
Enterprise Library
Test Guide

Enterprise Library
Test Guide

pat ter ns & pract ices

ISBN 0-7356-2389-9

Information in this document, including URL and other Internet Web site references,
is subject to change without notice. Unless otherwise noted, the example companies,
organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious, and no association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event
is intended or should be inferred. Complying with all applicable copyright laws is
the responsibility of the user. Without limiting the rights under copyright, no part of
this document may be reproduced, stored in or introduced into a retrieval system,
or transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission
of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing
of this document does not give you any license to these patents, trademarks, copy-
rights, or other intellectual property.

© 2006 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Windows Server, Active Directory, Visual
Basic, Visual C#, and Visual Studio are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trade-
marks of their respective owners.

Contents
Introduction	 1

Scope. . 1
Audience. . 1
System Requirements. . 2
Functional Testing. . 2

Creating Test Cases. . 3
Performing Design Reviews. . 4
Performing Code Reviews . . 5
Running the Automated Tests . . 6

Contents of the Enterprise Library Test Guide. . 8
Acknowledgments. . 9

Testing the Enterprise Library Core	 11
Requirements for the Core . . 11
Selecting the Test Cases. . 11
Verifying the Test Cases . . 13
Using Automated Tests. . 17

Testing the Caching Application Block	 23
Requirements for the Caching Application Block. . 23
Selecting the Test Cases. . 23
Verifying the Test Cases . . 25
Using Automated Tests. . 36

Testing the Cryptography Application Block	 41
Requirements for the Cryptography Application Block . . 41
Selecting the Test Cases. . 41
Verifying the Test Cases . . 43
Using Automated Tests. . 51

Testing the Data Access Application Block	 55
Requirements for the Data Access Application Block. . 55
Selecting the Test Cases. . 55
Verifying the Test Cases . . 57
Using Automated Tests. . 64

Testing the Exception Handling Application Block	 67
Requirements for the Exception Handling Application Block. . 67
Selecting the Test Cases. . 67
Verifying the Test Cases . . 69
Using Automated Tests. . 77

Contentsiv

Testing the Logging Application Block	 85
Requirements for the Logging Application Block . . 85
Selecting the Test Cases. . 85
Verifying the Test Cases . . 87
Using Automated Tests. . 95

Testing the Security Application Block	 101
Requirements for the Security Application Block. . 101
Selecting the Test Cases. . 102
Verifying the Test Cases . . 103
Using Automated Tests. . 112

Testing for Security Best Practices	 123
Establishing the Security Requirements. . 124
Analyzing the Logging Application Block. . 124

Identifying the Assets. . 124
Create an Architectural Diagram . . 126
Identify the Entry Points . . 127
Identify the Relevant Classes . . 129
Identify the External Dependencies . . 130
Identify the Implementation Assumptions. . 131
Identify Any Additional Security Notes. . 132

Building the Threat Models. . 132
Performing Security Reviews. . 142

Security Review Checklists . . 142
Additional Resources . . 157

Testing for Globalization Best Practices	 159
The Test Approach . . 159

Creating a Test Plan. . 160
Pseudo-Localization Testing. . 163
Creating the Test Environment. . 164
Execute and Analyze the Results. . 165

Testing for Performance and Scalability	 167
Defining Performance Criteria . . 169

Overhead Cost . . 169
Initialization Cost . . 171
Consistency. . 171
Availability. . 171

Setting Up the Test Environment . . 171
Choosing the Host Engine. . 171
Setting up the Test Environment . . 172
Tuning the Test Environment . . 174

Contents �

Building Test Harnesses. . 174
Creating a Web Test Script . . 176
Defining the Workload Profile. . 181
Creating a Load Test. . 182

Testing the Application Blocks . . 183
Testing the Caching Application Block. . 183
Testing the Logging Application Block. . 189
Testing the Data Access Application Block . . 195
Testing the Exception Handling Application Block . . 201
Testing the Cryptography Application Block. . 204
Testing the Security Application Block . . 213

Detecting Performance Issues. . 215
Monitoring Disk I/O . . 215

Measuring Performance . . 218
Understanding and Measuring Transaction Times. . 227

Testing for Scalability . . 228
Identifying Bottlenecks . . 228
Hardware Configurations. . 229
Scalability Test Scenarios and Results. . 229

Measuring Initialization Costs . . 234
Extrapolating Workload Profiles . . 235
Debugging Memory Leaks. . 236

Using the Test Cases	 239
Performance Testing. . 239

General Performance Tests. . 240
Specific Performance Tests. . 243

Security Testing . . 245
General Security Tests . . 246
Specific Security Tests . . 247

Functional Testing. . 249

Index	 257

Introduction

Enterprise Library Test Guide provides guidance to testers and programmers who have
extended or modified an Enterprise Library component and who want to apply func-
tional testing techniques to their work. An Enterprise Library component can be an
Enterprise Library application block or the Enterprise Library Core.

This guide works by example. It explains how each component was tested by Micro-
soft test teams. You can use the same techniques and adapt the templates and check-
lists that are included in the guide to suit your needs. The functional tests that the
Microsoft test teams used to test the Enterprise Library are included with this docu-
mentation. You can alter them to test your own code.

Scope
This guide provides guidance for performing functional tests on Enterprise Library
components. Functional tests include design reviews, code reviews, and automated
testing. The guide also describes how to test the components to determine whether
they follow globalization and security best practices in addition to meeting perfor-
mance and scalability requirements.

Audience
This guidance is intended for software testers and test managers who must test En-
terprise Library components. It is also for programmers who must extend or modify
an existing Enterprise Library component.

To get the most benefit from this guidance, you should have an understanding of the
following technologies:

Microsoft Visual C#
Microsoft .NET Framework 2.0
Visual Studio Team System automated tests or NUnit

●

●

●

Enterprise Library Test Guide�

System Requirements
To run the automated tests that accompany the Enterprise Library, you need the
following:

Enterprise Library–January 2006
Microsoft .NET Framework 2.0
Microsoft Visual Studio 2005 Team Suite if you want to run the automated Visual
Studio Team System tests
NUnit 2.2 or later if you want to run automated NUnit tests
Oracle 9i client if you want to test the Data Access Application Block with an
Oracle database
SQL Server 2005 Express Edition (SQL Server Express) if you want to test the Data
Access Application Block with a SQL database
Microsoft Windows Message Queuing if you want to test the Logging Application
Block
Authorization Manager (AzMan) if you want to test the Security Application
Block. By default, AzMan is installed with Windows Server 2003. If you need to
install it on a computer running Windows XP or Windows 2000, you can down-
load the Windows Server 2003 Administration Pack on MSDN.

Note: The SQL Server Express and Oracle 9i database requirements may also matter if you are
testing the Exception Handling Application Block or the Logging Application Block. The Exception
Handling Application Block requires the Logging Application Block when it uses the logging han-
dler. If you configure the Logging Application Block to use the database trace listener, it requires
the Data Access Application Block. For more information, see the Enterprise Library documenta-
tion for the Logging Application Block and for the Data Access Application Block.

The automated tests assume that Enterprise Library is installed in the default location.
If it is not in the default location, open the solution files. Ignore any errors about proj-
ect files that cannot be found. Change the project references to the correct location.

Functional Testing
Functional testing involves the following:

Design reviews
Code reviews
Automated tests

●

●

●

●

●

●

●

●

●

●

●

http://www.microsoft.com/downloads/details.aspx?FamilyID=c16ae515-c8f4-47ef-a1e4-a8dcbacff8e3&displaylang=en

Introduction �

This section provides an overview of functional testing as it was used with the Enter-
prise Library. To see how a specific application block or the Enterprise Library Core
was tested, refer to the relevant chapter. In general, there are four steps to functional
testing:

	 1.	Create the test cases for the design and the code.
	 2.	Perform design reviews to verify that the design addresses all functional require-

ments.
	 3.	Perform code reviews to verify that the code addresses all functional requirements.
	 4.	Perform automated tests to validate that the application is functioning as it

should and to simulate situations such as multiple users concurrently using the
application.

Creating Test Cases
Design test cases specify the requirements that a design must fulfill for the appli-
cation to perform the way it is expected to. Each test case should be satisfied by a
specific part of the design. For example, if the application is meant to be extensible,
there must be a specific way that the application can be extended, such as an inter-
face or a base class.

When you write the design test cases, have a list of requirements and any design-
related documents, such as architectural diagrams and class diagrams, available so
you can incorporate this information into the test cases. The Microsoft test teams
found it helpful to create tables that listed each design requirement and its priority.
Table 1 is an example of some of the design cases for the Cryptography Application
Block.

Table 1: Cryptography Application Block Design Test Cases

Priority Design Test Case
High Verify that the symmetric algorithm providers and the hash providers are exten-

sible.
High Verify that there is a consistent approach to creating symmetric algorithm provid-

ers and hash providers.
High Verify that there is a facade that mediates between the client code and the

application block’s cryptographic functions such as encryption, decryption, and
hashing.

Enterprise Library Test Guide�

After you write the design test cases, do the same for the code. The code must
implement the design and, usually, it must conform to some set of guidelines and
best practices. Try to include a variety of issues when you write the code test cases.
Examples of these issues include the following:

Performance
Security
Globalization and localization
Exception management

Table 2 is an example of some of the test cases for the Cryptography Application
Block.

Table 2: Cryptography Application Block Code Test Cases

Priority Code Test Case
High Verify that the Cryptographer facade exposes all public members as static and

supports methods for encryption, decryption, and hashing.
High Verify that the Cryptographer facade uses the SymmetricCryptoProviderFactory

class and the HashProviderFactory class to create the cryptography providers.

Performing Design Reviews
After you write the design test cases, you can review the design to determine
whether the test cases are satisfied. The Microsoft test team used checklists that had
a column for the test cases, a column titled “Implemented?,” and a column for the
features that implement the design.

Table 3 is an example of a design checklist for the Cryptography Application Block.

Table 3: Cryptography Application Block Design Verification

Design Test Case Implemented? Feature that Implements Design
Verify that the symmetric algo-
rithm providers and the hash
providers are extensible.

Yes The ISymmetricCryptoProvider interface
allows users to implement or extend a con-
figurable symmetric provider. The IHashPro-
vider interface allows uses to implement or
extend a hash provider.

Verify that there is a consistent
approach to creating symmetric
algorithm providers and hash
providers.

Yes The SymmetricCryptoProviderFactory
class is the factory that creates the
SymmetricProvider objects.
The HashProviderFactory class is the fac-
tory that creates the HashProvider objects.

Verify that there is a facade that
mediates between the client
code and the application block’s
cryptographic functions such
as encryption, decryption and
hashing.

Yes The Cryptographer class is a facade that
acts as the interface between the client
code and the application block.

●

●

●

●

Introduction �

Performing Code Reviews
Code reviews happen periodically throughout the development cycle. The process is
similar to that of the design reviews. Each test case must be satisfied by a specific part
of the implementation. The Microsoft test team used checklists for the code review
that were similar to the ones used for the design review. Table 4 is an example of the
code checklist for the Cryptography Application Block.

Table 4: Cryptography Application Block Code Verification

Code Test Case
Imple-
mented? Feature That is Implemented

Verify that the Cryptog-
rapher facade exposes
all public members as
static and supports
methods for encryption,
decryption, and hashing.

Yes The Cryptographer class is a facade that exposes the
CreateHash method to compute the hash value of plain
text, the CompareHash method to compare plain text
with a hash value, the EncryptSymmetric method to
encrypt plain text, and the DecryptSymmetric method
to decrypt a symmetrically encrypted secret. These
methods are shown in the following code.
public static byte[] CreateHash(string
hashInstance, byte[] plaintext) {}

public static bool CompareHash(string
hashInstance, string plaintext, string
hashedText) {}

public static string EncryptSymmetric(string
symmetricInstance, string plaintext) {}

public static string DecryptSymmetric(string
symmetricInstance, string ciphertextBase64) {}

Verify that the Cryptog-
rapher facade uses the
SymmetricCryptoPro-
viderFactory class and
the HashProviderFactory
class to create the cryp-
tography providers.

Yes The client code calls static methods on the Cryptogra-
pher class to create hashes, compare hashes, encrypt
data, and decrypt data. Each static method instantiates a
factory class and passes the configuration source to the
factory class’s constructor. The factory uses the configu-
ration data to determine the type of provider to create.
The following code demonstrates how the Cryptographer.
EncryptSymmetric method calls the SymmetricCrypto-
ProviderFactory class to create a symmetric provider. The
process is similar for hash providers.
public static byte[] EncryptSymmetric(string
symmetricInstance, byte[] plaintext)
{
…
SymmetricCryptoProviderFactory factory = new
SymmetricCryptoProviderFactory(ConfigurationSou
rceFactory.Create());
…
}

Enterprise Library Test Guide�

Running the Automated Tests
Each Enterprise Library application block has two solution files associated with it
that contain the automated tests. The solution file that ends with .VSTS.sln contains
the Visual Studio Team System automated tests. The solution file that ends with
.NUnit.sln contains the NUnit automated tests. For example, the Data Access Appli-
cation Block uses the DAAB Functional Tests.VSTS.sln file and the DAAB Functional
Tests.NUnit.sln file for its automated tests.

