMenu.fla.

3. In the Components panel, double-click the Tree component to add it to the Stage.

4. Select the Tree instance. In the Property inspector, enter the instance name menuTree.

5. Select the Tree instance and press F8. Select Movie Clip, and enter the name TreeNavMenu.

6. Click the Advanced button, and select Export for ActionScript.

7. Type TreeNavMenu in the AS 2.0 Class text box and click OK.

8. Select File > New and select ActionScript File.

9. Save the file as TreeNavMenu.as in the same directory as treeMenu.fla.

10. In the Script window, enter the following code:
import mx.controls.Tree;

class TreeNavMenu extends MovieClip {
var menuXML:XML;
var menuTree:Tree;
function TreeNavMenu() {

// Set up the appearance of the tree and event handlers
menuTree.setStyle("fontFamily", "_sans");
menuTree.setStyle("fontSize", 12);
// Load the menu XML
var treeNavMenu = this;
menuXML = new XML();
menuXML.ignoreWhite = true;
menuXML.load("TreeNavMenu.xml");
menuXML.onLoad = function() {
480 Chapter 2: Components Reference

treeNavMenu.onMenuLoaded();
};

}
function change(event:Object) {

if (menuTree == event.target) {
var node = menuTree.selectedItem;
// If this is a branch, expand/collapse it
if (menuTree.getIsBranch(node)) {

menuTree.setIsOpen(node, !menuTree.getIsOpen(node), true);
}
// If this is a hyperlink, jump to it
var url = node.attributes.url;
if (url) {

getURL(url, "_top");
}
// Clear any selection
menuTree.selectedNode = null;

}
}
function onMenuLoaded() {

menuTree.dataProvider = menuXML.firstChild;
menuTree.addEventListener("change", this);

}
}

This ActionScript sets up styles for the tree. An XML object is created to load the XML file
that creates the tree’s nodes. Then the onLoad event handler is defined to set the data provider
to the contents of the XML file.

11. Create a new file called TreeNavMenu.xml in a text editor.

12. Enter the following code in the file:
<node>

<node label="My Bookmarks">
<node label="Macromedia Web site" url="http://www.macromedia.com" />
<node label="MXNA blog aggregator" url="http://www.markme.com/mxna" />

</node>
<node label="Google" url="http://www.google.com" />

</node>

13. Save your documents and return to treeMenu.fla. Select Control > Test Movie to test the
application.

To load XML from an external file:

1. In Flash, select File > New and select Flash Document.

2. Drag an instance of the Tree component onto the Stage.

3. Select the Tree instance. In the Property inspector, enter the instance name myTree.

4. In the Actions panel on Frame 1, enter the following code:
var myTreeDP:XML = new XML();
myTreeDP.ignoreWhite = true;
myTreeDP.load("treeXML.xml");
myTreeDP.onLoad = function() {

myTree.dataProvider = this.firstChild;
Tree component 481

};
var treeListener:Object = new Object();
treeListener.change = function(evt:Object) {

trace("selected node is: "+evt.target.selectedNode);
trace("");

};
myTree.addEventListener("change", treeListener);

This code creates an XML object called myTreeDP and calls the XML.load() method to load an
XML data source. The code then defines an onLoad event handler that sets the dataProvider
property of the myTree instance to the new XML object when the XML loads. For more
information about the XML object, see its entry in Flash ActionScript Language Reference.

5. Create a new file called treeXML.xml in a text editor.

6. Enter the following code in the file:
<node>

<node label="Mail">
<node label="INBOX"/>
<node label="Personal Folder">

<node label="Business" isBranch="true" />
<node label="Demo" isBranch="true" />
<node label="Personal" isBranch="true" />
<node label="Saved Mail" isBranch="true" />
<node label="bar" isBranch="true" />

</node>
<node label="Sent" isBranch="true" />
<node label="Trash"/>

</node>
</node>

7. Select Control > Test Movie.

In the SWF file, you can see the XML structure displayed in the tree. Click items in the tree to
see the trace() statements in the change event handler send the data values to the Output
panel.

To use the TreeDataProvider class to create XML in Flash while authoring:

1. In Flash, select File > New and select Flash Document.

2. Drag an instance of the Tree component onto the Stage.

3. Select the Tree instance and in the Property inspector, enter the instance name myTree.

4. In the Actions panel on Frame 1, enter the following code:
var myTreeDP:XML = new XML();
myTreeDP.addTreeNode("Local Folders", 0);
// Use XML.firstChild to nest child nodes below Local Folders
var myTreeNode:XMLNode = myTreeDP.firstChild;
myTreeNode.addTreeNode("Inbox", 1);
myTreeNode.addTreeNode("Outbox", 2);
myTreeNode.addTreeNode("Sent Items", 3);
myTreeNode.addTreeNode("Deleted Items", 4);
// Assign the myTreeDP data source to the myTree component
myTree.dataProvider = myTreeDP;
// Set each of the four child nodes to be branches
482 Chapter 2: Components Reference

for (var i = 0; i<myTreeNode.childNodes.length; i++) {
var node:XMLNode = myTreeNode.getTreeNodeAt(i);
myTree.setIsBranch(node, true);

}

This code creates an XML object called myTreeDP. Any XML object on the same frame as a
Tree component automatically receives all the properties and methods of the TreeDataProvider
interface. The second line of code creates a single root node called Local Folders. For detailed
information about the rest of the code, see the comments (lines preceded with //) throughout
the code.

5. Select Control > Test Movie.

In the SWF file, you can see the XML structure displayed in the tree. Click items in the tree to
see the trace() statements in the change event handler send the data values to the Output
panel.

To use the ActionScript XML class to create XML:

1. In Flash, select File > New and select Flash Document.

2. Drag an instance of the Tree component onto the Stage.

3. Select the Tree instance. In the Property inspector, enter the instance name myTree.

4. In the Actions panel on Frame 1, enter the following code:
// Create an XML object
var myTreeDP:XML = new XML();
// Create node values
var myNode0:XMLNode = myTreeDP.createElement("node");
myNode0.attributes.label = "Local Folders";
myNode0.attributes.data = 0;
var myNode1:XMLNode = myTreeDP.createElement("node");
myNode1.attributes.label = "Inbox";
myNode1.attributes.data = 1;
var myNode2:XMLNode = myTreeDP.createElement("node");
myNode2.attributes.label = "Outbox";
myNode2.attributes.data = 2;
var myNode3:XMLNode = myTreeDP.createElement("node");
myNode3.attributes.label = "Sent Items";
myNode3.attributes.data = 3;
var myNode4:XMLNode = myTreeDP.createElement("node");
myNode4.attributes.label = "Deleted Items";
myNode4.attributes.data = 4;
// Assign nodes to the hierarchy in the XML tree
myTreeDP.appendChild(myNode0);
myTreeDP.firstChild.appendChild(myNode1);
myTreeDP.firstChild.appendChild(myNode2);
myTreeDP.firstChild.appendChild(myNode3);
myTreeDP.firstChild.appendChild(myNode4);
// Assign the myTreeDP data source to the Tree component
myTree.dataProvider = myTreeDP;

For more information about the XML object, see its entry in Flash ActionScript Language
Reference.
Tree component 483

5. Select Control > Test Movie.

In the SWF file, you can see the XML structure displayed in the tree. Click items in the tree to
see the trace() statements in the change event handler send the data values to the Output
panel.

To use a well-formed string to create XML in Flash while authoring:

1. In Flash, select File > New and select Flash Document.

2. Drag an instance of the Tree component onto the Stage.

3. Select the Tree instance. In the Property inspector, enter the instance name myTree.

4. In the Actions panel on Frame 1, enter the following code:
var myTreeDP:XML = new XML("<node label='Local Folders'><node label='Inbox'

data='0'/><node label='Outbox' data='1'/></node>");
myTree.dataProvider = myTreeDP;

This code creates the XML object myTreeDP and assigns it to the dataProvider property of
myTree.

5. Select Control > Test Movie.

In the SWF file, you can see the XML structure displayed in the tree. Click items in the tree to
see the trace() statements in the change event handler send the data values to the Output
panel.

Customizing the Tree component

You can transform a Tree component horizontally and vertically while authoring and at runtime.
While authoring, select the component on the Stage and use the Free Transform tool or any of the
Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()). When a tree isn’t wide enough to display the text of the nodes, the text
is clipped.

Using styles with the Tree component

A Tree component uses the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values are
"haloGreen", "haloBlue", and "haloOrange". The default
value is "haloGreen".

backgroundColor Both The background color of the list. The default color is white
and is defined on the class style declaration. This style is
ignored if alternatingRowColors is specified.

backgroundDisabledColor Both The background color when the component’s enabled
property is set to "false". The default value is 0xDDDDDD
(medium gray).
484 Chapter 2: Components Reference

depthColors Both Sets the background colors for rows based on the depth of
each node. The value is an array of colors where the first
element is the background color for the root node, the
second element is the background color for its children, and
so on, continuing through the number of colors provided in
the array. This style property is not set by default.

border styles Both The Tree component uses a RectBorder instance as its
border and responds to the styles defined on that class. See
“RectBorder class” in Flash Help.

The default border style is "inset".

color Both The text color.

disabledColor Both The color for text when the component is disabled. The
default color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to
true if fontFamily refers to an embedded font. Otherwise,
the embedded font will not be used. If this style is set to true
and fontFamily does not refer to an embedded font, no text
will be displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bold". The default value
is "none". All components can also accept the value
"normal" in place of "none" during a setStyle() call, but
subsequent calls to getStyle() will return "none".

textAlign Both The text alignment: either "left", "right", or "center". The
default value is "left".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

textIndent Both A number indicating the text indent. The default value is 0.

defaultLeafIcon Both The icon displayed in a Tree control for leaf nodes when no
icon is specified for a particular node. The default value is
"TreeNodeIcon", which is an image representing a piece of
paper.

disclosureClosedIcon Both The icon displayed next to a closed folder node in a Tree
component. The default value is "TreeDisclosureClosed",
which is a gray arrow pointing to the right.

disclosureOpenIcon Both The icon displayed next to an open folder node in a Tree
component. The default value is "TreeDisclosureOpen",
which is a gray arrow pointing down.

Style Theme Description
Tree component 485

folderClosedIcon Both The icon displayed for a closed folder node in a Tree
component if no node-specific icon is set. The default value
is "TreeFolderClosed", which is a yellow closed file folder
image.

folderOpenIcon Both The icon displayed for an open folder node in a Tree
component if no node-specific icon is set. The default value
is "TreeFolderOpen", which is a yellow open file folder
image.

indentation Both The number of pixels to indent each row of a Tree
component. The default value is 17.

openDuration Both The duration, in milliseconds, of the expand and collapse
animations. The default value is 250.

openEasing Both A reference to a tweening function that controls the expand
and collapse animations. Defaults to sine in/out. For more
information, see “Customizing component animations” in
Flash Help.

repeatDelay Both The number of milliseconds of delay between when a user
first presses a button in the scrollbar and when the action
begins to repeat. The default value is 500 (half a second).

repeatInterval Both The number of milliseconds between automatic clicks when
a user holds the mouse button down on a button in the
scrollbar. The default value is 35.

rollOverColor Both The background color of a rolled-over row. The default
value is 0xE3FFD6 (bright green) with the Halo theme and
0xAAAAAA (light gray) with the Sample theme.

When themeColor is changed through a setStyle() call, the
framework sets rollOverColor to a value related to the
themeColor chosen.

selectionColor Both The background color of a selected row. The default value is
a 0xCDFFC1 (light green) with the Halo theme and
0xEEEEEE (very light gray) with the Sample theme.

When themeColor is changed through a setStyle() call, the
framework sets selectionColor to a value related to the
themeColor chosen.

selectionDuration Both The length of the transition from a normal state to a selected
state or back from selected to normal, in milliseconds. The
default value is 200.

selectionDisabledColor Both The background color of a selected row. The default value is
a 0xDDDDDD (medium gray). Because the default value
for this property is the same as the default for
backgroundDisabledColor, the selection is not visible when
the component is disabled unless one of these style
properties is changed.

Style Theme Description
486 Chapter 2: Components Reference

Setting styles for all Tree components in a document

The Tree class inherits from the List class, which inherits from the ScrollSelectList class. The
default class-level style properties are defined on the ScrollSelectList class, which the Menu
component and all List-based components extend. You can set new default style values on this
class directly, and the new settings will be reflected in all affected components.
_global.styles.ScrollSelectList.setStyle("backgroundColor", 0xFF00AA);

To set a style property on the Tree components only, you can create a new CSSStyleDeclaration
instance and store it in _global.styles.DataGrid.
import mx.styles.CSSStyleDeclaration;
if (_global.styles.Tree == undefined) {

_global.styles.Tree = new CSSStyleDeclaration();
}
_global.styles.Tree.setStyle("backgroundColor", 0xFF00AA);

When creating a new class-level style declaration, you will lose all default values provided by the
ScrollSelectList declaration. This includes backgroundColor, which is required for
supporting mouse events. To create a class-level style declaration and preserve defaults, use a
for..in loop to copy the old settings to the new declaration.
var source = _global.styles.ScrollSelectList;
var target = _global.styles.Tree;
for (var style in source) {

target.setStyle(style, source.getStyle(style));
}

For more information about class-level styles, see “Setting styles for a component class” in Flash
Help.

selectionEasing Both A reference to the easing equation used to control the
transition between selection states. Applies only for the
transition from a normal to a selected state. The default
equation uses a sine in/out formula. For more information,
see “Customizing component animations” in Flash Help.

textRollOverColor Both The color of text when the pointer rolls over it. The default
value is 0x2B333C (dark gray). This style is important when
you set rollOverColor, because the two must complement
each other so that text is easily viewable during a rollover.

textSelectedColor Both The color of text in the selected row. The default value is
0x005F33 (dark gray). This style is important when you set
selectionColor, because the two must complement each
other so that text is easily viewable while selected.

useRollOver Both Determines whether rolling over a row activates
highlighting. The default value is true.

Style Theme Description
Tree component 487

Using skins with the Tree component

The Tree component uses an instance of RectBorder for its border and scroll bars for scrolling
images. For more information about skinning these visual elements, see “RectBorder class” in
Flash Help and “Using skins with the Tree component” on page 488.

Tree class

Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView >
ScrollSelectList > List component > Tree

ActionScript Class Name mx.controls.Tree

The methods, properties, and events of the Tree class allow you to manage and manipulate Tree
objects.

Method summary for the Tree class

The following table lists methods of the Tree class.

Method Description

Tree.addTreeNode() Adds a node to a Tree instance.

Tree.addTreeNodeAt() Adds a node at a specific location in a Tree instance.

Tree.getDisplayIndex() Returns the display index of a given node.

Tree.getIsBranch() Specifies whether the folder is a branch (has a folder icon and an
expander arrow).