The automated tests for the Enterprise Library components require some preliminary
setup actions, such as running scripts, before you can execute them. These prelimi-
nary actions are described later.

Setting Up the Enterprise Library Core Automated Tests
To set up the Enterprise Library Core automated tests, first compile the solution file
that is in the Core Functional Tests folder. Next, run the Installer tool (installutil.
exe) on the test assembly that is named ConfigurationCoreTests.dll and is located in
the bin folder inside the Core Functional Tests folder. The Installer tool registers the
performance counters and the WMI events. Open a command window and type the
following.

installutil –I ConfigurationCoreTests.dll

There are no scripts for the Enterprise Library Core automated tests. The automated
tests are in the Core Functional Tests folder.

Setting Up the Caching Application Block Automated Tests
To set up the Caching Application Block automated tests, you must run the script
that creates a database backing store. To do this, click Start, point to All Programs,
point to Microsoft patterns & practices, point to Enterprise Library–January 2006,
point to Application Blocks for .NET, point to Caching Application Block, and
then click Create Database Backing Store. The automated tests are in the Caching
Functional Tests folder.

Once the database is created, run the “Install instrumentation” script. To do this,
click Start, point to All programs, point to Microsoft patterns & practices, and
then click Install Instrumentation. Once installed, you need to create a file called
“FileforCaching,txt” in the \\Enterprise Library 2.0 Functional Tests\Caching
Functional Tests\CachingCoreTests folder and create a file called “FileforCach-
inginDB.txt” in the \\Enterprise Library 2.0 Functional Tests\Caching Functional
Tests\CachingDatabaseTests folder.

Introduction �

Setting Up the Cryptography Application Block Automated Tests
To set up the Cryptography Application Block automated tests, you must run the test
script. To do this, run the CryptoTestScript.bat script that is located in the TestScript
folder. This folder is in the Cryptography Functional Tests folder. The automated
tests are also in this folder.

Setting Up the Data Access Application Block Automated Tests
To set up the Data Access Application Block automated tests, you must run the
appropriate test script. If you are running test cases that use a SQL database as the
backing store, run the SetupTestDB.bat script that is located in the TestScript folder.
This folder is in the DAAB Functional Tests folder.

If you are running test cases that use an Oracle database, you must first create a data-
base named “entlib,” a user named “testuser,” and a password that is “testuser.” Next,
perform the following procedure to create the database tables and stored procedures.

	 To run the scripts do the following
	 1.	Grant permissions to create session to testuser;
	 2.	Grant permissions to create table to testuser;
	 3.	Grant permissions to create procedure to testuser;

	 To create the Oracle tables and stored procedures
	 1.	Run the scripts in the Table folder to create the tables.
	 2.	Run the scripts in the Data folder to create the data for the tables.
	 3.	Run the SP scripts in the SP folder to create the stored procedures.

The automated tests, which you can use for both the SQL database and the Oracle
database, are in the DAAB Functional Tests folder.

Setting Up the Logging Application Block Automated Tests
To set up the Logging Application Block automated tests, first create a private mes-
sage queue named “EntLibTest” and a public message queue named “EntLibTest
Public.” Next, run the script that creates a logging database. To do this, click Start,
point to All Programs, point to Microsoft patterns & practices, point to Enterprise
Library–January 2006, point to Application Blocks for .NET, point to Logging Ap-
plication Block, and then click Create Logging Database. The automated tests are in
the Logging Functional Tests folder.

Enterprise Library Test Guide�

Setting Up the Exception Handling Application Block Automated Tests
The Exception Handling Application Block automated tests use the same script as the
Logging Application Block to create a database backing store. Follow the instructions
for running the script that creates a logging database in Setting Up the Logging Ap-
plication Block Automated Tests. The automated tests are in the Exception Handling
Functional Tests folder.

Setting Up the Security Application Block Automated Tests
The Security Application Block automated tests use the same script as the Caching
Application Block to create a database backing store. Follow the instructions for run-
ning the script that creates a caching database in Setting Up the Caching Application
Block Automated Tests. The automated tests are in the Security Functional Tests folder.

Contents of the Enterprise Library Test Guide
The Enterprise Library Test Guide contains the following chapters:

Testing the Enterprise Library Core. This chapter explains how the test teams used
functional testing to test the Enterprise Library Core.
Testing the Caching Application Block. This chapter explains how the test teams used
functional testing to test the Caching Application Block.
Testing the Cryptography Application Block. This chapter explains how the test teams
used functional testing to test the Cryptography Application Block.
Testing the Data Access Application Block. This chapter explains how the test teams
used functional testing to test the Data Access Application Block.
Testing the Exception Handling Application Block. This chapter explains how the test
teams used functional testing to test the Exception Handling Application Block.
Testing the Logging Application Block. This chapter explains how the test teams used
functional testing to test the Logging Application Block.
Testing the Security Application Block. This chapter explains how the test teams used
functional testing to test the Security Application Block.
Testing for Security Best Practices. This chapter explains how the test teams tested
the application blocks to see whether they conformed to security best practices.
Testing for Globalization Best Practices. This chapter explains how the test teams
tested the application blocks to see whether they conformed to globalization best
practices.
Testing for Performance and Scalability. This chapter explains how the test teams
tested the application blocks to see whether they conformed to the performance
and scalability requirements.
Using the Test Cases. This chapter includes examples of the different types of bugs
the test teams uncovered when they tested the application blocks.

●

●

●

●

●

●

●

●

●

●

●

file:///C:/OTSI/EntLib/Test%20Guide/Testing the Enterprise Library Core.doc
file:///C:/OTSI/EntLib/Test%20Guide/Testing the Caching Application Block.doc
file:///C:/OTSI/EntLib/Test%20Guide/Testing the Cryptography Application Block.doc
file:///C:/OTSI/EntLib/Test%20Guide/Testing the Data Access Application Block.doc
file:///C:/OTSI/EntLib/Test%20Guide/Testing the Exception Handling Application Block.doc
file:///C:/OTSI/EntLib/Test%20Guide/Testing the Logging Application Block.doc
file:///C:/OTSI/EntLib/Test%20Guide/Testing the Security Application Block.doc
file:///C:/OTSI/EntLib/Test%20Guide/Testing for Security Best Practices.doc
file:///C:/OTSI/EntLib/Test%20Guide/Testing for Globalization Best Practices.doc
file:///C:/OTSI/EntLib/Test%20Guide/Testing for Performance and Scalability.doc
file:///C:/OTSI/EntLib/Test%20Guide/Using the Test Cases.doc

Introduction �

Acknowledgments
The following people created this guide:

Program management: Mohammad Al-Sabt (Microsoft Corporation)
Test: Carlos Farre (Microsoft Corporation); Gokulaprakash Thilagar (Infosys
Technologies Ltd)
Documentation: RoAnn Corbisier and Nelly Delgado (Microsoft Corporation);
Roberta Leibovitz (Modeled Computation LLC); Tina Burden McGrayne (TinaTech
Inc); Claudette Siroky (WadeWare LLC)

●

●

●

Testing the Enterprise Library Core

This chapter explains how functional testing techniques were used to test the Enter-
prise Library Core. If you want to extend or modify the core, you can use the same
techniques and adapt the chapter’s templates and checklists to test your own work.

Requirements for the Core
The core has the following requirements:

The core should include base factory classes that create instance objects and a base
factory class that creates singleton objects for types that support them.
The core should include configuration watchers that monitor the file configuration
source and the system configuration source.
The core should include the ability to bind the instrumentation listeners to the
providers at run time.
The core should include installers that install performance counters and the
event log.

These requirements must be incorporated into the design and implemented by the
code.

Selecting the Test Cases
The first step in a functional review is to make sure that the design and the code sup-
port these requirements. You do this by deciding the test cases that they must satisfy
so that the design and the code fulfill all of their requirements.

Table 1 lists the test cases that the core’s design must satisfy.

Table 1: Core Design Cases

Priority Design test case
High Verify that the core implements a base strategy class that supports the Enterprise

Library strategies and that retrieves useful information from the context, such as the
configuration source.

High Verify that the core implements strategy classes that create objects from the configu-
ration source and that bind the instrumentation.

●

●

●

●

continued

Enterprise Library Test Guide12

Priority Design test case
High Verify that the core implements base factory classes that create instance objects and

a base factory class that creates singleton objects for types that support them.
High Verify that the core provides a façade for a generic object instance building mechanism

for the ObjectBuilder subsystem.
High Verify that the core implements configuration watchers that monitor the configuration

sources.
High Verify that the core includes configuration classes that read various types of configura-

tion elements, such as name, type, and collection.
High Verify that the core includes factory classes that support polymorphism.
High Verify that the core includes base classes that implement performance counters.
High Verify that the core includes installer classes that install performance counters and

the event log.

After you identify the design issues, you should do the same for the code. Table 2
lists the test cases that the core code must satisfy.

Table 2: Core Code Test Cases

Priority Code test case
High Verify that the core caches the configuration reflection data and reuses the reflection

data.
High Verify that the NameTypeConfigurationElement class converts the type configuration

element to the Type class.
High Verify that the core includes a generic helper class that manages custom provider

configuration objects.
High Verify that the configuration sources and the configuration watchers are extensible.
High Verify that the core’s system configuration source and its file configuration source

have configuration watchers that monitor changes to their configuration sources. If
there are changes, these watchers should notify the appropriate class, such as the
FileConfigurationSourceImplentation class, to update the configuration data.

High Verify that the configuration source has configuration watchers that monitor specific
sections of the external configuration source. If there are changes, these watchers
should notify the appropriate class to update the configuration data.

High Verify that there are methods to properly dispose of the configuration watchers when
the watchers are unregistered from the configuration source.

High Verify that the instrumentation is only bound to an object when the instrumentation
is enabled.

Medium Verify that the core requests or demands the appropriate code access security per-
missions to access protected system resources and operations.

High Verify that the core follows exception management best practices.
High Verify that the core follows security best practices.
Medium Verify that the core follows globalization best practices.
High Verify that the core follows performance best practices.

Testing the Enterprise Library Core 13

Verifying the Test Cases
After you identify all the design test cases, you can verify that the design satisfies
them. Table 3 lists how each of the design test cases were verified for the Enterprise
Library Core.

Table 3: Core Design Verification

Design test case
Imple-
mented? Feature that implements design

Verify that the core implements
a base strategy class that
supports the Enterprise Library
strategies and that retrieves
useful information from the
context, such as the configura-
tion source.

Yes The EnterpriseLibraryStrategy class derives
from the BuilderStrategy class, which is the
base class for Enterprise Library strategies. The
EnterpriseLibraryStrategy retrieves the selected
configuration source.

Verify that the core implements
strategy classes that create
objects from the configuration
source and that bind the instru-
mentation.

Yes The ConfiguredObjectStrategy class retrieves
the configuration data and creates the objects.
The InstrumentationStrategy class injects the
instrumentation attachment process into the
ObjectBuilder subsystem.

Verify that the core implements
base factory classes that create
instance objects and a base fac-
tory class that creates singleton
objects for types that support
them

Yes The NameTypeFactoryBase class is a generic
factory class that creates instance objects.
The LocatorNameTypeFactoryBase class is
a generic factory class that creates singleton
object for types that support them.

Verify that the core provides a
façade for a generic object in-
stance building mechanism that
is based on the ObjectBuilder
subsystem.

Yes The EnterpriseLibraryFactory is a façade that
provides the generic building mechanism for the
ObjectBuilder subsystem.

Verify that the core implements
configuration watchers that mon-
itor the configuration sources.

Yes The ConfigurationFileSourceWatcher class
monitors configuration files. Derivations of the
ConfigurationSourceWatcher abstract base
class monitor alternative configuration sources.

Verify that the core includes
configuration classes that read
various types of configuration
elements such as name, type,
and collection.

Yes The NamedConfigurationElement class repre-
sents a ConfigurationElement object that is a
name element. The NamedElementCollection
class is a generic collection of NamedConfigu-
rationElement objects. The NameTypeConfigu-
rationElement class represents a Configuratio-
nElement object that has both a name element
and a type element. The NameTypeConfiguratio-
nElementCollection class is a generic collection
of NameTypeConfigurationElement objects.

continued

Enterprise Library Test Guide14

Design test case
Imple-
mented? Feature that implements design

Verify that the core includes
factory classes that support
polymorphism.

Yes The AssemblerBasedCustomFactory class and
the AssemblerBasedObjectFactory class are
factories that build objects with polymorphic
hierarchies that are based on single configura-
tion objects.

Verify that the core includes
base classes that implement
performance counters.

Yes The EnterpriseLibraryPerformanceCounter class
allows applications to maintain both individu-
ally named counters and a single counter that
represents the total number of all the named
counter values.

Verify that the core includes
installer classes that install
performance counters and the
event log.

Yes The EventLogInstallerBuilder class installs the
event log sources. The PerformanceCounter-
InstallerBuilder class installs the performance
counters.

After the code is implemented, you can review it to see if it satisfies its test cases.
Table 4 lists the results of a code review for the core.

Table 4: Core Code Verification

Code test case
Imple-
mented? Feature that is implemented

Verify that the core
caches the con-
figuration reflection
data and reuses the
reflection data.

Yes The ConfigurationReflectionCache class maintains a
dictionary collection that stores the reflection data. The
CreateCustomFactory method reflects the attributes of the
specified type to create a custom factory object. This cus-
tom factory is then stored in the cache. This is shown in the
following code example.
public ICustomFactory GetCustomFactory(Type type)
{
…
exists = typeCustomFactories.TryGetValue(type, out
storedObject);
…
if (!exists)
{
storedObject = CreateCustomFactory(type);
lock (typeCustomFactoriesLock)
{
typeCustomFactories[type] = storedObject;
}
}
return storedObject;
}

Testing the Enterprise Library Core 15

Code test case
Imple-
mented? Feature that is implemented

Verify that the
NameTypeCon-
figurationElement
class converts the
type configuration
element to the Type
class.

Yes The NameTypeConfigurationElement class exposes the type
configuration element as a property. The AssemblyQuali-
fiedTypeNameConverter class converts it to the Type class.
This is shown in the following code example.
[ConfigurationProperty(typeProperty, IsRequired=
true)]
[TypeConverter(typeof(AssemblyQualifiedTypeNameCon
verter))]	

public Type Type
{}
The AssemblyQualifiedTypeNameConverter class derives
from the ConfigurationConverterBase class and overrides
the ConvertTo and ConvertFrom methods to convert the
type element to the Type class.

Verify that the core
includes a generic
helper class that
manages custom
provider configuration
objects.

Yes The core implements the CustomProviderDataHelper class
to support custom properties such as NameValueCollection
objects.

Verify that the config-
uration sources and
configuration watch-
ers are extensible

Yes The configuration sources SystemConfigurationSource, File-
ConfigurationSource, and DictionaryConfigurationSource all
implement the IConfigurationSource interface. The following
code shows how the SystemConfigurationSource imple-
ments the IConfigurationSource interface.
public class SystemConfigurationSource : IConfigura-
tionSource {}

Verify that the core’s
system configura-
tion source and its
file configuration
source have configu-
ration watchers that
monitor changes to
their configuration
sources. If there
are changes, these
watchers should
notify the appropriate
class, such as the
FileConfiguration-
SourceImplentation
class, to update the
configuration data.

Yes A SystemConfigurationSource object holds a static refer-
ence to the SystemConfigurationSourceImplementation
class. This reference adds a watcher for a given section
when the SystemConfigurationSource.GetSection method is
called for the first time. This is shown in the following code
example.
public override ConfigurationSection
GetSection(string sectionName)
{
ConfigurationSection configurationSection = Configu-
rationManager.GetSection(sectionName) as Configura-
tionSection;

SetConfigurationWatchers(sectionName, configuration-
Section);

return configurationSection;
}

continued

Enterprise Library Test Guide16

Code test case
Imple-
mented? Feature that is implemented

Verify that the
Enterprise Library
Core has configura-
tion watchers that
monitor specific sec-
tions of the external
configuration source.
If there are changes,
these watchers
should notify the
appropriate class to
update the configura-
tion data.

Yes The BaseFileConfigurationSourceImplementation class
implements the CreateWatcherForConfigSource method
that adds a watcher. This watcher monitors specific sections
of the external configuration source and notifies the OnEx-
ternalConfigurationChanged method when the configura-
tion data changes. The OnExternalConfigurationChanged
method then calls the RefreshExternalSections method of
a class that derives from the BaseFileConfigurationSour-
ceImplementation class to refresh the configuration data
with changes. This is shown in the following code.
private ConfigurationSourceWatcher CreateWatcherFo
rConfigSource(string configSource)
{
…
watcher = new ConfigurationFileSourceWatcher(…
,configSource,…,new ConfigurationChangedEventHandle
r(OnExternalConfigurationChanged));
…
}
In the following code example, the FileConfigurationSour-
ceImplementation object, which derives from the BaseFile-
ConfigurationSourceImplementation class, refreshes the
configuration data by calling the UpdateCache method.
protected override void RefreshExternalSections(s
tring[] sectionsToRefresh)
{
UpdateCache();
}

Verify that there are
methods to properly
dispose of the con-
figuration watchers
when the watchers
are unregistered
from the configura-
tion source.

Yes The SystemConfigurationSourceImplementation class
derives from the BaseFileConfigurationSourceImplementa-
tion class and implements a method named RemoveCon-
figSourceWatcher. This method disposes of the watchers
when they are no longer needed. The same holds true for
the FileConfigurationSourceImpementation class, which
also derives from the BaseFileConfigurationSourceImple-
mentation class.
The following code example shows how the RemoveCon-
figSourceWatcher method disposes of the configuration
watchers.
private void RemoveConfigSourceWatcher(Configuratio
nSourceWatcher watcher)
{
…
(watcher as IDisposable).Dispose();
}

Testing the Enterprise Library Core 17

Code test case
Imple-
mented? Feature that is implemented

Verify that the instru-
mentation is only
bound to an object
when the instrumen-
tation is enabled.

Yes The InstrumentationStrategy class binds the instrumenta-
tion to an object. The InstrumentationStrategy class calls
the AttachInstrumentation method on the Instrumentation-
AttachtmentStrategy class. This method validates that at
least one of the instrumentation attributes is enabled before
it binds the instrumentation to the object. This is shown in
the following code example.
private void AttachInstrumentation(…)
{
…
if (section.InstrumentationIsEntirelyDisabled) re-
turn;
….
BindInstrumentationTo(createdObject, construc-
torArgs, reflectionCache);
}

internal bool InstrumentationIsEntirelyDisabled
{
get { return (PerformanceCountersEnabled || Event-
LoggingEnabled || WmiEnabled) == false; }
}

To learn how the test teams tested the application blocks to see if they conformed
to security best practices, see Testing for Security Best Practices. To learn how the test
teams tested the application blocks to see if they conformed to globalization best
practices, see Testing for Globalization Best Practices. To learn how the test teams tested
the application blocks to see if they met the performance and scalability require-
ments, see Testing for Performance and Scalability.

Using Automated Tests
Automated tests ensure that the application block functions in accordance with
its requirements. Automated tests make regression testing easier and certain tests,
such as simulating a large number of users to test a multithreading scenario, require
automation.

The automated tests for the Enterprise Library Core use a sample custom applica-
tion block that tests the core’s functionality. This application block supports two
types of configuration source sections. The <itemsConfiguration> section contains
a collection of polymorphic items that are used by the CommonItem class. The
CommonItem class uses the price and the quantity elements to calculate a total
price. The <Car> section contains configuration data for a single element named Car.

file:///C:/OTSI/EntLib/Test%20Guide/Testing for Security Best Practices.doc
file:///C:/OTSI/EntLib/Test%20Guide/Testing for Globalization Best Practices.doc
file:///C:/OTSI/EntLib/Test%20Guide/Testing for Performance and Scalability.doc

Enterprise Library Test Guide18

The Car class uses this data. The automated tests verify that the core creates a Car
object as a singleton object and a CommonItem object as a named instance. The
Car class provides methods to increase and decrease the car’s speed and to change
the wheel. The following code shows the two configuration file sections.

 <itemConfiguration defaultItem="MicrosoftXP">
 <items>
 <add
 name="MicrosoftXP"
 type="….CommonItem,…"
 price="100" quantity="0" />
 …
 </items>
 </itemConfiguration>
 <carConfiguration>
 <Car name ="MyCar" model="2005" brand="Porsche">
 <CarParts wheeltype="Alloy">
 </CarParts>
 </Car>
 </carConfiguration>

Table 5 lists the Visual Studio Team System tests that were used with the Enterprise
Library Core.

Table 5: Visual Studio Team System Tests for the Core

Test case Result Automated test
Verify that the core
can use data from
the configuration
source to create
both a named
instance and a
default instance
of a CommonItem
object.

Passed The following test creates a named instance of a CommonItem
object.
//This is the named instance test
[TestMethod]
public void CreateNamedTypeObject()
{
ItemProviderFactory factory = new ItemProviderFac-
tory();
IItem item = factory.Create("MicrosoftXP");
Assert.IsTrue(item.CalculateTotal() == 0);
}
The following test creates a default instance of a CommonItem
object.
// This is the default instance test
[TestMethod]
public void CreateDefaultObject()
{
ItemProviderFactory factory = new ItemProviderFac-
tory();
IItem item = factory.CreateDefault();
Assert.IsTrue(item.CalculateTotal() == 0);
}

Testing the Enterprise Library Core 19

Test case Result Automated test
Verify that the core
can use data from
the configuration
source to create
a SoftwareItem
object. This object
derives from the
CommonItem
class.

Passed The following is the data from the configuration source.
<items>
<itemConfiguration>
<add
name="IE7"
type="….SoftwareItem, …"
price="100" quantity="10" version="1.0.0.0"/>
</items>
</itemConfiguration>
The following is the test.
[TestMethod]
public void CreateNamedDerivedTypeObject()
{
ItemProviderFactory factory = new ItemProviderFac-
tory();
IItem item = factory.Create("IE7");
Assert.IsTrue(item.CalculateTotal() == 1000);
}

Verify that the core
can use data from
a dictionary config-
uration source to
create a class that
implements the
IItem interface.

Passed The following is the data from the dictionary configuration
source.
ItemSettings setting = new ItemSettings();
setting.Items.Add(new SoftwareItemData("IE7", Type.
GetType("ConfigurationCoreTests.SoftwareItem,Configurat
ionCoreTests"), 100, 10,"1.0.0.0"));
source.Add("itemConfiguration", setting);
The following is the test.
[TestMethod]
public void CreateNamedDerivedTypeObject()
{
ItemProviderFactory factory = new ItemProviderFactor
y(source);
IItem item = factory.Create("IE7");
Assert.IsTrue(item.CalculateTotal() == 1000);
}

continued

Enterprise Library Test Guide20

Test case Result Automated test
Verify that the
class that imple-
ments the IItem
interface notifies
the instrumen-
tation when it
calculates a total
price.

Passed The following test case verifies that the Item Categories
Calcuated/sec performance counter is incremented when
the CalculateTotal method calculates the total price for the
SoftwareItem object. The GetCounterValue method returns
the current counter value of the countername parameter.
[TestMethod]
public void VerifyItemCalculatedPerfCounter()
{
string counterName = "Item Categories Calculated/
sec";
int initialCount = GetCounterValue(counterName, "To-
tal");
ItemProviderFactory factory = new ItemProviderFac-
tory();
SoftwareItem item = (SoftwareItem)factory.
Create("IE7");
item.CalculateTotal();
int loggedCount = GetCounterValue(counterName, "To-
tal");
Assert.IsTrue((loggedCount - initialCount) == 1);
}
In the following example, the quantity is set to zero for the Com-
monItem named MicrosoftXP. The CommonItem class throws
an exception if the quantity is less than or equal to zero. This
test case verifies that when an exception is thrown, an error is
logged to the event log through the instrumentation provider.
[TestMethod]
public void VerifyErrorLoggedToEventLog()
{
using (EventLog log = new EventLog("Application"))
{
int initialCount = log.Entries.Count;
ItemProviderFactory factory = new ItemProviderFac-
tory();
IItem item = factory.Create("MicrosoftXP");
item.CalculateTotal();
int finalCount = log.Entries.Count;
Assert.IsTrue(finalCount - initialCount == 1);
Assert.IsTrue(log.Entries[finalCount - 1].Message.
Contains("The quantity value should be greater than
zero"));
Assert.IsTrue(log.Entries[finalCount - 1].Source.
Equals("Enterprise Library Test"));
}
}

Testing the Enterprise Library Core 21

Test case Result Automated test
Verify that the core
can use data from
a configuration
source to create
an instance of the
Car class.

Passed The following is the test.
[TestMethod]
public void CreateObjectTest()
{
CarFactory factory = new CarFactory();
Car obj1 = factory.Create("MyCar");
Assert.IsNotNull(obj1);
}

Verify that the core
can create a Car
singleton object.

Passed The following is the test.
[TestMethod]
public void VerifyObjectCreatedOnlyOnce()
{
CarFactory factory = new CarFactory();
Car obj1 = factory.Create("MyCar");
Car obj2 = factory.Create("MyCar");
Assert.IsNotNull(obj1);
Assert.IsNotNull(obj2);
Assert.IsTrue(object.ReferenceEquals(obj1,obj2));
}

Testing the Caching Application
Block

This chapter explains how functional testing techniques were used to test the Cach-
ing Application Block. If you have modified or extended the Caching Application
Block, you can use the same techniques and adapt the chapter’s templates and check-
lists to test your own work.

Requirements for the Caching Application Block
The Caching Application Block has the following requirements:

The application block should support common caching operations such us adding
items to the cache, removing items from the cache, retrieving items from the cache,
and flushing the cache.
The application block should provide the ability to configure expiration policies.
The application block should provide the ability to cache data in persistent stores,
such as a database and isolated storage.
The application block should be extensible.
The application block should be able to read configuration information from any
configuration source, such as an XML file or a database.
The application block should support configurable instrumentation, including
WMI (Windows Management Instrumentation), performance counters, and event
logs.

These requirements must be incorporated into the design and implemented by the
code.

Selecting the Test Cases
The first step in a functional review is to verify that the design and the code sup-
port the requirements. You do this by deciding the test cases that the design and
code must satisfy. Table 1 lists the test cases that the Caching Application Block’s
design must satisfy.