Tree.getIsOpen() Indicates whether a node is open or closed.

Tree.getNodeDisplayedAt() Maps a display index of the tree onto the node that is displayed
there.

Tree.getTreeNodeAt() Returns a node on the root of the tree.

Tree.refresh() Updates the tree.

Tree.removeAll() Removes all nodes from a Tree instance and refreshes the tree.

Tree.removeTreeNodeAt() Removes a node at a specified position and refreshes the tree.

Tree.setIcon() Specifies an icon for the specified node.

Tree.setIsBranch() Specifies whether a node is a branch (has a folder icon and
expander arrow).

Tree.setIsOpen() Opens or closes a node.
488 Chapter 2: Components Reference

Methods inherited from the UIObject class

The following table lists the methods the Tree class inherits from the UIObject class. When
calling these methods from the Tree object, use the form TreeInstance.methodName.

Methods inherited from the UIComponent class

The following table lists the methods the Tree class inherits from the UIComponent class. When
calling these methods from the Tree object, use the form TreeInstance.methodName.

Methods inherited from the List class

The following table lists the methods the Tree class inherits from the List class. When calling
these methods from the Tree object, use the form TreeInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Method Description

List.addItem() Adds an item to the end of the list.

List.addItemAt() Adds an item to the list at the specified index. With the Tree
component, it is better to use Tree.addTreeNodeAt().

List.getItemAt() Returns the item at the specified index.

List.removeAll() Removes all items from the list.

List.removeItemAt() Removes the item at the specified index.

List.replaceItemAt() Replaces the item at the specified index with another item.
Tree component 489

Property summary for the Tree class

The following table lists properties of the Tree class.

Properties inherited from the UIObject class

The following table lists the properties the Tree class inherits from the UIObject class. When
accessing these properties from the Tree object, use the form TreeInstance.propertyName.

List.setPropertiesAt() Applies the specified properties to the specified item.

List.sortItems() Sorts the items in the list according to the specified compare
function.

List.sortItemsBy() Sorts the items in the list according to a specified property.

Property Description

Tree.dataProvider Specifies an XML data source.

Tree.firstVisibleNode Specifies the first node at the top of the display.

Tree.selectedNode Specifies the selected node in a Tree instance.

Tree.selectedNodes Specifies the selected nodes in a Tree instance.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Method Description
490 Chapter 2: Components Reference

Properties inherited from the UIComponent class

The following table lists the properties the Tree class inherits from the UIComponent class. When
accessing these properties from the Tree object, use the form TreeInstance.propertyName.

Properties inherited from the List class

The following table lists the properties the Tree class inherits from the List class. When accessing
these properties from the Tree object, use the form TreeInstance.propertyName.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Property Description

List.cellRenderer Assigns the class or symbol to use to display each row of the list.

List.dataProvider The source of the list items.

List.hPosition The horizontal position of the list.

List.hScrollPolicy Indicates whether the horizontal scroll bar is displayed ("on") or
not ("off").

List.iconField A field in each item to be used to specify icons.

List.iconFunction A function that determines which icon to use.

List.labelField Specifies a field of each item to be used as label text.

List.labelFunction A function that determines which fields of each item to use for the
label text.

List.length The number of items in the list. This property is read-only.

List.maxHPosition The number of pixels the list can scroll to the right, when
List.hScrollPolicy is set to "on".

List.multipleSelection Indicates whether multiple selection is allowed in the list (true) or
not (false).

List.rowCount The number of rows that are at least partially visible in the list.

List.rowHeight The pixel height of every row in the list.

List.selectable Indicates whether the list is selectable (true) or not (false).

List.selectedIndex The index of a selection in a single-selection list.

List.selectedIndices An array of the selected items in a multiple-selection list.

List.selectedItem The selected item in a single-selection list. This property is read-
only.

List.selectedItems The selected item objects in a multiple-selection list. This property
is read-only.
Tree component 491

Event summary for the Tree class

The following table lists events of the Tree class.

Events inherited from the UIObject class

The following table lists the events the Tree class inherits from the UIObject class.

Events inherited from the UIComponent class

The following table lists the events the Tree class inherits from the UIComponent class.

List.vPosition Scrolls the list so the topmost visible item is the number assigned.

List.vScrollPolicy Indicates whether the vertical scroll bar is displayed ("on"), not
displayed ("off"), or displayed when needed ("auto").

Event Description

Tree.nodeClose Broadcast when a node is closed by a user.

Tree.nodeOpen Broadcast when a node is opened by a user.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Property Description
492 Chapter 2: Components Reference

Events inherited from the List class

The following table lists the events the Tree class inherits from the List class.

Tree.addTreeNode()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myTree.addTreeNode(label [, data])

Usage 2:
myTree.addTreeNode(child)

Parameters

label A string that displays the node, or an object with a label field (or whatever label field
name is specified by the labelField property).

data An object of any type that is associated with the node. This parameter is optional.

child Any XMLNode object.

Returns

The added XML node.

Description

Method; adds a child node to the tree. The node is constructed either from the information
supplied in the label and data parameters (Usage 1), or from the prebuilt child node, which
is an XMLNode object (Usage 2). Adding a preexisting node removes the node from its
previous location.

Calling this method refreshes the view.

Event Description

List.change Broadcast whenever user interaction causes the selection to
change.

List.itemRollOut Broadcast when the pointer rolls over and then off of list items.

List.itemRollOver Broadcast when the pointer rolls over list items.

List.scroll Broadcast when a list is scrolled.
Tree component 493

Example

The following code adds a new node to the root of myTree. The second line of code moves a node
from the root of mySecondTree to the root of myTree.
myTree.addTreeNode("Inbox", 3);
myTree.addTreeNode(mySecondTree.getTreeNodeAt(3));

Tree.addTreeNodeAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myTree.addTreeNodeAt(index, label [, data])

Usage 2:
myTree.addTreeNodeAt(index, child)

Parameters

index The zero-based index position (among the child nodes) at which the node should be
added.

label A string that displays the node.

data An object of any type that is associated with the node. This parameter is optional.

child Any XMLNode object.

Returns

The added XML node.

Description

Method; adds a node at the specified location in the tree. The node is constructed either from the
information supplied in the label and data parameters (Usage 1), or from the prebuilt
XMLNode object (Usage 2). Adding a preexisting node removes the node from its previous
location.

Calling this method refreshes the view.

Example

The following example adds a new node as the second child of the root of myTree. The second
line moves a node from mySecondTree to become the fourth child of the root of myTree:
myTree.addTreeNodeAt(1, "Inbox", 3);
myTree.addTreeNodeAt(3,mySecondTree.getTreeNodeAt(3));
494 Chapter 2: Components Reference

Tree.dataProvider

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myTree.dataProvider

Description

Property; either XML or a string. If dataProvider is an XML object, it is added directly to the
tree. If dataProvider is a string, it must contain valid XML that is read by the tree and converted
to an XML object.

You can either load XML from an external source at runtime or create it in Flash while authoring.
To create XML, you can use either the TreeDataProvider methods, or the built-in ActionScript
XML class methods and properties. You can also create a string that contains XML.

XML objects that are on the same frame as a Tree component automatically contain the
TreeDataProvider methods and properties. You can use the ActionScript XML or
XMLNode object.

Example

The following example imports an XML file and assigns it to the myTree instance of the
Tree component:
myTreeDP = new XML();
myTreeDP.ignoreWhite = true;
myTreeDP.load("http://myServer.myDomain.com/source.xml");
myTreeDP.onLoad = function(){
 myTree.dataProvider = myTreeDP;
}

Note: Most XML files contain white space. To make Flash ignore white space, you must set the
XML.ignoreWhite property to true.

Tree.firstVisibleNode

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myTree.firstVisibleNode = someNode
Tree component 495

Description

Property; indicates the first node that is visible at the top of the tree display. Use this property to
scroll the tree display to a desired position. If the specified node someNode is within a node that
hasn’t been expanded, setting firstVisibleNode has no effect. The default value is the first
visible node or undefined if there is no visible node. The value of this property is an XMLNode
object.

This property is an analogue to the List.vPosition property.

Example

The following example sets the scroll position to the top of the display:
myTree.firstVisibleNode = myTree.getTreeNodeAt(0);

Tree.getDisplayIndex()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myTree.getDisplayIndex(node)

Parameters

node An XMLNode object.

Returns

The index of the specified node, or undefined if the node is not currently displayed.

Description

Method; returns the display index of the node specified in the node parameter.

The display index indicates the item’s position in the list of items that are visible in the tree
window. For example, any children of a closed node are not in the display index. The list of
display indices starts with 0 and proceeds through the visible items regardless of parent. In other
words, the index is the row number, starting with 0, of the displayed rows.

Example

The following code gets the display index of myNode:
var x = myTree.getDisplayIndex(myNode);
496 Chapter 2: Components Reference

Tree.getIsBranch()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myTree.getIsBranch(node)

Parameters

node An XMLNode object.

Returns

A Boolean value that indicates whether the node is a branch (true) or not (false).

Description

Method; indicates whether the specified node has a folder icon and expander arrow (and is
therefore a branch). This is set automatically when children are added to the node. You only need
to call Tree.setIsBranch() to create empty folders.

Example

The following code assigns the node state to a variable:
var open = myTree.getIsBranch(myTree.getTreeNodeAt(1));

See also

Tree.setIsBranch()

Tree.getIsOpen()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myTree.getIsOpen(node)

Parameters

node An XMLNode object.

Returns

A Boolean value that indicates whether the tree is open (true) or closed (false).
Tree component 497

Description

Method; indicates whether the specified node is open or closed.

Note: Display indices change every time nodes open and close.

Example

The following code assigns the state of the node to a variable:
var open = myTree.getIsOpen(myTree.getTreeNodeAt(1));

Tree.getNodeDisplayedAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myTree.getNodeDisplayedAt(index)

Parameters

index An integer representing the display position in the viewable area of the tree. This number
is zero-based; the node at the first position is 0, second position is 1, and so on.

Returns

The specified XMLNode object.

Description

Method; maps a display index of the tree onto the node that is displayed there. For example, if the
fifth row of the tree showed a node that is eight levels deep into the hierarchy, that node would be
returned by a call to getNodeDisplayedAt(4).

The display index is an array of items that can be viewed in the tree window. For example, any
children of a closed node are not in the display index. The display index starts with 0 and
proceeds through the visible items regardless of parent. In other words, the display index is the
row number, starting with 0, of the displayed rows.

Note: Display indices change every time nodes open and close.

Example

The following code gets a reference to the XML node that is the second row displayed in myTree:
myTree.getNodeDisplayedAt(1);
498 Chapter 2: Components Reference

Tree.getTreeNodeAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myTree.getTreeNodeAt(index)

Parameters

index The index number of a node.

Returns

An XMLNode object.

Description

Method; returns the specified node on the root of myTree.

Example

The following code gets the second node on the first level in the tree myTree:
myTree.getTreeNodeAt(1);

Tree.nodeClose

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.nodeClose = function(eventObject){

// insert your code here
}
myTreeInstance.addEventListener("nodeClose", listenerObject)

Description

Event; broadcast to all registered listeners when the nodes of a Tree component are closed
by a user.

Version 2 components use a dispatcher/listener event model. The Tree component broadcasts a
nodeClose event when one of its nodes is clicked closed; the event is handled by a function, also
called a handler, that is attached to a listener object (listenerObject) that you create.
Tree component 499

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The Tree.nodeClose event’s event object
has one additional property: node (the XML node that closed).

For more information, see “EventDispatcher class” in Flash Help.

Example

In the following example, a handler called myTreeListener is defined and passed to the
myTree.addEventListener() method as the second parameter. The event object is captured by
the nodeClose handler in the evtObject parameter. When the nodeClose event is broadcast, a
trace statement is sent to the Output panel.
myTreeListener = new Object();
myTreeListener.nodeClose = function(evtObject){

trace(evtObject.node + " node was closed");
}
myTree.addEventListener("nodeClose", myTreeListener);

Tree.nodeOpen

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.nodeOpen = function(eventObject){

// insert your code here
}
myTreeInstance.addEventListener("nodeOpen", listenerObject)

Description

Event; broadcast to all registered listeners when a user opens a node on a Tree component.

Version 2 components use a dispatcher/listener event model. The Tree component dispatches a
nodeOpen event when a node is clicked open by a user; the event is handled by a function, also
called a handler, that is attached to a listener object (listenerObject) that you create. You call
the addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The Tree.nodeOpen event’s event object has
one additional property: node (the XML node that was opened).

For more information, see “EventDispatcher class” in Flash Help.
500 Chapter 2: Components Reference

Example

In the following example, a handler called myTreeListener is defined and passed to
myTree.addEventListener() as the second parameter. The event object is captured by the
nodeOpen handler in the evtObject parameter. When the nodeOpen event is broadcast, a trace
statement is sent to the Output panel.
myTreeListener = new Object();
myTreeListener.nodeOpen = function(evtObject){

trace(evtObject.node + " node was opened");
}
myTree.addEventListener("nodeOpen", myTreeListener);

Tree.refresh()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myTree.refresh()

Parameters

None.

Returns

Nothing.

Description

Method; updates the tree.

Tree.removeAll()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myTree.removeAll()

Parameters

None.

Returns

Nothing.
Tree component 501

Description

Method; removes all nodes and refreshes the tree.

Example

The following code empties myTree:
myTree.removeAll();

Tree.removeTreeNodeAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myTree.removeTreeNodeAt(index)

Parameters

index The index number of a tree child. Each child of a tree is assigned a zero-based index in
the order in which it was created.

Returns

An XMLNode object, or undefined if an error occurs.

Description

Method; removes a node (specified by its index position) on the root of the tree and refreshes the
tree.

Example

The following code removes the fourth child of the root of the tree myTree:
myTree.removeTreeNodeAt(3);

Tree.selectedNode

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myTree.selectedNode

Description

Property; specifies the selected node in a tree instance.
502 Chapter 2: Components Reference

Example

The following example specifies the first child node in myTree:
myTree.selectedNode = myTree.getTreeNodeAt(0);

See also

Tree.selectedNodes

Tree.selectedNodes

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myTree.selectedNodes

Description

Property; specifies the selected nodes in a tree instance.

Example

The following example selects the first and third child nodes in myTree:
myTree.selectedNodes = [myTree.getTreeNodeAt(0), myTree.getTreeNodeAt(2)];

See also

Tree.selectedNode

Tree.setIcon()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myTree.setIcon(node, linkID [, linkID2])

Parameters

node An XML node.

linkID The linkage identifier of a symbol to be used as an icon beside the node. This parameter
is used for leaf nodes and for the closed state of branch nodes.

linkID2 For a branch node, the linkage identifier of a symbol to be used as an icon that
represents the open state of the node. This parameter is optional.
Tree component 503

Returns

Nothing.