●

●

●

●

●

●

Enterprise Library Test Guide24

Table 1: Caching Application Block Design Test Cases

Priority Design test case
High Verify that the caching stores, expiration policies, and encryption providers are

extensible.

High Verify that there is a consistent approach to create caching stores, encryption pro-
viders, and CacheManager instances.

High Verify that the CacheManager class supports simple methods for adding items to
the cache, removing items from the cache, retrieving items from the cache, and
flushing the cache.

High Verify that application block can encrypt cached items in the backing store.
High Verify that the ability to create the application block’s domain objects from configura-

tion data follows the Dependency Injection pattern.
High Verify that the application block can retrieve configuration data from different

sources, such as an application configuration file, a database, or from memory.
High Verify that the instrumentation is implemented with loosely coupled events.
High Verify that the design addresses situations that can cause exceptions and that the

application block logs the exceptions through the instrumentation.
High Verify that the application block supports custom property collections for the custom

caching stores.

After you identify the design issues, you should do the same for the code. Table 2
lists the test cases that the Caching Application Block’s code must satisfy.

Table 2: Caching Application Block Code Test Cases

Priority Code test case
High Verify that the application block creates only one CacheManager instance for a

particular instance name.
High Verify that the assembler classes that implement the IAssembler interface create

the backing store providers and the encryption providers, and verify that the assem-
bler classes inject the configuration object values into those domain objects.

High Verify that the application block uses performance counters to monitor caching
operations when the performance counters are enabled.

High Verify that the application block uses WMI and the event log to monitor errors during
caching operations when WMI and the event log are enabled.

High Verify that the application block loads the cached data from the correct partition in
the backing store.

High Verify that the application block performs scavenging when the cached items exceed
the configured limit and that the number of items to be scavenged is configurable.

High Verify that the application block uses a cached item’s priority setting and the time it
was last accessed to scavenge items from the cache.

High Verify that the application block operations, such as the Add and Remove methods,
enforce a strong exception guarantee. This means that if an operation fails, the
state of the cache rolls back to what it was before the attempted operation.

High Verify that methods calls on the CacheManager object are thread safe.

Testing the Application Block 25

Priority Code test case
High Verify that the CacheFactory class uses the CacheManagerFactory class to create

the CacheManager instance.
High Verify that the database backing store uses a named instance of the store and uses

the Data Access Application Block to create that instance.
High Verify that the application block can use an instance name to create a CacheMan-

ager object.
High Verify that the application block can use a default instance name to create a Cache-

Manager object.
High Verify that the performance counters and the event log that are required by the ap-

plication block are installed during installation.
Medium Verify that the application block requests or demands the appropriate code access

security permissions to access protected system resources and operations.
Medium Verify that the application block follows exception management best practices.
High Verify that the application block follows security best practices.
Medium Verify that the application block follows globalization best practices.
High Verify that the application block follows performance best practices.

Verifying the Test Cases
After you identify all the design test cases, you can verify that the design satisfies
them. Table 3 lists how each of the design test cases was verified for the Caching
Application Block.

Table 3: Caching Application Block Design Verification

Design test case Implemented? Feature that implements design
Verify that the caching
stores, expiration policies,
and encryption providers
are extensible.

Yes New backing stores must implement either
the BaseBackingStore abstract class or the
IBackingStore interface.
New expiration policies must implement
the ICacheItemExpiration interface and the
ICacheItemRefreshAction interface.
New encryption providers must implement the
IStorageEncryptionProvider interface.

Verify that there is a consis-
tent approach to creating
caching stores, encryption
providers, and CacheMan-
ager instances.

Yes The BackingStoreCustomFactory class cre-
ates the backing store providers. The Stora-
geEncryptionProviderCustomFactory creates
the encryption providers. The CacheFactory
class creates the CacheManager instances.

continued

Enterprise Library Test Guide26

Design test case Implemented? Feature that implements design
Verify that the CacheMan-
ager class supports simple
methods for adding items
to the cache, removing
items from the cache,
retrieving items from the
cache, and flushing the
cache.

Yes The CacheManager class includes the
Add method to add items to the cache, the
Remove method to remove items from the
cache, the GetData method to retrieve items
from the cache and the Flush method to flush
the cache.

Verify that the application
block can encrypt cached
items in the backing store.

Yes The application block uses a class that
implements the ISymmetricCryptoProvider
interface to encrypt cached items.

Verify that the ability to cre-
ate the application block’s
domain objects from
configuration data follows
the Dependency Injection
pattern.

Yes The CacheManagerFactory class derives from
the LocatorNameTypeFactoryBase class,
which takes the configuration source as input,
creates the domain object, and injects the
dependent configuration data into the domain
object.

Verify that the application
block can retrieve configu-
ration data from different
sources, such as an appli-
cation configuration file, a
database, or from memory.

Yes The CacheManagerFactory class has a con-
structor that accepts a configuration source
as an input parameter.

Verify that the instrumenta-
tion is implemented with
loosely coupled events.

Yes The methods in the CachingInstrumentation-
Provider class that raise the events bind to
the methods in the CachingInstrumentation-
Listener class at run time.

Verify that the design ad-
dresses situations that can
cause exceptions and that
the application block logs
the exceptions through the
instrumentation.

Yes For example, the Cache class includes the In-
strumentationProvider property. This property
retrieves the instrumentation provider that de-
fines the events for the caching provider. The
provider notifies WMI and logs the exceptions
to the event log.

Verify that the application
block supports custom
property collections for the
custom caching stores.

Yes The CustomCacheStorageData class provides
the ability to configure custom property collec-
tions for custom caching stores.

Testing the Application Block 27

After the code is implemented, you can review it to see if it satisfies its test cases.
Table 4 lists the results of a code review for the Caching Application Block.

Table 4: Caching Application Block Code Verification

Code test case Implemented? Feature that is implemented

Verify that the application
block creates only one
CacheManager instance for
the given instance name.

Yes The CacheManagerFactory class creates a
CacheManager instance. The CacheManager-
Factory class derives from the LocatorName-
TypeFactoryBase class. This class creates only
one instance for a given instance name.

Verify that assembler
classes that implement the
IAssembler interface create
the backing store providers
and the encryption provid-
ers, and inject the con-
figuration object values into
those domain objects.

Yes The following code demonstrates how the
DataBackingStoreAssembler class, which
implements the IAssembler interface, creates a
backing store.
public class DataBackingStoreAssembler
: IAssembler<IBackingStore, CacheStor-
ageData>
{
public IBackingStore Assemble(…)
{
IBackingStore createdObjet = new Data-
BackingStore(…);
return createdObjet;
}
}
The following code demonstrates how the Sym-
metricStorageEncryptionProviderAssembler,
which implements the IAssembler interface,
creates a symmetric encryption provider.
public class SymmetricStorageEncryp-
tionProviderAssembler : IAssembler<ISt
orageEncryptionProvider, StorageEncryp-
tionProviderData>
{
public IStorageEncryptionProvider As-
semble(…)
{
IStorageEncryptionProvider createdOb-
ject = new SymmetricStorageEncryptionPr
ovider(symmetricCrytoProvider);
return createdObject;
}
}

continued

Enterprise Library Test Guide28

Code test case Implemented? Feature that is implemented

Verify that the application
block uses performance
counters to monitor cach-
ing operations when the
performance counters are
enabled.

Yes For example, the CacheManager.GetData
method calls the Cache.GetData method. When
this method retrieves an item from the cache,
it uses an instance of the CachingInstrumen-
tationProvider class to increment the Cache
Hits/sec performance counter. If the item is
not in the cache, the method increments the
Cache Misses/sec performance counter. This
is shown in the following code example.
public object GetData(string key)
{
…
instrumentationProvider.
FireCacheAccessed(key, false);
…
}
The CachingInstrumentationProvider class
raises the cacheAccessed event. The Cache-
Accessed method consumes the event and
increments the performance counters, This is
shown in the following code example.
[InstrumentationConsumer("CacheAccesse
d")]
public void CacheAccessed(…
,CacheAccessedEventArgs e)
{
if (PerformanceCountersEnabled)
{
cacheAccessAttemptsCounter.Increment();
if (e.Hit)
{
cacheHitRatioCounter.Increment();
cacheHitsCounter.Increment();
}
else
{
cacheMissesCounter.Increment();
}
}
}

Testing the Application Block 29

Code test case Implemented? Feature that is implemented

Verify that the application
block uses WMI and the
event log to monitor errors
during caching operations
when WMI and the event log
are enabled.

Yes For example, if an exception occurs when the
application block refreshes the cache, the
RefreshActionInvoker.InvokeRefreshAction
method handles the exception. This method
uses an instance of the CachingInstrumenta-
tionProvider to notify WMI and the event log.
This is shown in the following code example.
public static void InvokeRefreshAc-
tion(…)
{
try
{
…
refreshActionData.InvokeOnThread-
PoolThread();
}
catch (Exception e)
{
instrumentationProvider.FireCache-
Failed(…);
}
}
The CachingInstrumentationProvider class
raises the cacheFailed event. The CacheFailed
method consumes the event and notifies WMI
and logs the exception to the event log. This is
shown in the following code example.
[InstrumentationConsumer("CacheFailed"
)]
public void CacheFailed(…)
{
if (WmiEnabled)
{
System.Management.Instrumentation.
Instrumentation.Fire(new CacheFailur
eEvent(instanceName, e.ErrorMessage,
e.Exception.ToString()));
}
if (EventLoggingEnabled)
{
…
EventLog.WriteEntry(GetEventSourceName(
), entryText, EventLogEntryType.Error);
}
}

continued

Enterprise Library Test Guide30

Code test case Implemented? Feature that is implemented

Verify that the application
block loads the cached data
from the correct partition in
the backing store.

Yes Instances of the DataBackingStore class load
the data from the partition that is specified
in the configuration source. The AddInParam-
eter method accepts the partition name as a
parameter. This is shown in the following code
example.
protected override Hashtable Load-
DataFromStore()
{
DbCommand loadDataCommand = database.
GetStoredProcCommand("LoadItems");

database.AddInParameter(loadDataComm
and, "@partitionName", DbType.String,
partitionName);

DataSet dataToLoad = database.ExecuteDa
taSet(loadDataCommand);
}
The process is similar for instances of the Iso-
latedStorageBackingStore class.

Testing the Application Block 31

Code test case Implemented? Feature that is implemented

Verify that the application
block performs scaveng-
ing when the cached items
exceed the configured limit.
In addition, verify that the
number of items to be scav-
enged is configurable.

Yes When an item is added to an instance of the
Cache class, the application block checks to
see if the limit set in the configuration source
has been reached. If it has, the scavenging
process begins. This is shown in the following
code example.
public void Add(…)
{
if (scavengingPolicy.IsScavengingNeeded
(inMemoryCache.Count))
{
cacheScavenger.StartScavenging();
}
}
The number of items that are scavenged
depends on the value set in the configuration
source. This value is injected into the Scaven-
gerTask class. The RemoveScavengableItems
method checks for this value before it removes
the specified number of items from the cache.
This is shown in the following code example.
private void RemoveScavengableItems(Sor
tedList scavengableItems)
{
int scavengedItemCount = 0;
foreach (CacheItem scavengableItem in
scavengableItems.Values)
{
…
if (scavengedItemCount == NumberOfItem-
sToBeScavenged)
{
break;
}
}
}

continued

Enterprise Library Test Guide32

Code test case Implemented? Feature that is implemented

Verify that the application
block uses a cached item’s
priority setting and the time
it was last accessed to
scavenge items from the
cache.

Yes When scavenging is required, the items in the
cache are sorted based on their priority settings
and the times that they were last accessed. The
items are then removed from the cache. This is
shown in the following code example.
public void DoScavenging()
{
…
if (scavengingPolicy.IsScavengingNeeded
(currentNumberItemsInCache))
{
SortedList scavengableItems = SortItems
ForScavenging(liveCacheRepresentation);
RemoveScavengableItems(scavengableItem
s);
}
}
The SortedList class uses the PriorityDate-
Comparer class to sort items in the cache. This
class implements the IComparer interface. The
following code demonstrates how items in the
cache are sorted.
public int Compare(…)
{
…
return leftCacheItem.ScavengingPrior-
ity == rightCacheItem.ScavengingPrior-
ity? leftCacheItem.LastAccessedTime.
CompareTo(rightCacheItem.LastAccessed-
Time): leftCacheItem.ScavengingPriority
- rightCacheItem.ScavengingPriority;
}

Testing the Application Block 33

Code test case Implemented? Feature that is implemented

Verify that the application
block operations, such as
the Add and Remove meth-
ods enforce a strong excep-
tion guarantee. This means
that if an operation fails,
the state of the cache rolls
back to what it was before
the attempted operation.

Yes The CacheManager class has an internal refer-
ence to a Cache object. This object guarantees
exception-safe caching operations. For example,
if an exception occurs during an add operation,
the state of the cache rolls back to what it was
before the attempted operation. This is shown
in the following code example.
public void Add(…)
{
try
{
… backingStore.
Add(newCacheItem);
inMemoryCache[key] = cacheItemBefore-
Lock;
}
catch
{
backingStore.Remove(key);
inMemoryCache.Remove(key);
throw;
}
}

continued

Enterprise Library Test Guide34

Code test case Implemented? Feature that is implemented

Verify that methods calls on
the CacheManager object
are thread safe.