Description

Method; specifies an icon for the specified node. This method takes one ID parameter (linkID)
for leaf nodes and two ID parameters (linkID and linkID2) for branch nodes (the closed and
open icons). For leaf nodes, the second parameter is ignored. For branch nodes, if you omit
linkID2, the icon is used for both the closed and open states.

Example

The following code specifies that a symbol with the linkage identifier imageIcon be used beside
the second node of myTree:
myTree.setIcon(myTree.getTreeNodeAt(1), "imageIcon");

Tree.setIsBranch()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myTree.setIsBranch(node, isBranch)

Parameters

node An XML node.

isBranch A Boolean value indicating whether the node is (true) or is not (false) a branch.

Returns

Nothing.

Description

Method; specifies whether the node has a folder icon and expander arrow and either has children
or can have children. A node is automatically set as a branch when it has children; you only need
to call setIsBranch() when you want to create an empty folder. You may want to create
branches that don’t yet have children if, for example, you only want child nodes to load when a
user opens a folder.

Calling setIsBranch() refreshes any views.

Example

The following code makes a node of myTree a branch:
myTree.setIsBranch(myTree.getTreeNodeAt(1), true);
504 Chapter 2: Components Reference

Tree.setIsOpen()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myTree.setIsOpen(node, open [, animate])

Parameters

node An XML node.

open A Boolean value that opens a node (true) or closes it (false).

animate A Boolean value that determines whether the opening transition is animated (true) or
not (false). This parameter is optional.

Returns

Nothing.

Description

Method; opens or closes a node.

Example

The following code opens a node of myTree:
myTree.setIsOpen(myTree.getTreeNodeAt(1), true);

Window component

A Window component displays the contents of a movie clip inside a window with a title bar, a
border, and an optional close button.

A Window component can be modal or nonmodal. A modal window prevents mouse and
keyboard input from going to other components outside the window. The Window component
also supports dragging; a user can click the title bar and drag the window and its contents to
another location. Dragging the borders doesn’t resize the window.

A live preview of each Window instance reflects changes made to all parameters except
contentPath in the Property inspector or Component inspector during authoring.

When you add the Window component to an application, you can use the Accessibility panel
to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.WindowAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances you have of
the component.
Window component 505

Using the Window component

You can use a window in an application whenever you need to present a user with information or
a choice that takes precedence over anything else in the application. For example, you might need
a user to fill out a login window, or a window that changes and confirms a new password.

There are several ways to add a window to an application. You can drag a window from the
Components panel to the Stage. You can also call createClassObject() (see
UIObject.createClassObject()) to add a window to an application. The third way of adding
a window to an application is to use the PopUpManager class. Use the Popup Manager to create
modal windows that overlap other objects on the Stage. For more information, see “Window
class” on page 510.

If you use the Popup Manager to add a Window component to a document, the Window
instance will have its own Focus Manager, distinct from the rest of the document. If you don’t use
the Popup Manager, the window’s contents participate in focus ordering with the other
components in the document. For more information about controlling focus, see “Creating
custom focus navigation” in Flash Help or “FocusManager class” on page 231.

Window parameters

You can set the following authoring parameters for each Window component instance in the
Property inspector or in the Component inspector:

contentPath specifies the contents of the window. This can be the linkage identifier of the movie
clip or the symbol name of a screen, form, or slide that contains the contents of the window. This
can also be an absolute or relative URL for a SWF or JPEG file to load into the window. The
default value is "". Loaded content is clipped to fit the window.

title indicates the title of the window.

closeButton indicates whether a close button is displayed (true) or not (false). Clicking the
close button broadcasts a click event, but doesn’t close the window. You must write a handler
that calls Window.deletePopUp() to explicitly close the window. For more information about the
click event, see Window.click.

Note: If a window was created by means other than the PopUp Manager, you can’t close it.

You can write ActionScript to control these and additional options for the Window component
using its properties, methods, and events. For more information, see “Window class”
on page 510.
506 Chapter 2: Components Reference

Creating an application with the Window component

The following procedure explains how to add a Window component to an application. In this
example, the window asks a user to change her password and confirm the new password.

To create an application with the Window component:

1. Create a new movie clip that contains password and password confirmation fields, and OK and
Cancel buttons. Name the movie clip PasswordForm.

This is the content that will fill the window. The content should be aligned at 0,0 because it is
positioned in the upper left corner of the window.

2. In the library, select the PasswordForm movie clip and select Linkage from the Library options
menu.

3. Select Export for ActionScript.

 The linkage identifier PasswordForm is automatically entered in the Identifier box.
4. Enter mx.core.View in the class field and click OK.

5. Drag a Window component from the Components panel to the Stage and delete the
component from the Stage. This adds the component to the library.

6. In the library, select the Window SWC file and select Linkage from the Library options menu.

7. Select Export for ActionScript.

8. Drag a button component from the Components panel to the Stage; in the Property inspector,
give it the instance name button.

9. Open the Actions panel, and enter the following click handler on Frame 1:
buttonListener = new Object();
buttonListener.click = function(){

myWindow = mx.managers.PopUpManager.createPopUp(_root,
mx.containers.Window, true, {title:"Change Password",
contentPath:"PasswordForm"});
myWindow.setSize(240,110);

}
button.addEventListener("click", buttonListener);

This handler calls PopUpManager.createPopUp() to instantiate a Window component with
the title bar “Change Password”; the window displays the contents of the PasswordForm movie
clip when the button is clicked. To close the window when the OK or Cancel button is clicked,
you must write another handler.

Customizing the Window component

You can transform a Window component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use UIObject.setSize().

Resizing the window does not change the size of the close button or title caption. The title
caption is aligned to the left and the close bar to the right.
Window component 507

Using styles with the Window component

A Window component supports the following styles:

Text styles can be set on the Window component itself, or they can be set on the
_global.styles.windowStyles class style declaration. This has the advantage of not causing
style settings to propagate to child components through style inheritance.

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values are
"haloGreen", "haloBlue", and "haloOrange". The default value
is "haloGreen".

backgroundColor Both The background color. The default value is white for the Halo
theme and 0xEFEBEF (light gray) for the Sample theme.

border styles Both The Window component uses a RectBorder instance as its
border and responds to the styles defined on that class. See
“RectBorder class” in Flash Help.

The Window component has a component-specific border
style of “default” with the Halo theme and “outset” with the
Sample theme.

color Both The text color. The default value is 0x0B333C for the Halo
theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The default
color is 0x848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to
true if fontFamily refers to an embedded font. Otherwise, the
embedded font will not be used. If this style is set to true and
fontFamily does not refer to an embedded font, no text will be
displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bold". The default value
is "none". All components can also accept the value "normal"
in place of "none" during a setStyle() call, but subsequent
calls to getStyle() will return "none".

textAlign Both The text alignment: either "left", "right", or "center". The
default value is "left".

textDecoration Both The text decoration: either "none" or "underline". The default
value is "none".

textIndent Both A number indicating the text indent. The default value is 0.
508 Chapter 2: Components Reference

The following example demonstrates how to italicize the title of a Window component without
having this setting propagate to child components.
import mx.containers.Window;
_global.styles.windowStyles.setStyle("fontStyle", "italic");
createClassObject(Window, "window", 1, {title: "A Window"});

Notice that this example sets the property before instantiating the window through
createClassObject(). For the styles to take effect, they must be set before the window is
created.

Using skins with the Window component

The Window component uses skins for its title background and close button, and a RectBorder
instance for the border. The Window skins are found in the Flash UI Components 2/Themes/
MMDefault/Window Assets folder in each of the theme files. For more information about
skinning, see “About skinning components” in Flash Help. For more information about the
RectBorder class and using it to customize borders, see “RectBorder class” in Flash Help.

The title background skin is always displayed. The height of the background is determined by the
skin graphics. The width of the skin is set by the Window component according to the Window
instance’s size. The close skins are displayed when the closeButton property is set to true and
when a change state results from user interaction.

A Window component uses the following skin properties:

The following example demonstrates how to create a new movie clip symbol to use as the title
background.

To set the title of an Window component to a custom movie clip symbol:

1. Create a new FLA file.

2. Create a new symbol by selecting Insert > New Symbol.

3. Set the name to TitleBackground.

4. If the advanced view is not displayed, click the Advanced button.

5. Select Export for ActionScript.

6. The identifier will be automatically filled out with TitleBackground.

Property Description

skinTitleBackground The title bar. The default value is TitleBackground.

skinCloseUp The close button. The default value is CloseButtonUp.

skinCloseDown The close button it its down state. The default value is
CloseButtonDown.

skinCloseDisabled The close button in its disabled state. The default value is
CloseButtonDisabled.

skinCloseOver The close button in its over state. The default value is
CloseButtonOver.
Window component 509

7. Set the AS 2.0 class to mx.skins.SkinElement.

SkinElement is a simple class that can be used for all skin elements that don’t provide their own
ActionScript impelmentation. It provides movement and sizing functionality required by the
version 2 component framework.

8. Ensure that Export in First Frame is already selected, and click OK.

9. Open the new symbol for editing.

10. Use the drawing tools to create a box with a red fill and black line.

11. Set the border style to hairline.

12. Set the box, including the border, so that it is positioned at (0,0) and has a width of 100 and
height of 22.

The Window component will set the proper width of the skin as needed but it will use the
existing height as the height of the title.

13. Click the Back button to return to the main Timeline.

14. Drag the Window component to the Stage.

15. Select Control > Test Movie.

Window class

Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView > Window

ActionScript Class Name mx.containers.Window

The properties of the Window class let you do the following at runtime: set the title caption, add
a close button, and set the display content. Setting a property of the Window class with
ActionScript overrides the parameter of the same name set in the Property inspector or
Component Inspector panel.

The best way to instantiate a window is to call PopUpManager.createPopUp(). This method
creates a window that can be modal (overlapping and disabling existing objects in an application)
or nonmodal. For example, the following code creates a modal Window instance (the last
parameter indicates modality):
var newWindow = PopUpManager.createPopUp(this, Window, true);

Flash simulates modality by creating a large transparent window underneath the Window
component. Because of the way transparent windows are rendered, you may notice a slight
dimming of the objects under the transparent window. You can set the effective transparency by
changing the _global.style.modalTransparency value from 0 (fully transparent) to 100
(opaque). If you make the window partially transparent, you can also set the color of the window
by changing the Modal skin in the default theme.

If you use PopUpManager.createPopUp() to create a modal window, you must call
Window.deletePopUp() to remove it to so that the transparent window is also removed. For
example, if you use the close button in the window, you would write the following code:
obj.click = function(evt){
 this.deletePopUp();
}
window.addEventListener("click", obj);
510 Chapter 2: Components Reference

Note: Code does not stop executing when a modal window is created. In other environments (for
example, Microsoft Windows), if you create a modal window, the lines of code that follow the creation
of the window do not run until the window is closed. In Flash, the lines of code are run after the
window is created and before it is closed.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.containers.Window.version);

Note: The code trace(myWindowInstance.version); returns undefined.

Method summary for the Window class

The following table lists the method of the Window class.

Methods inherited from the UIObject class

The following table lists the methods the Window class inherits from the UIObject class. When
calling these methods from the Window object, use the form WindowInstance.methodName.

Method Description

Window.deletePopUp() Removes a window instance created by
PopUpManager.createPopUp().

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.
Window component 511

Methods inherited from the UIComponent class

The following table lists the methods the Window class inherits from the UIComponent class.
When calling these methods from the Window object, use the form
WindowInstance.methodName.

Property summary for the Window class

The following table lists properties of the Window class.

Properties inherited from the UIObject class

The following table lists the properties the Window class inherits from the UIObject class. When
accessing these properties from the Window object, use the form
WindowInstance.propertyName.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

Window.closeButton Indicates whether a close button is (true) or is not (false) included
on the title bar.

Window.content A reference to the content (root movie clip) of the window.

Window.contentPath Sets the name of the content to display in the window.

Window.title The text that appears in the title bar.

Window.titleStyleDeclaration The style declaration that formats the text in the title bar.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).
512 Chapter 2: Components Reference

Properties inherited from the UIComponent class

The following table lists the properties the Window class inherits from the UIComponent class.
When accessing these properties from the Window object, use the form
WindowInstance.propertyName.

Event summary for the Window class

The following table lists the events of the Window class.

Events inherited from the UIObject class

The following table lists the events the Window class inherits from the UIObject class.

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event Description

Window.click Broadcast when the close button is clicked (released).

Window.complete Broadcast when a window is created.

Window.mouseDownOutside Broadcast when the mouse is clicked (released) outside the modal
window.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Property Description
Window component 513

Events inherited from the UIComponent class

The following table lists the events the Window class inherits from the UIComponent class.

Window.click

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(click){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.click = function(eventObject){

...
}
windowInstance.addEventListener("click", listenerObject)

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the
close button.

The first usage example uses an on() handler and must be attached directly to a Window
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the Window instance
myWindow, sends “_level0.myWindow” to the Output panel:
on(click){

trace(this);
}

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
514 Chapter 2: Components Reference

The second usage example uses a dispatcher/listener event model. A component instance
(windowInstance) dispatches an event (in this case, click) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. The event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches the
event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following example creates a modal window and then defines a click handler that deletes the
window. You must add a Window component to the Stage and then delete it to add the
component to the document library; then add the following code to Frame 1:
import mx.managers.PopUpManager
import mx.containers.Window
var myTW = PopUpManager.createPopUp(_root, Window, true, {closeButton: true,

title:"My Window"});
windowListener = new Object();
windowListener.click = function(evt){

_root.myTW.deletePopUp();
}
myTW.addEventListener("click", windowListener);

See also

EventDispatcher.addEventListener() in Flash Help, Window.closeButton

Window.closeButton

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

windowInstance.closeButton

Description

Property; a Boolean value that indicates whether the title bar should have a close button (true) or
not (false). This property must be set in the initObject parameter of the
PopUpManager.createPopUp() method. The default value is false.

Clicking the close button broadcasts a click event, but doesn’t close the window. You must write
a handler that calls Window.deletePopUp() to explicitly close the window. For more information
about the click event, see Window.click.
Window component 515

Example

The following code creates a window that displays the content in the movie clip “LoginForm” and
has a close button on the title bar:
var myTW = PopUpManager.createPopUp(_root, Window, true,

{contentPath:"LoginForm", closeButton:true});

See also

PopUpManager.createPopUp() in Flash Help, Window.click

Window.complete

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

listenerObject = new Object();
listenerObject.complete = function(eventObject){

...
}
windowInstance.addEventListener("complete", listenerObject)

Description

Event; broadcast to all registered listeners when a window is created. Use this event to size a
window to fit its contents.