Yes The CacheManager class has an internal refer-
ence to a Cache object. This object implements
thread-safe caching operations. For example,
when the application block adds an item to the
in-memory cache, it locks and synchronizes the
cache, adds the item to the backing store, and
then releases the lock. This is shown in the fol-
lowing code example.
public void Add(…)
{
…
lock (inMemoryCache.SyncRoot)
{
…
lockWasSuccessful = Monitor.TryEnter(ca
cheItemBeforeLock);
}
try
{
…
backingStore.Add(newCacheItem);
inMemoryCache[key] = cacheItemBefore-
Lock;
…
}
finally
{
Monitor.Exit(cacheItemBeforeLock);
}
}

Verify that the CacheFac-
tory class uses the Cache-
ManagerFactory class to
create a CacheManager
instance.

Yes The CacheFactory class uses the CacheMan-
agerFactory class to create the CacheManager
instance. This is shown in the following code
example.
public static class CacheFactory
{
private static CacheManagerFactory fac-
tory = new CacheManagerFactory(Configura
tionSourceFactory.Create());

public static CacheManager GetCacheMan-
ager()
{
…
return factory.CreateDefault();
}
…
}

Testing the Application Block 35

Code test case Implemented? Feature that is implemented

Verify that the database
backing store uses a
named instance of the
store and uses the Data
Access Application Block to
create that instance.

Yes The ObjectBuilder subsystem uses the Data Ac-
cess Application Block to create the Database
instance that is the database backing store.
This is shown in the following code example.
public class DataBackingStoreAssembler
: IAssembler<IBackingStore, CacheStor-
ageData>
{
public IBackingStore Assemble(…)
{
…
Data.Database database = (Data.
Database)context.HeadOfChain.BuildUp(c
ontext,typeof(Data.Database), null,cas
tedObjectConfiguration.DatabaseInstance-
Name);

IBackingStore createdObjet
= new DataBackingStore(database,castedO
bjectConfiguration.PartitionName,encrypt
ionProvider);
}
}
The following configuration example shows how
the database instance name is configured in
the configuration source.
<backingStores>
<add name="Data Cache Storage"
type="Microsoft.Practices.EnterpriseLi-
brary.Caching.Database.DataBacking-
Store, Microsoft.Practices.Enter-
priseLibrary.Caching.Database"
databaseInstanceName="CachingDatabase"
partitionName="Partition1" />

Verify that the application
block can use an instance
name to create a CacheM-
anager object.

Yes The CacheManager.GetCacheManager method
has two overloads. One of them includes an
instance name as a parameter to create a spe-
cific CacheManager object. This is shown in the
following code example.
public static CacheManager
GetCacheManager(string cacheManager-
Name){}

Verify that the application
block can use a default
instance name to create a
CacheManager object.

Yes The CacheManager.GetCacheManager method
has two overloads. One of them creates a
default CacheManager object. This is shown in
the following code example.
public static CacheManager GetCacheMan-
ager(){}

continued

Enterprise Library Test Guide36

Code test case Implemented? Feature that is implemented

Verify that the performance
counters and the event log
that are required by the ap-
plication block are installed
during installation.

Yes For example, the CachingInstrumentation-
Listener class includes the installer attribute
type [HasInstallableResourcesAttribute]. The
installer classes EventLogInstallerBuilder and
PerformanceCounterInstallerBuilder recognize
this attribute and install the performance coun-
ters and event logs.

To learn how the test teams tested the application blocks to see if they conformed
to security best practices, see Testing for Security Best Practices. To learn how the test
teams tested the application blocks to see if they conformed to globalization best
practices, see Testing for Globalization Best Practices. To learn how the test teams tested
the application blocks to see if they met the performance and scalability require-
ments, see Testing for Performance and Scalability.

Using Automated Tests
Automated tests ensure that the application block functions in accordance with its
requirements. Automated tests make regression testing easier and certain tests, such
as simulating a large number of uses to test a multithreading scenario, require auto-
mation.

Table 5 lists the Visual Studio Team System tests that were used with the Caching
Application Block.

Table 5: Visual Studio Team System Tests for the Caching Application Block

Test case Result Automated test
Verify that the
application block
throws the appro-
priate exception
when it receives
invalid data.

Passed The following test uses the name of a CacheManager object
that is not defined in the configuration source.
[TestMethod]
[ExpectedException(typeof(System.Configuration.Con-
figurationErrorsException))]
public void IsolatedStoreEncConfigErrorTest()
{
itemCache = CacheFactory.GetCacheManager("Isolated
ConfigErrorEncryption");

ItemDetails itemDetails = new ItemDetails(1,
"Toy1", 25);
 itemCache.Add(itemDetails.ItemId.To-
String(), itemDetails);
Assert.AreEqual(1,itemCache.Count);
}

file:///C:/OTSI/EntLib/Test%20Guide/Edit/Testing for Security Best Practices.doc
file:///C:/OTSI/EntLib/Test%20Guide/Edit/Testing for Globalization Best Practices.doc
file:///C:/OTSI/EntLib/Test%20Guide/Edit/Testing for Performance and Scalability.doc

Testing the Application Block 37

Test case Result Automated test
Verify that the
application block
adds valid items
to the backing
store.

Passed The following test adds an item to the database backing
store and then checks to see that the item is available both
from the backing store and from memory. The following is the
configuration file. It sets the backing store.
<connectionStrings>
 <add name="CachingDatabase"
providerName="System.Data.SqlClient"
connectionString="..." />
</connectionStrings>
<backingStores>
<add name="Data Cache Storage"
type="Microsoft.Practices.EnterpriseLibrary.Cach-
ing.Database.DataBackingStore, Microsoft.Practices.
EnterpriseLibrary.Caching.Database"
databaseInstanceName="CachingDatabase" partitionNa
me="Partition1" />
</backingStores>
<cacheManagers>
<add name="DBCacheManager"
…
backingStoreName="Data Cache Storage" />
</cacheManagers>
The following is the test.
TestMethod]
public void DBStoreAddDefaultTest()
{
CacheManager itemCache = CacheFactory.GetCacheMana
ger("DBCacheManager");
ItemDetails itemDetails = new ItemDetails(1,
"Toy1", 25);
itemCache.Add(itemDetails.ItemId.ToString(), item-
Details);

SqlConnection conn = new SqlConnection();
conn.ConnectionString = connStr;
conn.Open();
SqlCommand cmd = new SqlCommand("select * from
CacheData where [key] in ('1') and partitionname
='Partition1'",conn);
SqlDataReader dr = cmd.ExecuteReader();
while (dr.Read())
{
count = count + 1;
}
dr.Close();
conn.Close();
Assert.AreEqual(1, count);
ItemDetails writtenItem = new ItemDetails();
writtenItem = (ItemDetails)itemCache.GetData("1");
Assert.AreEqual("Toy1", writtenItem.Name);
Assert.AreEqual(Convert.ToDecimal(25), writtenItem.
Price);
}

continued

Enterprise Library Test Guide38

Test case Result Automated test
Verify that a
CacheManager
object can be
created from an
in-memory diction-
ary configuration
source.

Passed The following test creates a CacheManager object from a dic-
tionary configuration source and verifies that the object was
created. The following is the dictionary configuration source.
public class CachingDictionarySource
{
public DictionaryConfigurationSource BuildDiction-
arySourceSection()
{
DictionaryConfigurationSource sections = new Dic-
tionaryConfigurationSource();

CacheManagerSettings settings = new CacheManager-
Settings();

settings.DefaultCacheManager = "InMemoryCacheMan-
ager";

CacheStorageData csd = new CacheStorageData();
csd.Name = "inMemoryDic";
csd.Type = Type.GetType("Microsoft.Practices.Enter-
priseLibrary.Caching.BackingStoreImplementations.
NullBackingStore, Microsoft.Practices.EnterpriseLi-
brary.Caching");
settings.BackingStores.Add(csd);

CacheManagerData cmd = new CacheManagerData();
cmd.Name = "InMemoryCacheManager";
//configure the expiration and scavenging policies
…
cmd.CacheStorage = "inMemoryDic";
settings.CacheManagers.Add(cmd);
sections.Add("cachingConfiguration", settings);
}
return sections;
}
The following is the test.
[TestMethod]
public void CacheManagerInstanceTest()
{
CachingDictionarySource sourceSection = new Cach-
ingDictionarySource();
DictionaryConfigurationSource configSource = sourceS-
ection.BuildDictionarySourceSection();

CacheManagerFactory factory = new CacheManagerFact
ory(configSource);
CacheManager itemCache = factory.Create("InMemoryC
acheManager");
Assert.IsNotNull(itemCache);
}

Testing the Application Block 39

Test case Result Automated test
Verify that custom
backing stores
can be added
to the applica-
tion block and
configured from
information in
the configuration
source.

Passed In the following test case, the MockBackingStore class is
a custom backing store that implements the IBackingStore
interface. The following is the configuration information for
the custom backing store.
<cacheManagers>
<add name="CustomCacheManager"
expirationPollFrequencyInSeconds="1"
maximumElementsInCacheBeforeScavenging="10"
numberToRemoveWhenScavenging="3"
backingStoreName="CustomStore" />
</cacheManagers>
<backingStores>
<add name="CustomStore"
type="CachingCoreTests.MockBackingStore, Caching-
CoreTests" itemid ="1" itemdescription="Item1"
itemprice="28.75"/>
<backingStores>
The following is the MockBackingStore class.
[ConfigurationElementType(typeof(CustomCacheStorage
Data))]
public class MockBackingStore : IBackingStore
{
public static NameValueCollection attributes;
public static int count;
public MockBackingStore(NameValueCollection attri-
butes)
{
MockBackingStore.attributes = attributes;
}
public int Count
{
get { return count; }
}

public void Add(CacheItem newCacheItem)
{
count++;
}

public void Remove(string key)
{
count--;
}
public void UpdateLastAccessedTime(string key, Da-
teTime timestamp){}

public void Flush()
{
count = 0;
}

public Hashtable Load()

continued

Enterprise Library Test Guide40

Test case Result Automated test
{
Hashtable items = new Hashtable();
return items;
}

public void Dispose()
{
}
}
The following is the test.
[TestMethod]
public void MockStoreAddTest()
{
CacheManager itemCache = CacheFactory.GetCacheMana
ger("CustomCacheManager");
itemCache.Add("1", "test");
string cacheData = (string) itemCache.GetData("1");
Assert.AreEqual("test", cacheData);
Assert.AreEqual(3, MockBackingStore.attributes.
Count);
Assert.AreEqual("1", MockBackingStore.
attributes["itemid"]);
Assert.AreEqual("Item1", MockBackingStore.attribut
es["itemdescription"]);
Assert.AreEqual("28.75", MockBackingStore.attribut
es["itemprice"]);
}

Testing the Cryptography
Application Block

This chapter explains how functional testing techniques were used to test the
Cryptography Application Block. If you have modified or extended the Cryptog-
raphy Application Block, you can use the same techniques and adapt the chapter’s
templates and checklists to test your own work.

Requirements for the Cryptography Application Block
The Cryptography Application Block has the following requirements:

The application block should support common cryptography operations.
The application block should be extensible.
The symmetric encryption providers and the hash providers should be
configurable.
The application block should support configurable instrumentation, including
WMI (Windows Management Instrumentation), performance counters, and event
logs.
The application block should be able to read configuration information from any
configuration source, such as an XML file or a database.
The symmetric key that encrypts the data should be cached in memory in an
encrypted form.
The application block should work with desktop applications and with Web
applications.

These requirements must be incorporated into the design and implemented by the
code.

Selecting the Test Cases
The first step in a functional review is to make sure that the design and the code
support the requirements. You do this by deciding the test cases that the design and
code must satisfy. Table 1 lists the test cases that the application block’s design must
satisfy.

●

●

●

●

●

●

●

Enterprise Library Test Guide42

Table 1: Cryptography Application Block Design Test Cases

Priority Design test case
High Verify that the symmetric algorithm providers and the hash providers are exten-

sible.
High Verify that there is a consistent approach to creating symmetric algorithm provid-

ers and hash providers.
High Verify that there is a façade that mediates between the client code and the ap-

plication block’s cryptographic functions, such as encryption, decryption, and
hashing.

High Verify that the application block uses a façade to generate the symmetric keys.
High Verify that the application block addresses key management issues, such as the

ability to read a key from an output stream, the ability to write a key to an output
stream, the ability to archive a key, and the ability to transfer keys between com-
puters.

High Verify that the application block caches the encrypted key in memory.
High Verify that the application block supports a method that decrypts the cached

encrypted key.
High Verify that the ability to create the application block’s domain objects from the

configuration data follows the Dependency Injection pattern.
High Verify that the application block can retrieve configuration data from different

sources, such as an application configuration file, a database, or from memory.
High Verify that the instrumentation is implemented with loosely coupled events.
High Verify that situations that can cause exceptions are addressed and that the ap-

plication block logs the exceptions through the instrumentation.
High Verify that the application block supports custom property collections for custom

symmetric key providers and for custom hash providers.

After you identify the design issues, you should do the same for the code. Table 2
lists the test cases that the Cryptography Application Block code must satisfy.

Table 2: Cryptography Application Block Code Test Cases

Priority Code test case
High Verify that the Cryptographer façade exposes all public members as static and

supports methods for encryption, decryption, and hashing.
High Verify that the Cryptographer façade uses the SymmetricCryptoProviderFactory

class and the HashProviderFactory class to create the cryptography providers.
High Verify that the assembler classes that implement the IAssembler interface create

the symmetric and hash providers, and verify that the assembler classes inject
the configuration object values into those domain objects.

High Verify that the application block uses performance counters to monitor hash and
symmetric operations when the performance counters are enabled.

High Verify that the application block uses WMI and the event log to monitor errors dur-
ing encryption, decryption, and hash operations when WMI and the event log are
enabled.

Testing the Cryptography Application Block 43

Priority Code test case
High Verify that the configuration properties of the providers are exposed as public and

are strongly typed.
High Verify that the configuration properties for the custom providers are exposed as

public and that they are implemented as custom property collections.
High Verify that there is a way to remove decrypted keys from memory after they have

been used.
High Verify that there is a way to properly dispose of the symmetric and hash algo-

rithms after they are used.
High Verify that the SymmetricAlgorithmProvider class and the KeyedHashAlgorithm-

Provider class support both machine mode encryption and user mode encryption.
High Verify that the application block can either use an absolute path or a relative path

to read the key file.
Medium Verify that the application block validates the input at all the entry points, such as

the Cryptographer façade.
High Verify that the application block reads the symmetric key only once from the input

stream and then caches it so that it can be used for the cryptography operations.
High Verify that the symmetric key is cached in memory in a thread safe manner.
High Verify that the HashProviderFactory and the SymmtericCryptoProviderFactory

classes create new instances of the symmetric and hash providers for each
request.

High Verify that the performance counters and the event log that are required by the
application block are installed during installation.

Medium Verify that the application block requests or demands the appropriate code ac-
cess security permissions to access protected system resources and operations.

High Verify that the application block follows exception management best practices.
High Verify that the application block follows security best practices.
Medium Verify that the application block follows globalization best practices.
High Verify that the application block follows performance best practices.

Verifying the Test Cases
After you identify all the design test cases, you can verify that the design does in
fact satisfy them. Table 3 lists how each of the design test cases were verified for the
Cryptography Application Block.

Table 3: Cryptography Application Block Design Verification

Design test case Implemented? Feature that implements design
Verify that the symmetric algo-
rithm providers and the hash
providers are extensible.

Yes The ISymmetricCryptoProvider interface
allows users to implement or extend a con-
figurable symmetric provider. The IHashPro-
vider interface allows users to implement
or extend a hash provider.

continued

Enterprise Library Test Guide44

Design test case Implemented? Feature that implements design
Verify that there is a consis-
tent approach to creating
symmetric algorithm providers
and hash providers.

Yes The SymmetricCryptoProviderFactory
class is the factory that creates the Sym-
metricProvider objects. The HashProvider-
Factory class is the factory that creates
the HashProvider objects.

Verify that there is a façade
that mediates between the
client code and the applica-
tion block’s cryptographic
functions, such as encryption,
decryption, and hashing.

Yes The Cryptographer class is a façade that
acts as the interface between the client
code and the application block.

Verify that the application
block uses a façade to gener-
ate the symmetric keys.

Yes The KeyManager class is a static façade
that exposes methods that generate the
keys. It implements the GenerateSymmet-
ricKey method and the GenerateKeyed-
HashKey method. These methods have
multiple overloads that generate either an
encrypted key or an unencrypted key.

Verify that the application
block addresses key manage-
ment issues, such as the
ability to read a key from an
output stream, the ability
to write a key to an output
stream, the ability to archive a
key, and the ability to transfer
keys between computers.

Yes The Key Manager class is a static façade
that includes the Read method to read
keys from an output stream, the Write
method to write keys to an output stream,
the ArchiveKey method to archive keys and
the RestoreKey method to transfer keys
between computers.

Verify that the application
block caches an encrypted
key.

Yes The ProtectedKeyCache class caches an
encrypted key inside a collection. Note that
this is an internal class.

Verify that the application
block supports a method to
decrypt the cached encrypted
key.

Yes The ProtectedKey class includes the Un-
protect method that retrieves and decrypts
a key.

Verify that the ability to create
the application block’s domain
objects from the configuration
data follows the dependency
injection pattern.

Yes The SymmetricCryptoProviderFactory
class derives from the NameTypeFactory-
Base generic type, which takes the configu-
ration source as input, creates the domain
object, and injects the relevant configura-
tion data into the domain object.

Verify that the application
block can retrieve configura-
tion data from different sourc-
es, such as an application
configuration file, a database,
or from memory.

Yes The SymmetricCryptoProviderFactory
class and the HashProviderFactory class
have constructors that accept a configura-
tion source as an input parameter.

Testing the Cryptography Application Block 45

Design test case Implemented? Feature that implements design
Verify that the instrumentation
is implemented with loosely
coupled events.

Yes The methods in the HashAlgorithmInstru-
mentationProvider class that raise the
events bind to the methods in the HashAl-
gorithmInstrumentationListener class at
run time.

Verify that situations that can
cause exceptions are ad-
dressed and that the applica-
tion block logs the exceptions
through the instrumentation.

Yes For example, both the HashAlgorithmPro-
vider class and the SymmetricAlgorithm-
Provider class include the Instrumentation-
Provider property. This property retrieves
the instrumentation provider that defines
the events for the cryptography provider.
The provider logs the events to WMI and
the event log.

Verify that the application
block supports custom prop-
erty collections for the custom
symmetric key providers and
for custom hash providers.

Yes The CustomHashProviderData class and
the CustomSymmetricCryptoProviderData
class provides the ability to configure
custom property collections for custom
providers.

After the code is implemented, you can review it to see if it satisfies its test cases.
Table 4 lists the results of a code review for the Cryptography Application Block.

Table 4: Cryptography Application Block Code Verification

Code test case Implemented? Feature that is implemented
Verify that the
Cryptographer
façade exposes
all public mem-
bers as static and
supports methods
for encryption,
decryption, and
hashing.

Yes The Cryptographer class is a façade that exposes
the CreateHash method to compute the hash value of
plain text, the CompareHash method to compare plain
text with a hash value, the EncryptSymmetric method
to encrypt plain text, and the DecryptSymmetric
method to decrypt a symmetrically encrypted secret.
These methods are shown in the following code.
public static byte[] CreateHash(string hash-
Instance, byte[] plaintext) {}

public static bool CompareHash(string hashIn-
stance, string plaintext, string hashedText)
{}

public static string EncryptSymmetric(string
symmetricInstance, string plaintext) {}

public static string DecryptSymmetric(string
symmetricInstance, string ciphertextBase64)
{}

continued

Enterprise Library Test Guide46

Code test case Implemented? Feature that is implemented
Verify that the
Cryptographer
façade uses the
SymmetricCryp-
toProviderFac-
tory class and the
HashProviderFac-
tory class to cre-
ate the cryptogra-
phy providers.

Yes The client code calls static methods on the Cryptogra-
pher class to create hashes, compare hashes, encrypt
data, and decrypt data. Each static method instanti-
ates a factory class and passes the configuration
source to the factory class’s constructor. The factory
uses the configuration data to determine the type of
provider to create. The following code demonstrates
how the Cryptographer.EncryptSymmetric method
calls the SymmetricCryptoProviderFactory class to
create a symmetric provider. The process is similar for
hash providers.
public static byte[] EncryptSymmetric(string
symmetricInstance, byte[] plaintext)
{
…
SymmetricCryptoProviderFactory factory = new
SymmetricCryptoProviderFactory(ConfigurationSo
urceFactory.Create());
…
}

Verify that as-
sembler classes
that implement
the IAssembler
interface create
the symmetric and
hash providers,
and inject the con-
figuration object
values into those
domain objects.

Yes The following code demonstrates how the Symmet-
ricAlgorithmProviderAssember class, which imple-
ments the IAssembler interface, creates a symmetric
provider. The process is similar for hash providers.
public class SymmetricAlgorithmProviderAssem-
bler : IAssembler<ISymmetricCryptoProvider,
SymmetricProviderData>
{
public ISymmetricCryptoProvider
Assemble(IBuilderContext context, Symmet-
ricProviderData objectConfiguration, IConfigu-
rationSource configurationSource, Configura-
tionReflectionCache reflectionCache)
{

SymmetricAlgorithmProviderData castedObject-
Configuration = (SymmetricAlgorithmProviderDat
a)objectConfiguration;

ISymmetricCryptoProvider createdObject = new
SymmetricAlgorithmProvider(castedObjectConfigu
ration.AlgorithmType,
castedObjectConfiguration.ProtectedKeyFilename
,castedObjectConfiguration.ProtectedKeyProtec-
tionScope);

return createdObject;
 }
}

Testing the Cryptography Application Block 47

Code test case Implemented? Feature that is implemented
Verify that the
application block
uses performance
counters to moni-
tor hash and sym-
metric operations
when the perfor-
mance counters
are enabled.

Yes For example, the SymmtericAlgorithmProvider.Encrypt
method increments the symmetric encryption perfor-
mance counter whenever there is a successful encryp-
tion operation. This is shown in the following code
example. The process is similar for hash operations.
public byte[] Encrypt(…)
{
crypto.Encrypt(plaintext);

InstrumentationProvider.FireSymmetricEncryp-
tionPerformed();
}
 [InstrumentationConsumer("SymmetricEncryptio
nPerformed")]
public void SymmetricEncryptionPerformed(obje
ct sender, EventArgs e)
{
if (PerformanceCountersEnabled) symmetricEn-
cryptionPerformedCounter.Increment();
}

Verify that the
application block
uses WMI and the
event log to moni-
tor errors during
encryption, de-
cryption, and hash
operations when
WMI and event log
are enabled.

Yes For example, the SymmtericAlgorithmProvider.Encrypt
method uses WMI and the event log when the encryp-
tion operation fails. This is shown in the following code
example. The process is similar for other operations.
public byte[] Encrypt(…)
{
try
{
output = crypto.Encrypt(plaintext);
}
catch (Exception e)
{
InstrumentationProvider.FireCyptographicOp-
erationFailed(…);
throw;
}
}

[InstrumentationConsumer("CyptographicOperati
onFailed")]
public void CyptographicOperationFailed(…)
{
if (EventLoggingEnabled)
{
EventLog.WriteEntry(GetEventSourceName(),
entryText, EventLogEntryType.Error);
}
if (WmiEnabled) ManagementInstrumentation.
Fire(new SymmetricOperationFailedEvent(…));
}

continued

Enterprise Library Test Guide48

Code test case Implemented? Feature that is implemented
Verify that the
configuration
properties of the
providers are
exposed as public
and that they are
strongly typed.

Yes In the CryptographySettings class, the SymmetricPro-
viders property can only contain a SymmetricProvider-
Data collection. The following code demonstrates this.
The HashProviders property is similar.
[ConfigurationProperty(symmetricCryptoProvider
sProperty, IsRequired= false)]
public NameTypeConfigurationElementCollection<
SymmetricProviderData> SymmetricCryptoProvid-
ers
{
}

Verify that the
configuration prop-
erties for the cus-
tom providers are
exposed as public
and that they are
implemented as
custom property
collections.

Yes The CustomSymmetricCryptoProviderData class
and the CustomHashProviderData class have refer-
ences to the CustomProviderDataHelper class. This
class defines a NameValueCollection class that holds
the attributes in custom property collections. This is
shown in the following code example.
private NameValueCollection attributes;

private void AddAttributesFromConfigura-
tionProperties()
{
foreach (ConfigurationProperty property in
propertiesCollection)
{
…
attributes.Add(property.Name, (string)helped
CustomProviderData.BaseGetPropertyValue(prop
erty));
}
}

Verify that there is
a way to remove
decrypted keys
from memory after
they have been
used.

Yes The CryptographicUtility.ZeroOutBytes method clears
the decrypted key from memory. This is shown in the
following code example.
public byte[] Encrypt(…)
{
CryptographyUtility.ZeroOutBytes(this.algo-
rithm.Key);
}

Testing the Cryptography Application Block 49

Code test case Implemented? Feature that is implemented
Verify that there is
a way to prop-
erly dispose of
the symmetric and
hash algorithms
after they are
used.

Yes The SymmetricCryptographer.Dispose method clears
a symmetric algorithm. This is shown in the following
code example.
protected virtual void Dispose(…)
{
if(algorithm != null)
{
algorithm.Clear();
algorithm = null;
}
}
The HashCryptographer class implements a hash
algorithm within a using statement. The using state-
ment obtains resources, executes a statement, and
disposes of the resources. In this case, the resource
is the hash algorithm. This is shown in the following
code example.
public byte[]
ComputeHash(byte[] plaintext)
 {
…
using (HashAlgorithm
algorithm = GetHashAlgorithm())
 {}
…
}

Verify that the
SymmetricAlgo-
rithmProvider
class and the
KeyedHashAl-
gorithmProvider
class support
both machine
mode and user
mode encryption.