A component instance (windowInstance) dispatches an event (in this case, complete) and the
event is handled by a function, also called a handler, on a listener object (listenerObject) that
you create. You define a method with the same name as the event on the listener object; the
method is called when the event is triggered. When the event is triggered, it automatically passes
an event object (eventObject) to the listener object method. The event object has properties that
contain information about the event. You can use these properties to write code that handles the
event. Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following example creates a window and then defines a complete handler that resizes the
window to fit its contents. (This code would be placed on Frame 1 of the component in the
library.)
import mx.managers.PopUpManager
import mx.containers.Window
var myTW = PopUpManager.createPopUp(_root, Window, true, {title:"Password

Change", contentPath: "PasswordForm"});
516 Chapter 2: Components Reference

lo = new Object();
lo.handleEvent = function(evtObj){

if(evtObj.type == "complete"){
_root.myTW.setSize(myTW.content._width, myTW.content._height + 25);

}
}
myTW.addEventListener("complete", lo);

See also

EventDispatcher.addEventListener() in Flash Help

Window.content

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

windowInstance.content

Description

Property; a reference to the content (root movie clip) of the window. This property returns a
MovieClip object. When you attach a symbol from the library, the default value is an instance of
the attached symbol. When you load content from a URL, the default value is undefined until
the load operation has started.

Example

The following code sets the value of the text property within the content inside the Window
component:
myLoginWindow.content.password.text = "secret";

Window.contentPath

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

windowInstance.contentPath

Description

Property; sets the name of the content to display in the window. This value can be the linkage
identifier of a movie clip in the library, or the absolute or relative URL of a SWF or JPEG file to
load. The default value is "" (an empty string).
Window component 517

Example

The following code creates a Window instance that displays the movie clip with the linkage
identifier “LoginForm”:
var myTW = PopUpManager.createPopUp(_root, Window, true,

{contentPath:"LoginForm"});

Window.deletePopUp()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

windowInstance.deletePopUp()

Parameters

None.

Returns

Nothing.

Description

Method; deletes the window instance and removes the modal state. This method can be called
only on Window instances that were created by PopUpManager.createPopUp().

Example

The following code creates a modal window, then creates a listener that deletes the window when
the close button is clicked:
import mx.managers.PopUpManager;
import mx.containers.Window;

var myTW:MovieClip = PopUpManager.createPopUp(_root, Window, true,
{closeButton:true, title:"Test"});

var twListener:Object = new Object();
twListener.click = function(evt:Object){
 evt.target.deletePopUp();
}
myTW.addEventListener("click", twListener);

Note: Remember to add a Window component to the Stage then delete it to add it to the Library
before running the above code.
518 Chapter 2: Components Reference

Window.mouseDownOutside

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(mouseDownOutside){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.mouseDownOutside = function(eventObject){

...
}
windowInstance.addEventListener("mouseDownOutside", listenerObject)

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) outside the modal
window. This event is rarely used, but you can use it to dismiss a window if the user tries to
interact with something outside of it.

The first usage example uses an on() handler and must be attached directly to a Window
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the Window instance
myWindowComponent, sends “_level0.myWindowComponent” to the Output panel:
on(mouseDownOutside){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(windowInstance) dispatches an event (in this case, mouseDownOutside) and the event is
handled by a function, also called a handler, on a listener object (listenerObject) that you
create. You define a method with the same name as the event on the listener object; the method is
called when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. The event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.
Window component 519

Example

The following example creates a window instance and defines a mouseDownOutside handler that
calls a beep() method if the user clicks outside the window:
var myTW = PopUpManager.createPopUp(_root, Window, true, undefined, true);
// create a listener
twListener = new Object();
twListener.mouseDownOutside = function()
{
 beep(); // make a noise if user clicks outside
}
myTW.addEventListener("mouseDownOutside", twListener);

See also

EventDispatcher.addEventListener() in Flash Help

Window.title

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

windowInstance.title

Description

Property; a string indicating the text of the title bar. The default value is "" (an empty string).

Example

The following code sets the title of the window to “Hello World”:
myTW.title = "Hello World";

Window.titleStyleDeclaration

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

windowInstance.titleStyleDeclaration

Description

Property; a string indicating the style declaration that formats the title bar of a window. The
default value is undefined, which indicates bold, white text.
520 Chapter 2: Components Reference

Example

With a Window component in the library, use the following ActionScript to format the style of
the window’s title bar.
// create a new CSSStyleDeclaration named TitleStyles
// and list it with the global styles list
_global.styles.TitleStyles = new mx.styles.CSSStyleDeclaration();
// customize styles
_global.styles.TitleStyles.fontStyle = "italic";
_global.styles.TitleStyles.textDecoration = "underline";
_global.styles.TitleStyles.color = 0xff0000;
_global.styles.TitleStyles.fontSize = 14;

tw = mx.managers.PopUpManager.createPopUp(this, mx.containers.Window, true,
{closeButton:true, titleStyleDeclaration:"TitleStyles"});

tw.title = "Testing Styles";
tw.setSize(200, 100);
tw.move(20, 20);
var handleCloseObject:Object = new Object();
handleCloseObject.click = function(evt:Object) {

evt.target.deletePopUp();
};
tw.addEventListener("click", handleCloseObject);

For more information about styles, see “Using styles to customize component color and text” in
Flash Help.

UIComponent class

The UIComponent class does not represent a visual component; it contains methods, properties,
and events that allow Macromedia components to share some common behavior. All version 2
components extend UIComponent. The UIComponent class lets you do the following:

• Receive focus and keyboard input
• Enable and disable components
• Resize by layout

To use the methods and properties of UIComponent, you call them directly from whichever
component you are using. For example, to call UIComponent.setFocus() from the RadioButton
component, you would write the following code:
myRadioButton.setFocus();

You only need to create an instance of UIComponent if you are using version 2 of the
Macromedia Component Architecture to create a new component. Even in that case,
UIComponent is often created implicitly by other subclasses such as Button. If you do need to
create an instance of UIComponent, use the following code:
class MyComponent extends mx.core.UIComponent;
UIComponent class 521

UIComponent class (API)

Inheritance MovieClip > UIObject class > UIComponent

ActionScript Class Name mx.core.UIComponent

The methods, properties, and events of the UIComponent class allow you to control the common
behavior of Flash visual components.

Method summary for the UIComponent class

The following table lists methods of the UIComponent class.

Methods inherited from the UIObject class

The following table lists the methods the UIComponent class inherits from the UIObject class.
When calling these methods from the UIComponent object, use the form
UIComponentInstance.methodName.

Property summary for the UIComponent class

The following table lists properties of the UIComponent class.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.
522 Chapter 2: Components Reference

Properties inherited from the UIObject class

The following table lists the properties the UIComponent class inherits from the UIObject class.
When accessing these properties from the UIComponent object, use the form
UIComponentInstance.propertyName.

Event summary for the UIComponent class

The following table lists events of the UIComponent class.

Events inherited from the UIObject class

The following table lists the events the UIComponent class inherits from the UIObject class.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.
UIComponent class 523

UIComponent.enabled

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.enabled

Description

Property; indicates whether the component can (true) or cannot (false) accept focus and mouse
input. The default value is true.

Example

The following example sets the enabled property of a CheckBox component to false:
checkBoxInstance.enabled = false;

UIComponent.focusIn

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(focusIn){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.focusIn = function(eventObject){

...
}
componentInstance.addEventListener("focusIn", listenerObject)

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description
524 Chapter 2: Components Reference

Description

Event; notifies listeners that the object has received keyboard focus.

The first usage example uses an on() handler and must be attached directly to a
component instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, focusIn) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener()method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following code disables a Button component, btn, while a user types in the TextInput
component, txt, and enables the button when the user click on it:
var txt:mx.controls.TextInput;
var btn:mx.controls.Button;

var txtListener:Object = new Object();
txtListener.focusOut = function() {

_root.btn.enabled = true;
}
txt.addEventListener("focusOut", txtListener);

var txtListener2:Object = new Object();
txtListener2.focusIn = function() {

_root.btn.enabled = false;
}
txt.addEventListener("focusIn", txtListener2);

See also

EventDispatcher.addEventListener() in Flash Help, UIComponent.focusOut

UIComponent.focusOut

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

on(focusOut){
UIComponent class 525

...
}
listenerObject = new Object();
listenerObject.focusOut = function(eventObject){

...
}
componentInstance.addEventListener("focusOut", listenerObject)

Description

Event; notifies listeners that the object has lost keyboard focus.

The first usage example uses an on() handler and must be attached directly to a
component instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, focusOut) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener()method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following code disables a Button component, btn, while a user types in the TextInput
component, txt, and enables the button when the user click on it:
var txt:mx.controls.TextInput;
var btn:mx.controls.Button;

var txtListener:Object = new Object();
txtListener.focusOut = function() {

_root.btn.enabled = true;
}
txt.addEventListener("focusOut", txtListener);

var txtListener2:Object = new Object();
txtListener2.focusIn = function() {

_root.btn.enabled = false;
}
txt.addEventListener("focusIn", txtListener2);

See also

EventDispatcher.addEventListener() in Flash Help, UIComponent.focusIn
526 Chapter 2: Components Reference

UIComponent.getFocus()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.getFocus();

Parameters

None.

Returns

A reference to the object that currently has focus.

Description

Method; returns a reference to the object that has keyboard focus.

Example

The following code returns a reference to the object that has focus and assigns it to the
tmp variable:
var tmp = checkbox.getFocus();

UIComponent.keyDown

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

on(keyDown){
...

}
listenerObject = new Object();
listenerObject.keyDown = function(eventObject){

...
}
componentInstance.addEventListener("keyDown", listenerObject)

Description

Event; notifies listeners when a key is pressed. This is a very low-level event that you should not
use unless necessary, because it can affect system performance.

The first usage example uses an on() handler and must be attached directly to a
component instance.
UIComponent class 527

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, keyDown) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following code makes an icon blink when a key is pressed:
formListener.handleEvent = function(eventObj)
{

form.icon.visible = !form.icon.visible;
}
form.addEventListener("keyDown", formListener);

UIComponent.keyUp

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

on(keyUp){
...

}
listenerObject = new Object();
listenerObject.keyUp = function(eventObject){

...
}
componentInstance.addEventListener("keyUp", listenerObject)

Description

Event; notifies listeners when a key is released. This is a low-level event that you should not use
unless necessary, because it can affect system performance.

The first usage example uses an on() handler and must be attached directly to a
component instance.
528 Chapter 2: Components Reference

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, keyUp) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following code makes an icon blink when a key is released:
formListener.handleEvent = function(eventObj)
{

form.icon.visible = !form.icon.visible;
}
form.addEventListener("keyUp", formListener);

UIComponent.setFocus()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.setFocus();

Parameters

None.

Returns

Nothing.

Description

Method; sets the focus to this component instance. The instance with focus receives all
keyboard input.

Example

The following code gives focus to the checkbox instance:
checkbox.setFocus();
UIComponent class 529

UIComponent.tabIndex

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

instance.tabIndex

Description

Property; a number indicating the tabbing order for a component in a document.

Example

The following code sets the value of tmp to the tabIndex property of the checkbox instance:
var tmp = checkbox.tabIndex;

UIEventDispatcher class

ActionScript Class Name mx.events.UIEventDispatcher

Inheritance EventDispatcher class > UIEventDispatcher

The UIEventDispatcher class is mixed in to the UIComponent class and allows components to
emit certain events.

If you want an object that doesn’t inherit from UIComponent to dispatch certain events, you can
use UIEventDispatcher.

Method summary for the UIEventDispatcher class

The following table lists the method of the UIEventDispatcher class.

Methods inherited from the EventDispatcher class

The following table lists the methods the UIEventDispatcher class inherits from the
EventDispatcher class. When calling these methods from the UIEventDispatcher object, use the
form UIEventDispatcherInstance.methodName.

Method Description

UIEventDispatcher.removeEventListener() Removes a registered listener from a component
instance. This method overrides the
eventDispatcher.removeEventListenter() method.

Method Description

EventDispatcher.addEventListener() Registers a listener to a component instance.

EventDispatcher.dispatchEvent() Dispatches an event to all registered listeners.
530 Chapter 2: Components Reference

Event summary for the UIEventDispatcher class

The following table lists events of the UIEventDispatcher class.

UIEventDispatcher.keyDown

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.keyDown = function(eventObject){

// insert your code here
}
componentInstance.addEventListener("keyDown", listenerObject)

Description

Event; broadcast to all registered listeners when a key is pressed and the Flash application has
focus.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event.

Method Description

UIEventDispatcher.keyDown Broadcast when a key is pressed.

UIEventDispatcher.keyUp Broadcast when a pressed key is released.

UIEventDispatcher.load Broadcast when a component loads into Flash Player.

UIEventDispatcher.mouseDown Broadcast when the mouse is pressed.

UIEventDispatcher.mouseOut Broadcast when the mouse is moved off a component
instance.

UIEventDispatcher.mouseOver Broadcast when the mouse is moved over a
component instance.

UIEventDispatcher.mouseUp Broadcast when the mouse is pressed and released.

UIEventDispatcher.unload Broadcast when a component is unloaded from Flash
Player.
UIEventDispatcher class 531

UIEventDispatcher.keyUp

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.keyUp = function(eventObject){

// insert your code here
}
componentInstance.addEventListener("keyUp", listenerObject)

Description

Event; broadcast to all registered listeners when a key that was pressed is released and the Flash
application has focus.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event.

UIEventDispatcher.load

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.load = function(eventObject){

// insert your code here
}
componentInstance.addEventListener("load", listenerObject)

Description

Event; broadcast to all registered listeners when a component is loaded into Flash Player.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event.
532 Chapter 2: Components Reference

UIEventDispatcher.mouseDown

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.mouseDown = function(eventObject){

// insert your code here
}
componentInstance.addEventListener("mouseDown", listenerObject)

Description

Event; broadcast to all registered listeners when a Flash application has focus and the mouse is
pressed.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event.

UIEventDispatcher.mouseOut

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.mouseOut = function(eventObject){

// insert your code here
}
componentInstance.addEventListener("mouseOut", listenerObject)

Description

Event; broadcast to all registered listeners when a Flash application has focus and the mouse is
moved off a component instance.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event.
UIEventDispatcher class 533

UIEventDispatcher.mouseOver

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.mouseOver = function(eventObject){

// insert your code here
}
componentInstance.addEventListener("mouseOver", listenerObject)

Description

Event; broadcast to all registered listeners when a Flash application has focus and the mouse is
moved over a component instance.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event.

UIEventDispatcher.mouseUp

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.mouseUp = function(eventObject){

// insert your code here
}
componentInstance.addEventListener("mouseUp", listenerObject)

Description

Event; broadcast to all registered listeners when a Flash application has focus and the mouse is
pressed and released.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. For more information, see “EventDispatcher
class” in Flash Help.
534 Chapter 2: Components Reference

UIEventDispatcher.removeEventListener()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage

componentInstance.removeEventListener(event, listener)

Parameters

event A string that is the name of the event.

listener A reference to a listener object or function.