Yes In the configuration source, the scope property sup-
ports both machine mode and user mode. This is
shown in the following configuration example.
<symmetricCryptoProviders>
<add scope="CurrentUser" type="…" name="…" />

<add scope="LocalMachine" type="…" name="…"
/>
</symmetricCryptoProviders>
The CryptographySettings class reads the configura-
tion information and injects it into either the Keyed-
HashAlgorithmProvider class or the SymmetricAl-
gorithmProvider class (whichever is applicable). In
addition, the constructor for either of these classes
accepts a DataProtectionScope enumeration as a pa-
rameter. This parameter defines whether the scope of
the protection is CurrentUser or LocalMachine mode.
This is shown in the following code example.
public KeyedHashAlgorithmProvider (
 Type algorithmType,
 bool saltEnabled,
 string protectedKeyFileName,
 DataProtectionScope protectedKeyF-
ileProtectionScope
)

continued

Enterprise Library Test Guide50

Code test case Implemented? Feature that is implemented
Verify that the
application block
can either use an
absolute path or
a relative path to
read the key file.

Yes In the configuration source, the ProtectedKeyFilename
property supports both relative and absolute paths.
This is shown in the following configuration example.
<hashProviders>
<add protectedKeyFilename="hmac1-1.key"
protectedKeyProtectionScope="…" algorithm-
Type="…" saltEnabled="…" type="…" name="…" />

<add protectedKeyFilename="C:\\HMacMd5.key"
protectedKeyProtectionScope="…" algorithm-
Type="…" saltEnabled="…" type="…" name="…" />
</hashProviders>

Verify that the
application block
validates the input
at all the entry
points, such as
the Cryptographer
façade.

Yes The following code is an example of how the applica-
tion block checks whether the input is valid. If the
input is invalid, the application block throws an excep-
tion.
public static string DecryptSymmetric(string
symmetricInstance, string ciphertextBase64)
{
if (string.IsNullOrEmpty(symmetricInstance))
throw new ArgumentException(…);

if (string.IsNullOrEmpty(ciphertextBase64))
throw new ArgumentException(…);

}

Verify that the
application block
reads the symmet-
ric key only once
from the input
stream and then
caches it so that
it can be used for
the cryptography
operations.

Yes The KeyManager.Read method reads an encrypted
key from the input stream and then caches it. This is
shown in the following code example.
public static ProtectedKey Read(…)
{
if (cache[completeFileName] != null)
return cache[completeFileName];
}

Verify that the
symmetric key is
cached in memory
in a thread safe
manner.

Yes The ProtectedKeyCache class locks the cache before
it stores the key. This is shown in the following code
example.
public ProtectedKey this[string keyFileName]
{
 set
 {
 lock (cache)
 {
 cache[keyFileName] = value;
 }
 }
}

Testing the Cryptography Application Block 51

Code test case Implemented? Feature that is implemented
Verify that the
HashProvider-
Factory and the
SymmtericCryp-
toProviderFactory
classes create
new instances of
the symmetric and
hash providers for
each request.

Yes The HashProviderFactory class and the Symmteric-
CryptoProviderFactory class derive from the Nam-
eTypeFactoryBase class. This class creates a new
instance of a provider for each request.

Verify that the
performance
counters and the
event log that are
required by the ap-
plication block are
installed during
installation.

Yes For example, the HashAlgorithmInstrumentationLis-
tener class contains the installer attribute type HasIn-
stallableResourcesAttribute. The EventLogInstaller-
Builder and the PerformanceCounterInstallerBuilder
installer classes, which are part of the Enterprise
Library Core, recognize this attribute and install the
performance counters and event logs.

To learn how the test teams tested the application blocks to see if they conformed to
security best practices, see Testing for Security Best Practices. To learn how the test
teams tested the application blocks to see if they conformed to globalization best
practices, see Testing for Globalization Best Practices. To learn how the test teams
tested the application blocks to see if they met the performance and scalability
requirements, see Testing for Performance and Scalability.

Using Automated Tests
Automated tests ensure that the application block functions in accordance with its
requirements. Automated tests make regression testing easier, and certain tests, such
as simulating a large number of uses to test a multithreading scenario, require auto-
mation.

Table 5 lists the Visual Studio Team System tests that were used with the Cryptogra-
phy Application Block.

file:///C:/OTSI/EntLib/Test%20Guide/Edit/Testing for Security Best Practices.doc
file:///C:/OTSI/EntLib/Test%20Guide/Edit/Testing for Globalization Best Practices.doc
file:///C:/OTSI/EntLib/Test%20Guide/Edit/Testing for Performance and Scalability.doc

Enterprise Library Test Guide52

Table 5: Visual Studio Team System Tests for the Cryptography Application Block

Test case Result Automated test
Verify that the
application block
throws the appro-
priate exception
when it receives
invalid data.

Passed The following test uses a null message as input and ex-
pects an ArgumentNullException exception.
[ExpectedException(typeof(ArgumentNullException
))]
public void TestForNullPlainMessage()
{
Cryptographer.EncryptSymmetric(("DESCryptoServic
eProvider", (String)null);
}

Verify that the
application block
encrypts valid
input data.

Passed The following test encrypts a string.
[TestMethod]
public void TestEncryptionForValidInput()
{
String encryptedStrMessage = Cryptographer.Encr
yptSymmetric(("DESCryptoServiceProvider","Sample
Text");
Assert.IsFalse(encryptedStrMessage.Equals(""));
Assert.IsFalse(encryptedStrMessage.
Equals("SampleText"));
}

Verify that the sym-
metric and hash
providers can be
created directly,
without using
a configuration
source.

Passed The following test uses the new operator to directly create
the hash provider and verifies that the object is created.
[TestMethod]
public void TestHashAlgorithmProviderDirectly()
{
HashAlgorithmProvider provider = new HashAlgorit
hmProvider(Type.GetType("System.Security.Cryp-
tography.SHA1Managed, mscorlib, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089
"), true);
Assert.IsNotNull(provider);
}

Testing the Cryptography Application Block 53

Test case Result Automated test
Verify that a
custom class can
be added from
information in
the configuration
source.

Passed In this example, a custom hash provider, the Custom Hash
class, implements the IHashProvider interface. The En-
terprise Library Core uses information in the configuration
source to add the custom class to the application block.
CustomHash class

[ConfigurationElementType(typeof(CustomHashProvid
erData))]
public class CustomHash:IHashProvider
{
public NameValueCollection ObjCol;

public CustomHash(NameValueCollection obj)
{
this.ObjCol = obj;
}
byte[] CreateHash(byte[] plaintext){…}
bool CompareHash(byte[] plaintext, byte[]
hashedtext){…}
}
The following is the information in the configuration file.
<add key1="value1" key2="value2" type="….Custom-
Hash, …" name="CustomHash1" />
The following is the test case.
[TestMethod]
public void TestCustomHash()
{
HashProviderFactory factory = new
HashProviderFactory(new SystemConfiguration-
Source());
 IHashProvider provider = factory.
Create("CustomHash1");

Assert.IsNotNull(provider);
Assert.IsTrue(provider is CustomHash);
}

continued

Enterprise Library Test Guide54

Test case Result Automated test
Verify that a
provider that is
configured with
data in a diction-
ary configuration
source can encrypt
data.

Passed This example uses a dictionary as the configuration source
for a hash provider. The following code shows the diction-
ary configuration source.
DictionaryConfigurationSource section = new Dic-
tionaryConfigurationSource();
CryptographySettings setting = new Cryptography-
Settings();
 setting.HashProviders.Add(new Has
hAlgorithmProviderData("SHA512ManagedWithNoS
alt",Type.GetType("System.Security.Cryptogra-
phy.SHA512Managed, mscorlib, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089
"), false));

section.Add("securityCryptographyConfiguration",
setting);
The following is the test case.
[TestMethod]
public void TestHashingWithDicSource()
{
HashProviderFactory factory = new HasProviderFac
tory(section);
IHashProvider provider = (IHashProvider)factory.
Create("SHA512ManagedWithNoSalt");

byte[] hash = provider.CreateHash(PlainByteMessa
ge);
 Assert.IsTrue(provider.CompareHash(P
lainByteMessage, hash));
}

Testing the Data Access Application
Block

This chapter explains how functional testing techniques were used to test the Data
Access Application Block. If you have modified or extended the Data Access Applica-
tion Block, you can use the same techniques and adapt the chapter’s templates and
checklists to test your own work.

Requirements for the Data Access Application Block
The Data Access Application Block has the following requirements:

The application block should support common data access operations.
The application block should be extensible.
The application block should manage database connections.
The application block should provide a straightforward way to handle parameters
for stored procedures.
The application block should be able to read configuration information from any
configuration source, such as an XML file or a database.
The application block should support configurable instrumentation, including
WMI (Windows Management Instrumentation), performance counters, and event
logs.
The application block should have good performance metrics.
The application block should work with desktop applications and with Web
applications.

These requirements must be incorporated into the design and implemented by the
code.

Selecting the Test Cases
The first step in a functional review is to verify that the design and the code sup-
port the requirements. You do this by deciding the test cases that the design and
code must satisfy. Table 1 lists the test cases that the Data Access Application Block’s
design must satisfy.

●

●

●

●

●

●

●

●

Enterprise Library Test Guide56

Table 1: Data Access Application Block Design Test Cases

Priority Design test case
High Verify that the database providers are extensible.
High Verify that there is a consistent approach to creating any database provider, such as

a SQL Server database, Oracle database, or a generic database.
High Verify that the application block supports database-specific features that are imple-

mented in the appropriate Database-derived class. For example, the SqlDatabase
class supports the ability to read data that is in XML format.

High Verify that the application block supports the parameter discovery feature.
High Verify that the ability to create the application block’s domain objects from configura-

tion data follows the Dependency Injection pattern.
High Verify that the application block can retrieve configuration data from different

sources, such as an application configuration file, a database, or from memory.
High Verify that the application block can manage database connections.
High Verify that the instrumentation is implemented with loosely coupled events.
High Verify that the design addresses situations that can cause exceptions and that the

application block logs the exceptions through the instrumentation.

After you identify the design issues, you should do the same for the code. Table 2
lists the test cases that the Data Access Application Block’s code must satisfy.

Table 2: Data Access Application Block Code Test Cases

Priority Code test case
High Verify that the DatabaseProviderFactory class creates a new Database-derived

instance for each request.
High Verify that an assembler class that implements the IDatabaseAssembler interface

creates the Database-derived objects and injects the configuration object values
into those domain objects.

High Verify that the application block uses performance counters to monitor database
operations when the performance counters are enabled.

High Verify that the application block uses WMI and the event log to monitor errors during
database operations when WMI and the event log are enabled.

High Verify that the connection string property is configurable and is implemented as a
connection string section that is supported by the .NET Framework.

High Verify that the application block can use an instance name to create a Database-
derived object.

High Verify that the application block can use a default instance name to create a Data-
base-derived object.

High Verify that the application block exposes configuration properties for Oracle pack-
ages as public and that they are configurable.

High Verify that the application block caches parameter discovery information and then
retrieves it from the cache when it is required.

Testing the Data Access Application Block 57

Priority Code test case
High Verify that the parameter naming convention for a particular database is handled by

the application block instead of being included in the application code. For example,
a SQL Server database requires that parameter names begin with the “@” char-
acter. This should be appended by the application block so that the code remains
portable.

High Verify that the performance counters and the event log that are required by the ap-
plication block are installed during installation.

Medium Verify that the application block requests or demands the appropriate code access
security permissions for access to protected system resources and operations.

Medium Verify that the application block follows exception management best practices.
High Verify that the application block follows security best practices.
Medium Verify that the application block follows globalization best practices.
High Verify that the application block follows performance best practices.

Verifying the Test Cases
After you identify all the design test cases, you can verify that the design satisfies
them. Table 3 lists how each of the design test cases were verified for the Data Access
Application block.

Table 3: Data Access Application Block Design Verification

Design test case Implemented? Feature that implements design
Verify that the database
providers are extensible.

Yes The SqlDatabase class and the Oracle-
Database class derive from the Database
base class. This class defines a common
interface that users can extend or modify
to develop their own custom database
providers.

Verify that there is a consis-
tent approach to creating
any database provider, such
as a SQL Server database,
Oracle database, or a generic
database.

Yes The DatabaseProviderFactory class is the
factory that creates all objects that derive
from the Database class.

Verify that the application
block supports database-spe-
cific features that are imple-
mented in the appropriate
Database-derived class. For
example, the SqlDatabase
class supports the ability
to read data that is in XML
format.

Yes For example, there is a SqlDatabase.
ExecuteXMLReader method that allows
the application block to access XML data
stored in a SQL Server database.

continued

Enterprise Library Test Guide58

Design test case Implemented? Feature that implements design
Verify that the application
block supports the parameter
discovery feature.

Yes The Database base class implements the
DiscoverParameters method that dynami-
cally discovers the parameter types.

Verify that the ability to cre-
ate the application block’s
domain objects from con-
figuration data follows the
Dependency Injection pattern.

Yes The DatabaseProviderFactory class
derives from the NameTypeFactoryBase
class, which takes the configuration source
as input, creates the domain object, and
injects the relevant configuration data into
the domain object.

Verify that the application
block can retrieve configura-
tion data from different sourc-
es, such as an application
configuration file, a database,
or from memory.

Yes The DatabaseProviderFactory class has
a constructor that accepts a configuration
source as an input parameter.