Returns

Nothing.

Description

Method; unregisters a listener object from a component instance that is broadcasting an event.
This method overrides the EventDispatcher.removeEventListener() event found in the
EventDispatcher base class.

UIEventDispatcher.unload

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.unload = function(eventObject){

// insert your code here
}
componentInstance.addEventListener("unload", listenerObject)

Description

Event; broadcast to all registered listeners when a component is unloaded from Flash Player.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event.
UIEventDispatcher class 535

UIObject class

Inheritance MovieClip > UIObject

ActionScript Class Name mx.core.UIObject

UIObject is the base class for all version 2 components; it is not a visual component. The
UIObject class wraps the ActionScript MovieClip object and contains functions and properties
that allow version 2 components to share some common behavior. Wrapping the MovieClip class
allows Macromedia to add new events and extend functionality in the future without breaking
content. Wrapping the MovieClip class also allows users who aren’t familiar with the traditional
Flash concepts of “movie” and “frame” to use properties, methods, and events to create
component-based applications without learning those concepts.

The UIObject class implements the following:

• Styles
• Events
• Resize by scaling

To use the methods and properties of the UIObject class, you call them directly from whichever
component you are using. For example, to call the UIObject.setSize() method from the
RadioButton component, you would write the following code:
myRadioButton.setSize(30, 30);

You only need to create an instance of UIObject if you are using version 2 of the Macromedia
Component Architecture to create a new component. Even in that case, UIObject is often created
implicitly by other subclasses like Button. If you do need to create an instance of UIObject, use
the following code:
class MyComponent extends UIObject;

Method summary for the UIObject class

The following table lists methods of the UIObject class.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.
536 Chapter 2: Components Reference

Property summary for the UIObject class

The following table lists properties of the UIObject class.

Event summary for the UIObject class

The following table lists events of the UIObject class.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Method Description
UIObject class 537

UIObject.bottom

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.bottom

Description

Property (read-only); a number indicating the bottom position of the object, in pixels, relative to
its parent’s bottom. To set this property, call UIObject.move().

Example

This example moves the check box so it aligns under the bottom edge of the list box:
myCheckbox.move(myCheckbox.x, form.height - listbox.bottom);

UIObject.createClassObject()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.createClassObject(className, instanceName, depth,
initObject)

Parameters

className An object indicating the class of the new instance.

instanceName A string indicating the instance name of the new instance.

depth A number indicating the depth of the new instance.

initObject An object containing initialization properties for the new instance.

Returns

A UIObject object that is an instance of the specified class.

Description

Method; creates an instance of a component at runtime. You need to use the import statement
and specify the class package name before calling this method. In addition, the component must
be in the FLA file’s library.
538 Chapter 2: Components Reference

Example

The following code imports the assets of the Button component and then makes a subobject of
the Button component.
import mx.controls.Button;
createClassObject(Button,"button2",5,{label:"Test Button"});

The following example creates a CheckBox object:
import mx.controls.CheckBox;
form.createClassObject(CheckBox, "cb", 0, {label:"Check this"});

You can also specify the class package name using the following syntax:
createClassObject(mx.controls.Button,"button2",5,{label:"Test Button"});

UIObject.createObject()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.createObject(linkageName, instanceName, depth, initObject)

Parameters

linkageName A string indicating the linkage identifier of a symbol in the library.

instanceName A string indicating the instance name of the new instance.

depth A number indicating the depth of the new instance.

initObject An object containing initialization properties for the new instance.

Returns

A UIObject object that is an instance of the symbol.

Description

Method; creates a subobject on an object. This method is generally used only by component
developers or advanced developers.

Example

The following example creates a CheckBox instance on the form object:
form.createObject("CheckBox", "sym1", 0);
UIObject class 539

UIObject.destroyObject()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.destroyObject(instanceName)

Parameters

instanceName A string indicating the instance name of the object to be destroyed.

Returns

Nothing.

Description

Method; destroys a component instance.

UIObject.doLater()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.doLater(target, "function")

Parameters

target A reference to a Timeline that contains the specified function.

function A string indicating a function name to be called after a frame has passed.

Returns

Nothing.

Description

Method; calls a user-defined function only after the component has finished setting all of its
properties from the Property inspector or Component inspector. All version 2 components that
inherit from UIObject have the doLater() method.

Component properties set in the Property inspector or Component inspector may not be
immediately available to ActionScript in the Timeline. For example, attempting to trace the
label property from a CheckBox component using ActionScript on the first frame of your SWF
fails without notification, even though the component appears on the Stage as expected.
540 Chapter 2: Components Reference

Although properties that are set in a class or a frame script are available immediately, most
properties assigned in the Property inspector or Component inspector are not set until the next
frame within the component itself.

Although any approach that delays access of the property will resolve this problem, the simplest
and most direct solution is to use the doLater() method.

Example

The following example shows how the doLater() method is used:
// doLater() is called from the component instance

myCheckBox.doLater (this, "delay");

// the function or method called from doLater()

function delay() {
 trace(myCheckBox.label); // the property can now be traced
 // any additional statements go here
}

UIObject.draw

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

on(draw){
...

}
listenerObject = new Object();
listenerObject.draw = function(eventObject){

...
}
componentInstance.addEventListener("draw", listenerObject)

Description

Event; notifies listeners that the object is about to draw its graphics. This is a low-level event that
you should not use unless necessary, because it can affect system performance.

The first usage example uses an on() handler and must be attached directly to a
component instance.
UIObject class 541

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, draw) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following code redraws the object form2 when the form object is drawn:
formListener.draw = function(eventObj){

form2.redraw(true);
}
form.addEventListener("draw", formListener);

See also

EventDispatcher.addEventListener() in Flash Help

UIObject.getStyle()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.getStyle(propertyName)

Parameters

propertyName A string indicating the name of the style property (for example, "fontWeight",
"borderStyle", and so on).

Returns

The value of the style property. The value can be of any data type.

Description

Method; gets the style property from the style declaration or object. If the style property is an
inheriting style, the ancestors of the object may be the source of the style value.

For a list of the styles supported by each component, see the individual component entries. See
also “Using global, custom, and class styles in the same document” in Flash Help.
542 Chapter 2: Components Reference

Example

The following code sets the ib instance’s fontWeight style property to bold if the cb instance’s
fontWeight style property is bold:
if (cb.getStyle("fontWeight") == "bold")
{
 ib.setStyle("fontWeight", "bold");
};

UIObject.height

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.height

Description

Property (read-only); a number indicating the height of the object, in pixels. To change the
height property, call UIObject.setSize().

Example

The following example makes the check box taller:

myCheckbox.setSize(myCheckbox.width, myCheckbox.height + 10);

UIObject.hide

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

on(hide){
...

}
listenerObject = new Object();
listenerObject.hide = function(eventObject){

...
}
componentInstance.addEventListener("hide", listenerObject)

Description

Event; broadcast when the object’s visible property is changed from true to false.
UIObject class 543

Example

The following handler displays a message in the Output panel when the object it’s attached to
becomes invisible.
on(hide) {

trace("I’ve become invisible.");
}

See also

UIObject.reveal

UIObject.invalidate()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.invalidate()

Parameters

None.

Returns

Nothing.

Description

Method; marks the object so it will be redrawn on the next frame interval.

This method is primarily useful to developers of new custom components. A custom component
is likely to support a number of operations that change the component’s appearance.

Often, the best way to build a component is to centralize the logic for updating the component’s
appearance in the draw() method. If the component has a draw() method, you can call
invalidate() on the component to redraw it. (For information on defining a draw() method,
see “Defining core functions” in Flash Help.)

All operations that change the component’s appearance can call invalidate() instead of
redrawing the component themselves. This has some advantages: code isn’t duplicated
unnecessarily, and multiple changes can easily be batched up into one redraw, instead of causing
multiple, redundant redraws.

Example

The following example marks the ProgressBar instance pBar for redrawing:
pBar.invalidate();
544 Chapter 2: Components Reference

UIObject.left

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.left

Description

Property (read-only); a number indicating the left edge of the object, in pixels, relative to its
parent. To set this property, call UIObject.move().

UIObject.load

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(load){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.load = function(eventObject){

...
}
componentInstance.addEventListener("load", listenerObject)

Description

Event; notifies listeners that the subobject for this object is being created.

The first usage example uses an on() handler and must be attached directly to a
component instance.
UIObject class 545

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, load) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following example creates an instance of MySymbol once the form instance is loaded:
formListener.handleEvent = function(eventObj)
{

form.createObject("MySymbol", "sym1", 0);
}
form.addEventListener("load", formListener);

UIObject.move

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(move){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.move = function(eventObject){

...
}
componentInstance.addEventListener("move", listenerObject)

Description

Event; notifies listeners that the object has moved.

The first usage example uses an on() handler and must be attached directly to a
component instance.
546 Chapter 2: Components Reference

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, move) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following example calls the move() method to keep form2 100 pixels down and to the right
of form1:
formListener.handleEvent = function(){

form2.move(form1.x + 100, form1.y + 100);
}
form1.addEventListener("move", formListener);

UIObject.move()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.move(x, y)

Parameters

x A number that indicates the position of the object’s upper left corner, relative to its parent.

y A number that indicates the position of the object’s upper left corner, relative to its parent.

Returns

Nothing.

Description

Method; moves the object to the requested position. You should pass only integral values to
UIObject.move(), or the component may appear fuzzy.

Example

This example move the check box 10 pixels to the right:
myCheckbox.move(myCheckbox.x + 10, myCheckbox.y);
UIObject class 547

UIObject.redraw()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.redraw(always)

Parameters

always A Boolean value. If true, the method draws the object, even if invalidate() wasn’t
called. If false, the method draws the object only if invalidate() was called.

Returns

Nothing.

Description

Method; forces validation of the object so that it is drawn in the current frame.

Example

The following example creates a check box and a button and draws them because other scripts are
not expected to modify the form:
form.createClassObject(mx.controls.CheckBox, "cb", 0);
form.createClassObject(mx.controls.Button, "b", 1);
form.redraw(true)

UIObject.resize

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(resize){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.resize = function(eventObject){

...
}
componentInstance.addEventListener("resize", listenerObject)
548 Chapter 2: Components Reference

Description

Event; notifies listeners that an object has been resized.

The first usage example uses an on() handler and must be attached directly to a
component instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, resize) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following example calls the setSize() method to make sym1 half the width and a fourth of
the height when form is moved:
formListener.handleEvent = function(eventObj){

form.sym1.setSize(sym1.width / 2, sym1.height / 4);
}
form.addEventListener("resize", formListener);

UIObject.reveal

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

on(reveal){
...

}
listenerObject = new Object();
listenerObject.reveal = function(eventObject){

...
}
componentInstance.addEventListener("reveal", listenerObject)

Description

Event; broadcast when the object’s visible property changes from false to true.
UIObject class 549

Example

The following handler displays a message in the Output panel when the object it’s attached to
becomes visible.
on(reveal) {

trace("I’ve become visible.");
}

See also

UIObject.hide

UIObject.right

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.right

Description

Property (read-only); a number indicating the right edge of the object, in pixels, relative to its
parent’s right edge. To set this property, call UIObject.move().

Example

The following example moves the check box so it aligns under the right edge of the list box:
myCheckbox.move(form.width - listbox.right, myCheckbox.y);

UIObject.scaleX

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.scaleX

Description

Property; a number indicating the scaling factor in the x direction of the object, relative to
its parent.
550 Chapter 2: Components Reference

Example

The following example makes the check box twice as wide and sets the tmp variable to the
horizontal scale factor:
checkbox.scaleX = 200;
var tmp = checkbox.scaleX;

UIObject.scaleY

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.scaleY

Description

Property; a number indicating the scaling factor in the y direction of the object, relative to
its parent.

Example

The following example makes the check box twice as high and sets the tmp variable to the vertical
scale factor:
checkbox.scaleY = 200;
var tmp = checkbox.scaleY;

UIObject.setSize()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.setSize(width, height)

Parameters

width A number that indicates the width of the object, in pixels.

height A number that indicates the height of the object, in pixels.

Returns

Nothing.
UIObject class 551

Description

Method; resizes the object to the requested size. You should pass only integral values to
UIObject.setSize(), or the component may appear fuzzy. This method (like all methods and
properties of UIObject) is available from any component instance.

When you call this method on a ComboBox instance, the combo box is resized and the
rowHeight property of the contained list is also changed.

Example

This example resizes the pBar component instance to 100 pixels wide and 100 pixels high:
pBar.setSize(100, 100);

UIObject.setSkin()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.setSkin(id, linkageName)

Parameters

id A number indicating the depth of the skin within the component.

linkageName A string indicating an asset in the library.

Returns

A reference to the movie clip (skin) that was attached.

Description

Method; sets a skin in the component instance. Use this method in a component’s class file when
you are creating a component. For more information, see “About assigning skins” in Flash Help.

You cannot use this method to set a component’s skins at runtime (for example, the way you set a
component’s styles at runtime).

Example

This example is a code snippet from the class file of a new component, called Shape. It creates a
variable, themeShape and sets it to the Linkage identifier of the skin. In the createChildren()
method, the setSkin() method is called and passed the id 1 and the variable that holds the
linkage identifier of the skin:
class Shape extends UIComponent{

static var symbolName:String = "Shape";
static var symbolOwner:Object = Shape;
var className:String = "Shape";
552 Chapter 2: Components Reference

var themeShape:String = "circle_skin"

function Shape(){
}

function init(Void):Void{

super.init();
}

function createChildren():Void{
setSkin(1, themeShape);
super.createChildren();

}
}

UIObject.setStyle()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.setStyle(propertyName, value)

Parameters

propertyName A string indicating the name of the style property (for example, "fontWeight",
"borderStyle", and so on).

value The value of the property. If the value is a string, it must be enclosed in quotation marks.

Returns

A UIObject object that is an instance of the specified class.

Description

Method; sets the style property on the style declaration or object. If the style property is an
inheriting style, the children of the object are notified of the new value.

For a list of the styles supported by each component, see individual component entries. For
example, Button component styles are listed in “Using styles with the Button component” under
“Button component.”

Example

The following code sets the fontWeight style property of the check box instance cb to bold:
cb.setStyle("fontWeight", "bold");
UIObject class 553

UIObject.top

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.top

Description

Property (read-only); a number indicating the top edge of the object, in pixels, relative to its
parent. To set this property, call UIObject.move().

UIObject.unload

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

Usage 1:
on(unload){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.unload = function(eventObject){

...
}
componentInstance.addEventListener("unload", listenerObject)

Description

Event; notifies listeners that the subobjects of this object are being unloaded.

The first usage example uses an on() handler and must be attached directly to a
component instance.
554 Chapter 2: Components Reference

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, unload) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the EventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information, see “EventDispatcher class” in Flash Help.

Example

The following example deletes sym1 when the unload event is triggered:
function unload(){

form.destroyObject(sym1);
}
form.addEventListener("unload", this);

UIObject.visible

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.visible

Description

Property; a Boolean value indicating whether the object is visible (true) or not (false).

Example

The following example makes the myLoader loader instance visible:
myLoader.visible = true;

UIObject.width

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.width
UIObject class 555

Description

Property (read-only); a number indicating the width of the object, in pixels. To change the width,
call UIObject.setSize().

Example

The following example makes the check box wider:

myCheckbox.setSize(myCheckbox.width + 10, myCheckbox.height);

UIObject.x

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.x

Description

Property (read-only); a number indicating the left edge of the object, in pixels. To set this
property, call UIObject.move().

Example

The following example moves the check box 10 pixels to the right:

myCheckbox.move(myCheckbox.x + 10, myCheckbox.y);

UIObject.y

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.y

Description

Property (read-only); a number indicating the top edge of the object, in pixels. To set this
property, call UIObject.move().

Example

The following example moves the check box down 10 pixels:

myCheckbox.move(myCheckbox.x, myCheckbox.y + 10);
556 Chapter 2: Components Reference

UIScrollBar component

The UIScrollBar component allows you to add a scroll bar to a text field. You can add a scroll bar
to a text field while authoring, or at runtime with ActionScript.

The UIScrollBar component functions like any other scroll bar. It contains arrow buttons at
either end and a scroll track and scroll box (thumb) in between. It can be attached to any edge of
a text field and used both vertically and horizontally.

Using the UIScrollBar component

To use the UIScrollBar component, verify that object snapping is turned on (View > Snapping >
Snap to Objects). Then create a text input field on the Stage and drag the UIScrollBar component
from the Components panel to any quadrant of the text field’s bounding box.

If the length of the scroll bar is smaller than the combined size of its scroll arrows, it will not be
displayed correctly. One of the arrow buttons will become hidden behind the other. Flash does
not provide error checking for this. In this case it is a good idea to hide the scroll bar with
ActionScript. If the scroll bar is sized so that there is not enough room for the scroll box (thumb),
Flash makes the scroll box invisible.

Unlike many other components, the UIScrollBar component can receive continuous mouse
input, such as when the user holds the mouse button down, rather than requiring repeated clicks.

There is no keyboard interaction with the UIScrollBar component.

UIScrollBar parameters

You can set the following authoring parameters for each UIScrollBar instance in the Property
inspector or in the Component inspector:

_targetInstanceName indicates the name of the text field instance that the UIScrollBar
component is attached to.

horizontal indicates whether the scroll bar is oriented horizontally (true) or vertically (false).
The default value is false.

You can write ActionScript to control these and additional options for a UIScrollBar component
using its properties, methods, and events. For more information, see “UIScrollBar class”
on page 561.

Creating an application with the UIScrollBar component

The following procedure explains how to add a UIScrollBar component to an application while
authoring.

To create an application with the UIScrollBar component:

1. Create a text input field and give it an instance name in the Property inspector. Add enough
text to the field so that users will have to scroll to view it all.

2. In the Property inspector, set the Line Type of the text input field to Multiline, or Multiline No
Wrap if you plan to use the scroll bar horizontally.
UIScrollBar component 557

3. Verify that object snapping is turned on (View > Snapping > Snap to Objects).

4. Drag a UIScrollBar instance from the Components panel onto the text input field near the side
you want to attach it to. The component must overlap with the text field when you release the
mouse in order for it to be properly bound to the field.

The _targetInstanceName property of the component is automatically populated with the
text field instance name in the Property and Component inspectors.

5. Select Control > Test Movie.

The application runs, and the scroll bar scrolls the contents of the text field.

You can also create a UIScrollBar component instance and associate it with a text field at runtime
with ActionScript.

The following code creates a vertically oriented UIScrollBar instance and attaches it to the right
side of a text field instance named MyTextField:
// createClassObject like any other component. Name it vSB.
createClassObject(mx.controls.UIScrollBar, "vSB", 10);

// set the target text field
vSB.setScrollTarget(MyTextField);

// size it to match the text field
vSB.setSize(16, MyTextField._height);

// move it next to the text field
vSB.move(MyTextField._x + MyTextField._width, MyTextField._y);

The following code creates a horizontally oriented UIScrollBar instance and attaches it to the
bottom of a text field instance named MyTextField:
// createClassObject like any other component. Name it hSB.
_root.createClassObject(mx.controls.UIScrollBar, "hSB", 20);
hSB.horizontal = true

// set the target text field
hSB.setScrollTarget(MyTextField);

// size it to match the text field
hSB.setSize(MyTextField._width, 16);

// move it to the bottom of the text field
hSB.move(MyTextField._x, MyTextField._y + MyTextField._height);

Customizing the UIScrollBar component

You can transform a UIScrollBar component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()) or any applicable properties and methods of the UIScrollBar class.
558 Chapter 2: Components Reference

Note, however, that with the Halo theme, the width of a vertically oriented scroll bar must be 16
pixels, and the height of a horizontally oriented scroll bar must also be 16 pixels. These
dimensions are determined strictly by the current theme used with the scroll bar. Only the
dimension of a scroll bar that corresponds to its length can be changed.

You can customize the appearance of a UIScrollBar instance by using styles and skins.

Using styles with the UIScrollBar component

The UIScrollBar component supports the following styles:

Using skins with the UIScrollBar component

The UIScrollBar component uses 13 skins for the track, scroll box (thumb), and buttons. To
customize these skin elements, edit the symbols in the Flash UI Components 2/Themes/
MMDefault/ScrollBar Assets/States folder. For more information, see “About skinning
components” in Flash Help.

Both horizontal and vertical scroll bars use the same vertical skins, and when displaying a
horizontal scroll bar the UIScrollBar component rotates the skins as appropriate.

The UIScrollBar component supports the following skin properties.

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values are
"haloGreen", "haloBlue", and "haloOrange". The default value
is "haloGreen".

scrollTrackColor Sample The background color for the scroll track.The default value is
0xCCCCCC (light gray).

symbolColor Sample The color of the up and down scroll arrows. The default value
is 0x000000 (black).

symbolDisabledColor Sample The color of the up and down scroll arrows in a disabled scroll
bar. The default value is 0x848384 (dark gray).

Property Description

upArrowUpName The up (normal) state of the up and left buttons. The default value is
ScrollUpArrowUp.

upArrowOverName The rollover state of the up and left buttons. The default value is
ScrollUpArrowOver.

upArrowDownName The pressed state of the up and left buttons. The default value is
ScrollUpArrowDown.

downArrowUpName The up (normal) state of the down and right buttons. The default value is
ScrollDownArrowUp.

downArrowOverName The rollover state of the down and right buttons. The default value is
ScrollDownArrowOver.

downArrowDownName The pressed state of the down and right buttons. The default value is
ScrollDownArrowDown.
UIScrollBar component 559

The following example demonstrates how to put a thin blank line in the middle of the scroll
track.

To create movie clip symbols for UIScrollBar skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on your
operating system, see “About themes” in Flash Help.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault folder
and drag the ScrollBar Assets folder to the library for your document.

4. Expand the ScrollBar Assets/States folder in the library of your document.

5. Open the symbols you want to customize for editing.

For example, open the ScrollTrack symbol.
6. Customize the symbol as desired.

For example, draw a black rectangle in the middle of the track using a 1 x 4 rectangle at (8,0).
7. Repeat steps 5-6 for all symbols you want to customize.

For example, draw the same line on the ScrollTrackDisabled symbol.
8. Click the Back button to return to the main Timeline.

9. Create an input type TextField instance on the Stage.

10. Drag a UIScrollBar component to the TextField instance.

11. Select Control > Test Movie.

scrollTrackName The symbol used for the scroll bar’s track (background). The default value
is ScrollTrack.

scrollTrackOverName The symbol used for the scroll track (background) when rolled over. The
default value is undefined.

scrollTrackDownName The symbol used for the scroll track (background) when pressed. The
default value is undefined.

thumbTopName The top and left caps of the scroll box (thumb). The default value is
ScrollThumbTopUp.

thumbMiddleName The middle (expandable) part of the thumb. The default value is
ScrollThumbMiddleUp.

thumbBottomName The bottom and right caps of the thumb. The default value is
ScrollThumbBottomUp.

thumbGripName The grip displayed in front of the thumb. The default value is
ScrollThumbGripUp.

Property Description
560 Chapter 2: Components Reference

UIScrollBar class

Inheritance MovieClip > UIObject class > UIComponent class > ScrollBar > UIScrollBar

ActionScript Class Name mx.controls.UIScrollBar

The properties of the UIScrollBar class let you adjust the scroll position and the amount of
scrolling that occurs when the user clicks the scroll arrows or the scroll track.

Unlike most other components, events are broadcast when the mouse button is pressed and
continue broadcasting until the button is released.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:
trace(mx.controls.UIScrollBar.version);

Note: The code trace(myUIScrollBarInstance.version); returns undefined.

Method summary for the UIScrollBar class

The following table lists the method of the UIScrollBar class.

Methods inherited from the UIObject class

The following table lists the methods the UIScrollBar class inherits from the UIObject class.
When calling these methods from the UIScrollBar object, use the form
UIScrollBarInstance.methodName.

Method Description

UIScrollBar.setScrollProperties() Sets the scroll range of the scroll bar and the size of the text
field that the scroll bar is attached to.

UIScrollBar.setScrollTarget() Assigns the scroll bar to a text field.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.doLater() Calls a function when parameters have been set in the
Property and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame
interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current
frame.

UIObject.setSize() Resizes the object to the requested size.
UIScrollBar component 561

Methods inherited from the UIComponent class

The following table lists the methods the UIScrollBar class inherits from the UIComponent class.
When calling these methods from the UIScrollBar object, use the form
UIScrollBarInstance.methodName.

Property summary for the UIScrollBar class

The following table lists properties of the UIScrollBar class.

Properties inherited from the UIObject class

The following table lists the properties the UIScrollBar class inherits from the UIObject class.
When accessing these properties from the UIScrollBar object, use the form
UIScrollBarInstance.propertyName.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.

Property Description

UIScrollBar.lineScrollSize The number of lines or pixels scrolled when the user clicks the
arrow buttons of the scroll bar.

UIScrollBar.pageScrollSize The number of lines or pixels scrolled when the user clicks the
track of the scroll bar.

UIScrollBar.scrollPosition The current scroll position of the scroll bar.

UIScrollBar._targetInstanceName The instance name of the text field associated with the
UIScrollBar instance.

UIScrollBar.horizontal A Boolean value indicating whether the scroll bar is oriented
vertically (false), the default, or horizontally (true).

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the
right edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

Method Description
562 Chapter 2: Components Reference

Properties inherited from the UIComponent class

The following table lists the properties the UIScrollBar class inherits from the UIComponent
class. When accessing these properties from the UIScrollBar object, use the form
UIScrollBarInstance.propertyName.

Event summary for the UIScrollBar class

The following table lists the event of the UIScrollBar class.

Events inherited from the UIObject class

The following table lists the events the UIScrollBar class inherits from the UIObject class.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its
parent. Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true)
or not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and
input.

UIComponent.tabIndex A number indicating the tab order for a component in a
document.

Event Description

UIScrollBar.scroll Broadcast when any part of the scroll bar is clicked.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to
invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

Property Description
UIScrollBar component 563

Events inherited from the UIComponent class

The following table lists the events the UIScrollBar class inherits from the UIComponent class.

UIScrollBar.horizontal

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollBarInstance.horizontal

Description

Property; indicates whether the scroll bar is oriented vertically (false) or horizontally (true).

This property can be tested and set. The default value is false.

Example

The following example sets the scroll bar named MyScrollBar to a horizontal orientation:
myScrollBar.horizontal = true;

UIScrollBar.lineScrollSize

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollBarInstance.lineScrollSize

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.

Event Description
564 Chapter 2: Components Reference

Description

Property; gets or sets the number of lines or pixels scrolled when the user clicks the arrow buttons
of the UIScrollBar component. If the scroll bar is oriented vertically, the value is a number of
lines. If the scroll bar is oriented horizontally, the value is a number of pixels.

The default value is 1.

Example

The following example sets the scroll bar to scroll two lines of text each time the user clicks one of
the scroll arrows:
myScrollBar.lineScrollSize = 2;

UIScrollBar.pageScrollSize

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollBarInstance.pageScrollSize

Description

Property; gets or sets the number of lines or pixels scrolled when the user clicks the track of the
UIScrollBar component. If the scroll bar is oriented vertically, the value is a number of lines. If
the scroll bar is oriented horizontally, the value is a number of pixels.

You can also set this value by passing a pageSize parameter with the
UIScrollBar.setScrollTarget() method.

Example

The following example sets the scroll bar to scroll 10 lines of text each time the user clicks the
scroll track:
myScrollBar.pageScrollSize = 10;

UIScrollBar.scroll

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.
UIScrollBar component 565

Usage

Usage 1:
on(scroll){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.scroll = function(eventObject){

...
}
UIScrollBarInstance.addEventListener("scroll", listenerObject)

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the scroll bar.
The UIScrollBar.scrollPosition property and the scroll bar’s onscreen image are updated
before this event is broadcast.

The first usage example uses an on() handler and must be attached directly to a UIScrollBar
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the UIScrollBar
component instance myUIScrollBarComponent, sends “_level0.myUIScrollBarComponent” to
the Output panel:
on(scroll){

trace(this);
}

The second usage example uses a dispatcher/listener event model, in which the script is placed on
a frame in the Timeline that contains the component instance. A component instance
(UIScrollBarInstance) dispatches an event (in this case, scroll) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event occurs. When the event occurs, it automatically passes an event object (eventObject) to
the listener object method. The event object has properties that contain information about the
event. You can use these properties to write code that handles the event. Finally, you call
addEventListener() (see EventDispatcher.addEventListener() in Flash Help) on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

In addition to the normal properties of the event object (type and target), the event object for
the scroll event includes a third property named direction. The direction property contains
a string describing which way the scroll bar is oriented. The possible values for the direction
property are vertical (the default) and horizontal.

For more information about the type and target event object properties, see “Event objects” in
Flash Help.
566 Chapter 2: Components Reference

Example

The following code implements Usage 1. The code is attached to the UIScrollBar component
instance and sends a message to the Output panel when the user clicks the scroll bar. The on()
handler must be attached directly to the UIScrollBar instance.
on(scroll){

trace("UIScrollBar component was clicked");
}

The following example implements Usage 2 and creates a listener object called myListener with
a scroll event handler for the verticalScroll instance of the UIScrollBar component:
myListener = new Object();
myListener.scroll = function(eventObj){

// insert code to handle the "scroll" event
}
verticalScroll.addEventListener("scroll", myListener);

UIScrollBar.scrollPosition

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollBarInstance.scrollPosition

Description

Property; gets or sets the current scroll position of the scrollable text field. The position of the
scroll box (thumb) also updates when a new scrollPosition value is set. The value of
scrollPosition depends on whether the UIScrollBar instance is being used for vertical or
horizontal scrolling.

If the UIScrollBar instance is being used for vertical scrolling (the most common use), the value
of scrollPosition is an integer with a range that begins with 0 and ends with a number that is
equal to the total number of lines in the text field divided by the number of lines that can be
displayed in the text field simultaneously. If scrollPosition is set to a number greater than this
range, the text field simply scrolls to the end of the text.

To scroll the text to the first line, set scrollPosition to 0.

To scroll the text to the end, set scrollPosition to the number of lines of text in the text field
minus 1. You can determine the number of lines by retrieving the value of the maxscroll
property of the text field.

If the UIScrollBar instance is being used for horizontal scrolling, the value of scrollPosition is
an integer value ranging from 0 to the width of the text field, in pixels. You can determine the
width of the text field in pixels by getting the value of the maxhscroll property of the text field.

The default value of scrollPosition is 0.
UIScrollBar component 567

Example

The following example scrolls the text field to the beginning of the text it contains:
myScrollBar.scrollPosition = 0;

The following example scrolls the text field to the end of the text it contains:
myScrollBar.scrollPosition = myTextField.maxscroll - 1;

UIScrollBar.setScrollProperties()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollBarInstance.setScrollProperties(pageSize, minPos, maxPos)

Parameters

pageSize The number of items that can be viewed in the display area. This parameter sets the
size of the text field’s bounding box. If the scroll bar is vertical, this value is a number of lines of
text; if the scroll bar is horizontal, this value is a number of pixels.

minPos This parameter refers to the lowest numbered line of text when the scroll bar is used
vertically, or the lowest numbered pixel in the text field’s bounding box when the scroll bar is used
horizontally. The value is usually 0.

maxPos This value refers to the highest numbered line of text when the scroll bar is used
vertically, or the highest numbered pixel in the text field’s bounding box when the scroll bar is
used horizontally.

Description

Method; sets the scroll range of the scroll bar and the size of the text field that the scroll bar is
attached to. This method is primarily useful when you attach a UIScrollBar component to a text
field at runtime (using UIScrollBar.setScrollTarget()) rather than while authoring.

The minPos and maxPos values are used together by the UIScrollBar component to determine the
scroll range for the scroll bar and the associated text field.

If you use the replaceText method to set the text of the text field, you must use
setScrollProperties() to cause an update of the scroll bars.

Example

The following example sets up a UIScrollBar component to display 10 lines of text at a time in
the text field out of a range of 0 to 99 lines:
myScrollBar.setScrollProperties(10, 0, 99);
568 Chapter 2: Components Reference

UIScrollBar.setScrollTarget()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollBarInstance.setScrollTarget(textInstance)

Parameters

textInstance The text field to assign to the scroll bar.

Description

Method; assigns a UIScrollBar component to a text field instance. If you need to associate a text
field and a UIScrollBar component at runtime, use this method.

Example

The following example assigns the UIScrollBar instance named myScrollBar to the text field
instance named txt. The scroll bar is oriented vertically.
myScrollBar.setScrollTarget(txt);

The following example assigns the UIScrollBar instance named myScrollBar to the text field
instance named task_list. The scroll bar is oriented vertically.
myScrollBar.setScrollTarget(task_list, true);

UIScrollBar._targetInstanceName

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

scrollBarInstance._targetInstanceName

Description

Property; indicates the instance name of the text field associated with a UIScrollBar component.
This property can be tested and set. However, it should not be used to create an association
between a text field and a scroll bar. Use UIScrollBar.setScrollTarget() instead.
UIScrollBar component 569

Example

The following example gets the name of the text field instance attached to the scroll bar
MyScrollBar and sets its border to true:
var theName = myScrollBar._targetInstanceName;
theName.border = true;
570 Chapter 2: Components Reference

	Contents
	About This Guide
	System requirements
	Installing Macromedia Central components
	Guide to instructional media
	Typographical conventions
	Additional resources

	Using Macromedia Central Components
	Component changes in the Macromedia Central SDK
	Updated version 1 components
	Deprecated component classes

	Migrating from previous versions of Central
	Design considerations
	Macromedia Central artwork
	Coding considerations
	About accessibility
	Testing components in your application
	Writing event listeners for components
	Single-selection forms
	Multiple-selection forms

	Components Reference
	Accordion component
	Using the Accordion component
	Accordion parameters
	Creating an application with the Accordion component

	Customizing the Accordion component
	Using styles with the Accordion component
	Using skins with the Accordion component
	Using ActionScript to draw the Accordion header
	Using movie clips to customize the Accordion header skin

	Accordion class
	Method summary for the Accordion class
	Methods inherited from the UIObject class
	Methods inherited from UIComponent class

	Property summary for the Accordion class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the Accordion class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	Accordion.change
	Accordion.createChild()
	Accordion.createSegment()
	Accordion.destroyChildAt()
	Accordion.getChildAt()
	Accordion.numChildren
	Accordion.selectedChild
	Accordion.selectedIndex

	AccordionTab component
	Using the AccordionTab component
	AccordionTab parameters
	About AccordionTab states

	AccordionTab examples
	AccordionTab example one
	AccordionTab example two

	Method summary for the MAccordionTab component
	MAccordionTab.addItem()
	MAccordionTab.addItemAt()
	MAccordionTab.getBaseColor()
	MAccordionTab.getContentBounds()
	MAccordionTab.getDataProvider()
	MAccordionTab.getItemAt()
	MAccordionTab.getLength()
	MAccordionTab.getSelectedIndex()
	MAccordionTab.getSelectedItem()
	MAccordionTab.getValue()
	MAccordionTab.removeAll()
	MAccordionTab.removeItemAt()
	MAccordionTab.replaceItemAt()
	MAccordionTab.setBaseColor()
	MAccordionTab.setChangeHandler()
	MAccordionTab.setDataProvider()
	MAccordionTab.setSelectedIndex()
	MAccordionTab.setSize()

	Alert component
	Using the Alert component
	Alert parameters
	Creating an application with the Alert component

	Customizing the Alert component
	Using styles with the Alert component
	Using skins with the Alert component

	Alert class
	Method summary for the Alert class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class
	Methods inherited from the Window class

	Property summary for the Alert class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class
	Properties inherited from the Window class

	Event summary for the Alert class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class
	Events inherited from the Window class

	Alert.buttonHeight
	Alert.buttonWidth
	Alert.CANCEL
	Alert.cancelLabel
	Alert.click
	Alert.NO
	Alert.noLabel
	Alert.OK
	Alert.okLabel
	Alert.show()
	Alert.YES
	Alert.yesLabel

	Button component
	Using the Button component
	Button parameters
	Creating an application with the Button component

	Customizing the Button component
	Using styles with the Button component
	Using skins with the Button component
	Using ActionScript to draw Button skins
	Using movie clips to customize Button skins

	Button class
	Method summary for the Button class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the Button class
	Properties inherited from the SimpleButton class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the Button class
	Events inherited from the SimpleButton class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	Button.icon
	Button.label
	Button.labelPlacement

	CheckBox component
	Using the CheckBox component
	CheckBox parameters
	Creating an application with the CheckBox component

	Customizing the CheckBox component
	Using styles with the CheckBox component
	Using skins with the CheckBox component

	CheckBox class
	Method summary for the CheckBox class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the CheckBox class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class
	Properties inherited from the SimpleButton class
	Properties inherited from the Button class

	Event summary for the CheckBox class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class
	Events inherited from the SimpleButton class

	CheckBox.click
	CheckBox.label
	CheckBox.labelPlacement
	CheckBox.selected

	CloseButton component
	Using the CloseButton component
	MCloseButton.onRelease

	ComboBox component
	Using the ComboBox component
	ComboBox parameters
	Creating an application with the ComboBox component

	Customizing the ComboBox component
	Using styles with the ComboBox component
	Using skins with the ComboBox component

	ComboBox class
	Method summary for the ComboBox class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the ComboBox class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the ComboBox class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	ComboBox.addItem()
	ComboBox.addItemAt()
	ComboBox.change
	ComboBox.close()
	ComboBox.close
	ComboBox.dataProvider
	ComboBox.dropdown
	ComboBox.dropdownWidth
	ComboBox.editable
	ComboBox.enter
	ComboBox.getItemAt()
	ComboBox.itemRollOut
	ComboBox.itemRollOver
	ComboBox.labelField
	ComboBox.labelFunction
	ComboBox.length
	ComboBox.open()
	ComboBox.open
	ComboBox.removeAll()
	ComboBox.removeItemAt()
	ComboBox.replaceItemAt()
	ComboBox.restrict
	ComboBox.rowCount
	ComboBox.scroll
	ComboBox.selectedIndex
	ComboBox.selectedItem
	ComboBox.sortItems()
	ComboBox.sortItemsBy()
	ComboBox.text
	ComboBox.textField
	ComboBox.value

	DataGrid component
	Interacting with the DataGrid component
	Using the DataGrid component
	Understanding the design of the DataGrid component
	Understanding the DataGrid component: data model and view
	DataGrid parameters
	Creating an application with the DataGrid component

	Customizing the DataGrid component
	Using styles with the DataGrid component
	Setting styles for an individual column
	Setting header styles
	Setting styles for all DataGrid components in a document

	Using skins with the DataGrid component

	DataGrid class
	Method summary for the DataGrid class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class
	Methods inherited from the List class

	Property summary for the DataGrid class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class
	Properties inherited from the List class

	Event summary for the DataGrid class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class
	Events inherited from the List class

	DataGrid.addColumn()
	DataGrid.addColumnAt()
	DataGrid.addItem()
	DataGrid.addItemAt()
	DataGrid.cellEdit
	DataGrid.cellFocusIn
	DataGrid.cellFocusOut
	DataGrid.cellPress
	DataGrid.change
	DataGrid.columnCount
	DataGrid.columnNames
	DataGrid.columnStretch
	DataGrid.dataProvider
	DataGrid.editable
	DataGrid.editField()
	DataGrid.focusedCell
	DataGrid.getColumnAt()
	DataGrid.getColumnIndex()
	DataGrid.headerHeight
	DataGrid.headerRelease
	DataGrid.hScrollPolicy
	DataGrid.removeAllColumns()
	DataGrid.removeColumnAt()
	DataGrid.replaceItemAt()
	DataGrid.resizableColumns
	DataGrid.selectable
	DataGrid.showHeaders
	DataGrid.sortableColumns
	DataGrid.spaceColumnsEqually()
	DataGridColumn class
	Property summary for the DataGridColumn class

	Constructor for the DataGridColumn class
	DataGridColumn.cellRenderer
	DataGridColumn.columnName
	DataGridColumn.editable
	DataGridColumn.headerRenderer
	DataGridColumn.headerText
	DataGridColumn.labelFunction
	DataGridColumn.resizable
	DataGridColumn.sortable
	DataGridColumn.sortOnHeaderRelease
	DataGridColumn.width

	DateChooser component
	Using the DateChooser component
	DateChooser parameters
	Creating an application with the DateChooser component

	Customizing the DateChooser component
	Using styles with the DateChooser component
	Using skins with the DateChooser component

	DateChooser class
	Method summary for the DateChooser class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the DateChooser class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the DateChooser class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	DateChooser.change
	DateChooser.dayNames
	DateChooser.disabledDays
	DateChooser.disabledRanges
	DateChooser.displayedMonth
	DateChooser.displayedYear
	DateChooser.firstDayOfWeek
	DateChooser.monthNames
	DateChooser.scroll
	DateChooser.selectableRange
	DateChooser.selectedDate
	DateChooser.showToday

	DateField component
	Using the DateField component
	DateField parameters
	Creating an application with the DateField component

	Customizing the DateField component
	Using styles with the DateField component
	Using skins with the DateField component

	DateField class
	Method summary for the DateField class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the DateField class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the DateField class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	DateField.change
	DateField.close()
	DateField.close
	DateField.dateFormatter
	DateField.dayNames
	DateField.disabledDays
	DateField.disabledRanges
	DateField.displayedMonth
	DateField.displayedYear
	DateField.firstDayOfWeek
	DateField.monthNames
	DateField.open()
	DateField.open
	DateField.pullDown
	DateField.scroll
	DateField.selectableRange
	DateField.selectedDate
	DateField.showToday

	DialogBox component
	Using the DialogBox component
	DialogBox parameters
	About DialogBox states

	Method summary for the DialogBox component
	Event summary for the MDialogBox component
	MDialogBox.doClose()
	MDialogBox.doOpen()
	MDialogBox.getContent()
	MDialogBox.getDataProvider()
	MDialogBox.getSelectedContent()
	MDialogBox.getSelectedIndex()
	MDialogBox.getSelectedItem()
	MDialogBox.onClosed()
	MDialogBox.onContentChanged()
	MDialogBox.setDataProvider()
	MDialogBox.setSelectedByData()
	MDialogBox.setSelectedByID()
	MDialogBox.setSelectedByKey()
	MDialogBox.setSelectedByLabel()
	MDialogBox.setSelectedIndex()
	MDialogBox.setSelectedItem()
	MDialogBox.setSelectedNextIndex()
	MDialogBox.setSelectedPrevIndex()
	MDialogBox.setSize()
	MDialogBox.setTitle()
	MDialogBox.showClose()

	ExpandingPod component
	Using the ExpandingPod component
	ExpandingPod parameters
	About ExpandingPod states

	Method summary for the MExpandingPod component
	MExpandingPod.getContentStart()
	MExpandingPod.getExpanded()
	MExpandingPod.getLargeContent()
	MExpandingPod.getSize()
	MExpandingPod.getSmallContent()
	MExpandingPod.setExpanded()
	MExpandingPod.setExpandingOrigin()
	MExpandingPod.setLargeContent()
	MExpandingPod.setSmallContent()
	MExpandingPod.setTitle()
	MExpandingPod.showMagnifier()
	MExpandingPod.showTitleBar()

	FocusManager class
	Using the Focus Manager
	Using the Focus Manager to allow tabbing
	Creating an application with the Focus Manager

	Customizing the Focus Manager
	FocusManager class (API)
	Method summary for the FocusManager class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the FocusManager class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the FocusManager class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	FocusManager.defaultPushButton
	FocusManager.defaultPushButtonEnabled
	FocusManager.enabled
	FocusManager.getFocus()
	FocusManager.nextTabIndex
	FocusManager.sendDefaultPushButtonEvent()
	FocusManager.setFocus()

	IconButton component
	Using the IconButton component
	IconButton parameters
	About IconButton states and variations

	Method summary for the MIconButton component
	MIconButton.getEnabled()
	MIconButton.getIcon()
	MIconButton.setChangeHandler()
	MIconButton.setEnabled()
	MIconButton.setIcon()

	IconMenu component
	Using the IconMenu component
	IconMenu parameters
	About IconMenu states and variations

	Method summary for the MIconMenu component
	MIconMenu.addItem()
	MIconMenu.addItemAt()
	MIconMenu.clearChecked()
	MIconMenu.clearDisabled()
	MIconMenu.getCheckedIndices()
	MIconMenu.getCheckedItems()
	MIconMenu.getCheckmarks()
	MIconMenu.getDisabledIndices()
	MIconMenu.getEnabled()
	MIconMenu.getIcon()
	MIconMenu.getItemAt()
	MIconMenu.getItemID()
	MIconMenu.getLabel()
	MIconMenu.getLabelPlacement()
	MIconMenu.getLength()
	MIconMenu.getRowCount()
	MIconMenu.getSelectedIndex()
	MIconMenu.getSelectedItem()
	MIconMenu.getValue()
	MIconMenu.isDisabled()
	MIconMenu.removeAll()
	MIconMenu.removeIcon()
	MIconMenu.removeItemAt()
	MIconMenu.replaceAllItems()
	MIconMenu.replaceItemAt()
	MIconMenu.setCheckedIndices()
	MIconMenu.setDataProvider()
	MIconMenu.setEnabled()
	MIconMenu.setEnabledIndices()
	MIconMenu.setIcon()
	MIconMenu.setLabel()
	MIconMenu.setLabelPlacement()
	MIconMenu.setMenuWidth()
	MIconMenu.setPopUpLocation()
	MIconMenu.setRowCount()
	MIconMenu.setSize()
	MIconMenu.showCheckmarks()

	Label component
	Using the label component
	Label parameters
	Creating an application with the Label component

	Customizing the Label component
	Using styles with the Label component
	Using skins with the Label component

	Label class
	Method summary for the Label class
	Methods inherited from the UIObject class

	Property summary for the Label class
	Properties inherited from the UIObject class

	Event summary for the Label class
	Events inherited from the UIObject class

	Label.autoSize
	Label.html
	Label.text

	List component
	Using the List component
	Understanding the design of the List component
	List parameters
	Creating an application with the List component

	Customizing the List component
	Using styles with the List component
	Setting styles for all List components in a document
	Using skins with the List component

	List class
	Method summary for the List class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the List class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the List class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	List.addItem()
	List.addItemAt()
	List.cellRenderer
	List.change
	List.dataProvider
	List.getItemAt()
	List.hPosition
	List.hScrollPolicy
	List.iconField
	List.iconFunction
	List.itemRollOut
	List.itemRollOver
	List.labelField
	List.labelFunction
	List.length
	List.maxHPosition
	List.multipleSelection
	List.removeAll()
	List.removeItemAt()
	List.replaceItemAt()
	List.rowCount
	List.rowHeight
	List.scroll
	List.selectable
	List.selectedIndex
	List.selectedIndices
	List.selectedItem
	List.selectedItems
	List.setPropertiesAt()
	List.sortItems()
	List.sortItemsBy()
	List.vPosition
	List.vScrollPolicy

	Loader component
	Using the Loader component
	Loader parameters
	Creating an application with the Loader component

	Customizing the Loader component
	Using styles with the Loader component
	Using skins with the Loader component

	Loader class
	Method summary for the Loader class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the Loader class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the Loader class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	Loader.autoLoad
	Loader.bytesLoaded
	Loader.bytesTotal
	Loader.complete
	Loader.content
	Loader.contentPath
	Loader.load()
	Loader.percentLoaded
	Loader.progress
	Loader.scaleContent

	Menu component
	Interacting with the Menu component
	Using the Menu component
	Understanding the Menu component: view and data
	About hierarchical menus
	About menu item XML attributes

	About menu item types
	Normal menu items
	Separator menu items
	Check box menu items
	Radio button menu items
	Exposing menu items to ActionScript

	About initialization object properties
	Menu parameters
	Creating an application with the Menu component
	Customizing the Menu component
	Using styles with the Menu component
	Setting styles for all Menu components in a document
	Using skins with the Menu component

	Menu class
	Method summary for the Menu class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the Menu class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the Menu class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	Menu.addMenuItem()
	Menu.addMenuItemAt()
	Menu.change
	Menu.createMenu()
	Menu.dataProvider
	Menu.getMenuItemAt()
	Menu.hide()
	Menu.indexOf()
	Menu.menuHide
	Menu.menuShow
	Menu.removeAll()
	Menu.removeMenuItem()
	Menu.removeMenuItemAt()
	Menu.rollOut
	Menu.rollOver
	Menu.setMenuItemEnabled()
	Menu.setMenuItemSelected()
	Menu.show()
	MenuDataProvider class
	Method summary for the MenuDataProvider class

	MenuDataProvider.addMenuItem()
	MenuDataProvider.addMenuItemAt()
	MenuDataProvider.getMenuItemAt()
	MenuDataProvider.indexOf()
	MenuDataProvider.removeMenuItem()
	MenuDataProvider.removeMenuItemAt()

	MenuBar component
	Interacting with the MenuBar component
	Using the MenuBar component
	MenuBar parameters
	Creating an application with the MenuBar component

	Customizing the MenuBar component
	Using styles with the MenuBar component
	Using skins with the MenuBar component

	MenuBar class
	Method summary for the MenuBar class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the MenuBar class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the MenuBar class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	MenuBar.addMenu()
	MenuBar.addMenuAt()
	MenuBar.dataProvider
	MenuBar.getMenuAt()
	MenuBar.getMenuEnabledAt()
	MenuBar.labelField
	MenuBar.labelFunction
	MenuBar.removeMenuAt()
	MenuBar.setMenuEnabledAt()

	NumericStepper component
	Using the NumericStepper component
	NumericStepper parameters
	Creating an application with the NumericStepper component

	Customizing the NumericStepper component
	Using styles with the NumericStepper component
	Using skins with the NumericStepper component

	NumericStepper class
	Method summary for the NumericStepper class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the NumericStepper class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the NumericStepper class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	NumericStepper.change
	NumericStepper.maximum
	NumericStepper.minimum
	NumericStepper.nextValue
	NumericStepper.previousValue
	NumericStepper.stepSize
	NumericStepper.value

	ProgressBar component
	Using the ProgressBar component
	ProgressBar parameters
	Creating an application with the ProgressBar component

	Customizing the ProgressBar component
	Using styles with the ProgressBar component
	Using skins with the ProgressBar component

	ProgressBar class
	Method summary for the ProgressBar class
	Methods inherited from the UIObject class

	Property summary for the ProgressBar class
	Properties inherited from the UIObject class

	Event summary for the ProgressBar class
	Events inherited from the UIObject class

	ProgressBar.complete
	ProgressBar.conversion
	ProgressBar.direction
	ProgressBar.indeterminate
	ProgressBar.label
	ProgressBar.labelPlacement
	ProgressBar.maximum
	ProgressBar.minimum
	ProgressBar.mode
	ProgressBar.percentComplete
	ProgressBar.progress
	ProgressBar.setProgress()
	ProgressBar.source
	ProgressBar.value

	RadioButton component
	Using the RadioButton component
	RadioButton parameters
	Creating an application with the RadioButton component

	Customizing the RadioButton component
	Using styles with the RadioButton component
	Using skins with the RadioButton component

	RadioButton class
	Method summary for the RadioButton class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the RadioButton class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class
	Properties inherited from the SimpleButton class
	Properties inherited from the Button class

	Event summary for the RadioButton class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class
	Events inherited from the SimpleButton class

	RadioButton.click
	RadioButton.data
	RadioButton.groupName
	RadioButton.label
	RadioButton.labelPlacement
	RadioButton.selected
	RadioButton.selectedData
	RadioButton.selection

	RoundIconButton component
	Using the RoundIconButton component
	RoundIconButton parameters
	About RoundIconButton states

	Method summary for the MRoundIconButton component
	MRoundIconButton.getEnabled()
	MRoundIconButton.getIcon()
	MRoundIconButton.setChangeHandler()
	MRoundIconButton.setClickHandler()
	MRoundIconButton.setEnabled()
	MRoundIconButton.setIcon()

	ScrollPane component
	Using the ScrollPane component
	ScrollPane parameters
	Creating an application with the ScrollPane component

	Customizing the ScrollPane component
	Using styles with the ScrollPane component
	Using skins with the ScrollPane component

	ScrollPane class
	Method summary for the ScrollPane class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the ScrollPane class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the ScrollPane class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	ScrollPane.complete
	ScrollPane.content
	ScrollPane.contentPath
	ScrollPane.getBytesLoaded()
	ScrollPane.getBytesTotal()
	ScrollPane.hLineScrollSize
	ScrollPane.hPageScrollSize
	ScrollPane.hPosition
	ScrollPane.hScrollPolicy
	ScrollPane.progress
	ScrollPane.refreshPane()
	ScrollPane.scroll
	ScrollPane.scrollDrag
	ScrollPane.vLineScrollSize
	ScrollPane.vPageScrollSize
	ScrollPane.vPosition
	ScrollPane.vScrollPolicy

	SimpleButton class
	Method summary for the SimpleButton class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the SimpleButton class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the SimpleButton class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	SimpleButton.click
	SimpleButton.emphasized
	SimpleButton.emphasizedStyleDeclaration
	SimpleButton.selected
	SimpleButton.toggle

	TextInput component
	Using the TextInput component
	TextInput parameters
	Creating an application with the TextInput component

	Customizing the TextInput component
	Using styles with the TextInput component
	Using skins with the TextInput component

	TextInput class
	Method summary for the TextInput class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the TextInput class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the TextInput class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	TextInput.change
	TextInput.editable
	TextInput.enter
	TextInput.hPosition
	TextInput.length
	TextInput.maxChars
	TextInput.maxHPosition
	TextInput.password
	TextInput.restrict
	TextInput.text

	TextArea component
	Using the TextArea component
	TextArea parameters
	Creating an application with the TextArea component

	Customizing the TextArea component
	Using styles with the TextArea component
	Using skins with the TextArea component

	TextArea class
	Method summary for the TextArea class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the TextArea class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the TextArea class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	TextArea.change
	TextArea.editable
	TextArea.hPosition
	TextArea.hScrollPolicy
	TextArea.html
	TextArea.length
	TextArea.maxChars
	TextArea.maxHPosition
	TextArea.maxVPosition
	TextArea.password
	TextArea.restrict
	TextArea.styleSheet
	TextArea.text
	TextArea.vPosition
	TextArea.vScrollPolicy
	TextArea.wordWrap

	TossButton component
	Using the TossButton component
	MTossButton.onRelease

	Tree component
	Using the Tree component
	Formatting XML for the Tree component
	Tree parameters
	Creating an application with the Tree component

	Customizing the Tree component
	Using styles with the Tree component
	Setting styles for all Tree components in a document
	Using skins with the Tree component

	Tree class
	Method summary for the Tree class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class
	Methods inherited from the List class

	Property summary for the Tree class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class
	Properties inherited from the List class

	Event summary for the Tree class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class
	Events inherited from the List class

	Tree.addTreeNode()
	Tree.addTreeNodeAt()
	Tree.dataProvider
	Tree.firstVisibleNode
	Tree.getDisplayIndex()
	Tree.getIsBranch()
	Tree.getIsOpen()
	Tree.getNodeDisplayedAt()
	Tree.getTreeNodeAt()
	Tree.nodeClose
	Tree.nodeOpen
	Tree.refresh()
	Tree.removeAll()
	Tree.removeTreeNodeAt()
	Tree.selectedNode
	Tree.selectedNodes
	Tree.setIcon()
	Tree.setIsBranch()
	Tree.setIsOpen()

	Window component
	Using the Window component
	Window parameters
	Creating an application with the Window component

	Customizing the Window component
	Using styles with the Window component
	Using skins with the Window component

	Window class
	Method summary for the Window class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the Window class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the Window class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	Window.click
	Window.closeButton
	Window.complete
	Window.content
	Window.contentPath
	Window.deletePopUp()
	Window.mouseDownOutside
	Window.title
	Window.titleStyleDeclaration

	UIComponent class
	UIComponent class (API)
	Method summary for the UIComponent class
	Methods inherited from the UIObject class

	Property summary for the UIComponent class
	Properties inherited from the UIObject class

	Event summary for the UIComponent class
	Events inherited from the UIObject class

	UIComponent.enabled
	UIComponent.focusIn
	UIComponent.focusOut
	UIComponent.getFocus()
	UIComponent.keyDown
	UIComponent.keyUp
	UIComponent.setFocus()
	UIComponent.tabIndex

	UIEventDispatcher class
	Method summary for the UIEventDispatcher class
	Methods inherited from the EventDispatcher class

	Event summary for the UIEventDispatcher class
	UIEventDispatcher.keyDown
	UIEventDispatcher.keyUp
	UIEventDispatcher.load
	UIEventDispatcher.mouseDown
	UIEventDispatcher.mouseOut
	UIEventDispatcher.mouseOver
	UIEventDispatcher.mouseUp
	UIEventDispatcher.removeEventListener()
	UIEventDispatcher.unload

	UIObject class
	Method summary for the UIObject class
	Property summary for the UIObject class
	Event summary for the UIObject class
	UIObject.bottom
	UIObject.createClassObject()
	UIObject.createObject()
	UIObject.destroyObject()
	UIObject.doLater()
	UIObject.draw
	UIObject.getStyle()
	UIObject.height
	UIObject.hide
	UIObject.invalidate()
	UIObject.left
	UIObject.load
	UIObject.move
	UIObject.move()
	UIObject.redraw()
	UIObject.resize
	UIObject.reveal
	UIObject.right
	UIObject.scaleX
	UIObject.scaleY
	UIObject.setSize()
	UIObject.setSkin()
	UIObject.setStyle()
	UIObject.top
	UIObject.unload
	UIObject.visible
	UIObject.width
	UIObject.x
	UIObject.y

	UIScrollBar component
	Using the UIScrollBar component
	UIScrollBar parameters
	Creating an application with the UIScrollBar component

	Customizing the UIScrollBar component
	Using styles with the UIScrollBar component
	Using skins with the UIScrollBar component

	UIScrollBar class
	Method summary for the UIScrollBar class
	Methods inherited from the UIObject class
	Methods inherited from the UIComponent class

	Property summary for the UIScrollBar class
	Properties inherited from the UIObject class
	Properties inherited from the UIComponent class

	Event summary for the UIScrollBar class
	Events inherited from the UIObject class
	Events inherited from the UIComponent class

	UIScrollBar.horizontal
	UIScrollBar.lineScrollSize
	UIScrollBar.pageScrollSize
	UIScrollBar.scroll
	UIScrollBar.scrollPosition
	UIScrollBar.setScrollProperties()
	UIScrollBar.setScrollTarget()
	UIScrollBar._targetInstanceName