Verify that the application
block can manage database
connection.

Yes The application block closes the database
connections after it is finished with them.
For example, the implementation of the
ExecuteNonQuery method includes a using
statement. The using statement obtains
resources, executes a statement, and
disposes of the resources. In this case, the
resource is the database connection.
In the case of the ExecuteReader method,
the application block uses the Command-
Behavior.CloseConnection method to close
the connection after the reader closes.

Verify that the instrumenta-
tion is implemented with
loosely coupled events.

Yes The methods in the DataInstrumentation-
Provider class that fire the events bind to
the methods in the DataInstrumentation-
Listener class at run time.

Verify that the design ad-
dresses situations that can
cause exceptions and that
the application block logs
the exceptions through the
instrumentation.

Yes For example, the Database class includes
the InstrumentationProvider property.
This property retrieves the instrumentation
provider that defines the events for the
database provider. The provider logs the
events to WMI and the event log.

After the code is implemented, you can review it to see if it satisfies its test cases.
Table 4 lists the results of a code review for the Data Access Application Block.

Testing the Data Access Application Block 59

Table 4: Data Access Application Block Code Verification

Code test case Implemented? Feature that is implemented
Verify that the DatabasePro-
viderFactory class creates
a new instance of a Data-
base-derived object for each
request.

Yes The DatabaseFactory class calls the Data-
baseProviderFactory class, which derives
from the NameTypeFactory base class.
For each request, this class creates a new
instance of a database provider that derives
from the Database class.

Verify that an assembler class
that implements the IData-
baseAssembler interface
creates the Database-derived
objects and injects the con-
figuration object values into
those domain objects.

Yes The following code demonstrates how the
SqlDatabaseAssembler class, which imple-
ments the IDatabaseAssembler interface,
creates a SQL Server database provider. The
process is similar for Oracle databases and
generic databases.
public class SqlDatabaseAssembler :
IDatabaseAssembler
{
public Database Assemble(string name,
ConnectionStringSettings connection-
StringSettings, IConfigurationSource
configurationSource)
{
return new SqlDatabase(…);
}
}

Verify that the application
block uses performance
counters to monitor database
operations when the perfor-
mance counters are enabled.

Yes For example, the Database.OpenConnection
method increments the Connections
Opened/sec performance counter when a da-
tabase connection succeeds. This is shown
in the following code example.
protected DbConnection OpenConnec-
tion()
{
connection = CreateConnection();
connection.Open();
instrumentationProvider.FireConnec-
tionOpenedEvent();
}
The FireConnectionOpenedEvent method
raises the connectionOpened event. The
ConnectionOpened method consumes this
event and increments the performance
counter. This is shown in the following code
example.
[InstrumentationConsumer("ConnectionO
pened")]
public void ConnectionOpened(…)
{
if (PerformanceCountersEnabled) con-
nectionOpenedCounter.Increment();
}

continued

Enterprise Library Test Guide60

Code test case Implemented? Feature that is implemented
Verify that the application
block uses WMI and the event
log to monitor errors during
database operations when
WMI and the event log are
enabled.

Yes For example, the Database.OpenConnection
method uses WMI, the event log, and perfor-
mance counters when the connection fails.
This is shown in the following code example.
protected DbConnection OpenConnec-
tion()
{
try
{
connection = CreateConnection();
connection.Open();
}
catch (Exception e)
{
instrumentationProvider.FireConnectio
nFailedEvent(ConnectionStringNoCreden
tials, e);
throw;
}
}
The FireConnectionFailedEvent method
raises the connectionFailed event. The Con-
nectionFailed method consumes this event
and notifies WMI, logs the exception to the
event log, and increments the Connections
failed/sec performance counter. This is
shown in the following code example.
[InstrumentationConsumer("ConnectionF
ailed")]
public void ConnectionFailed(…)
{
if (PerformanceCountersEnabled) con-
nectionFailedCounter.Increment();
if (WmiEnabled) System.Management.
Instrumentation.Instrumentation.
Fire(new ConnectionFailedEvent(…);
if (EventLoggingEnabled)
{
…
EventLog.WriteEntry(GetEventSourceN
ame(), entryText, EventLogEntryType.
Error);
}
}

Testing the Data Access Application Block 61

Code test case Implemented? Feature that is implemented
Verify that the connection
string property is configu-
rable and is implemented as
a connection string section
that is supported by the .NET
Framework.

Yes In the application configuration file, the
connection string is exposed as a <connec-
tionStrings> section that is supported by the
.NET Framework. This is shown in the follow-
ing XML example.
<connectionStrings>
<add name="DataSQLTest"
providerName="System.Data.SqlClient"
connectionString="server=(local)\sqle
xpress;database=TestDatabase;Integrat
ed Security=true" />
</connectionStrings>
The GetConnectionStringSettings method
on the DatabaseConfigurationView class
reads the connection string section from the
configuration source. This is shown in the fol-
lowing code example.
public ConnectionStringSettings GetCo
nnectionStringSettings(string name)
{
…
ConfigurationSection configSection =
configurationSource.GetSection("connec
tionStrings");
if ((configSection != null) && (config-
Section is ConnectionStringsSection))
{
ConnectionStringsSection connection-
StringsSection = configSection as Con-
nectionStringsSection;
connectionStringSettings = con-
nectionStringsSection.
ConnectionStrings[name];
}
else
connectionStringSettings = Configura-
tionManager.ConnectionStrings[name];
…
}

Verify that the application
block can use an instance
name to create a Database-
derived object.

Yes The DatabaseFactory.Create method has
two overloads. One of the methods accepts
an instance name as a parameter to create
a Database-derived object for the specified
instance name. This is shown in the following
code example.
public static Database
CreateDatabase(string name)
{
}

continued

Enterprise Library Test Guide62

Code test case Implemented? Feature that is implemented
Verify that the application
block can use a default
instance name to create a
Database-derived object.

Yes The DatabaseFactory.Create method has
two overloads. One of the methods creates a
Database-derived object from the default in-
stance name in the configuration source. This
is shown in the following code example.
public static Database CreateData-
base()
{
}

Verify that the application
block exposes configuration
properties for Oracle pack-
ages as public and that they
are configurable.

Yes The <oracleConnectionSettings> section in
the configuration source exposes the configu-
ration properties for Oracle packages. This is
shown in the following configuration example.
<oracleConnectionSettings>
 <add name="OracleInstance">
 <packages>
 <add name="…" prefix="…" />
 </packages>
 </add>
</oracleConnectionSettings>
The OracleConnectionData, OraclePackage-
Data and OracleConnectionSettings classes
read this configuration information.

Verify that the application
block caches parameter dis-
covery information and then
retrieves it from the cache
when it is required.

Yes The ParameterCache class caches the pa-
rameters. The SetParameters method popu-
lates the parameter collection from the cache
if the parameters are already stored there.
This is shown in the following code example.
public void SetParameters(DbCommand
command, Database database)
{
…
if (AlreadyCached(command, database))
{
AddParametersFromCache(command, data-
base);
}
else
{
database.DiscoverParameters(command);
}

Testing the Data Access Application Block 63

Code test case Implemented? Feature that is implemented
Verify that the parameter nam-
ing convention for a particular
database is handled by the
application block instead of
being included in the applica-
tion code. For example, a SQL
Server database requires that
parameter names begin with
the “@” character. This should
be appended by the applica-
tion block so that the code
remains portable.

Yes The Database class contains the BuildPar-
ameterName virtual method. In the case of
a SQL Server database, parameter names
begin with the “@” symbol. The SqlDatabase
class overrides the BuildParameterName
method and appends the “@” symbol. This is
shown in the following code example.
public override string BuildParameter
Name(string name)
{
if (name[0] != this.ParameterToken)
{
return name.Insert(0, new
string(this.ParameterToken, 1));
}
return name;
}

Verify that the performance
counters and the event log
that are required by the ap-
plication block are installed
during installation.

Yes For example, the DataInstrumentationListen-
er class contains the installer attribute type
[HasInstallableResourcesAttribute]. The
EventLogInstallerBuilder and Performance-
CounterInstallerBuilder installer classes
recognize this attribute and install the perfor-
mance counters and event logs.

To learn how the test teams tested the application blocks to see if they conformed
to security best practices, see Testing for Security Best Practices. To learn how the test
teams tested the application blocks to see if they conformed to globalization best
practices, see Testing for Globalization Best Practices. To learn how the test teams tested
the application blocks to see if they met the performance and scalability require-
ments, see Testing for Performance and Scalability.

file:///C:/OTSI/EntLib/Test%20Guide/Edit/Testing for Security Best Practices.doc
file:///C:/OTSI/EntLib/Test%20Guide/Edit/Testing for Globalization Best Practices.doc
file:///C:/OTSI/EntLib/Test%20Guide/Edit/Testing for Performance and Scalability.doc

Enterprise Library Test Guide64

Using Automated Tests
Automated tests ensure that the application block functions in accordance with its
requirements. Automated tests make regression testing easier and certain tests, such
as simulating a large number of uses to test a multithreading scenario, require auto-
mation.

Table 5 lists the Visual Studio Team System tests that were used with the Data Access
Application Block.

Table 5: Visual Studio Team System Tests for the Data Access Application Block

Test case Result Automated test
Verify that the
application block
throws the appropri-
ate exception when it
receives invalid data.

Passed The following test uses a null command.
[TestMethod]
[ExpectedException(typeof(System.ArgumentNullEx-
ception))]
public void NullCommandTest()
{
Database db = DatabaseFactory.CreateDatabase("Orac
leTest");
DbCommand dbCommand = null;
db.ExecuteScalar(dbCommand);
}

Verify that the ap-
plication block suc-
cessfully executes
a query when it
receives valid data.

Passed For example, the following test case tests the ExecuteScalar
method with a DbCommand object as input.
[TestMethod]
public void ExecuteScalarDBCommandSPTest()
{
Database db = DatabaseFactory.CreateDatabase("Data
SQLTest");
string spName = "ItemsDescriptionGet";

DbCommand dbCommandWrapper = db.GetStoredProcComma
nd(spName);
object actualResult = db.ExecuteScalar(dbCommandWr
apper);
 Assert.AreEqual(actualResult.ToString().
Trim(),"Digital Image Pro");
}

Verify that Database-
derived classes,
such as SqlDatabase
and OracleData-
base, can be created
directly, without us-
ing a configuration
source.

Passed The following test uses a constructor to create a SqlData-
base object.
[TestMethod]
public void ExecuteScalarDBCommandSPDirectTest()
{
SqlDatabase db = new SqlDatabase(@"server=(loc
al)\sqlexpress;database=TestDatabase;Integrated
Security=true");

Assert.IsNotNull(db);
}

Testing the Data Access Application Block 65

Test case Result Automated test
Verify that database
providers, such as
OLEDB and ODBC,
work with the appli-
cation block.

Passed The following is the information in the configuration file.
It tells the application block that it should use an OLEDB
provider.
<connectionStrings>
<add
 name="GenericSQLTest"
 providerName="System.Data.OleDb"
connectionString="Provider=SQLOLEDB;Data
Source=(local)\sqlexpress;Initial Catalog=TestData
base;Integrated Security=SSPI" />
The following is the test.
[TestMethod]
public void NonQueryDBCmdQueryTest()
{
bool isPresent = false;
Database db = DatabaseFactory.CreateDatabase("Gene
ricSQLTest");

string sqlCommand = "Insert into CustomersOrders
values(13, 'John',3, 214)";

DbCommand dbCommandWrapper = db.GetSqlStringComman
d(sqlCommand);
 db.ExecuteNonQuery(dbCommandWrapper);

SqlConnection conn = new SqlConnection();

conn.ConnectionString = connStr;
conn.Open();
SqlCommand cmd = new SqlCommand("select * from
CustomersOrders where CustomerName = 'John'",
conn);
SqlDataReader dr = cmd.ExecuteReader();
while (dr.Read())
{
Assert.AreEqual(3, Convert.ToInt32(dr["ItemId"].
ToString()));
 Assert.AreEqual(214, Convert.
ToInt32(dr["QtyOrdered"].ToString()));
isPresent = true;
}
dr.Close();
Assert.AreEqual(true, isPresent);
}

continued

Enterprise Library Test Guide66

Test case Result Automated test
Verify that custom
database classes
that are derived from
the Database class
can be added to the
application block
and configured from
information in the
configuration source.

Passed In this example, the custom database class CustomMock-
Database derives from the Database class. The Enterprise
Library Core uses information in the configuration file to add
the custom class to the application block.
[DatabaseAssembler(typeof(CustomDatabaseCustomAsse
mbler))]
public class CustomMockDatabase : Database
{
public CustomMockDatabase(string connection-
String):base(connectionString,SqlClientFactory.
Instance)
{
…
}

protected override void DeriveParameters(System.
Data.Common.DbCommand discoveryCommand)
{
…
);
}

public class CustomDatabaseCustomAssembler : IDa-
tabaseAssembler
{
public Database Assemble(string name, System.
Configuration.ConnectionStringSettings connection-
StringSettings, Microsoft.Practices.EnterpriseLi-
brary.Common.Configuration.IConfigurationSource
configurationSource)
{
return new CustomMockDatabase(connectionStringSett
ings.ConnectionString);
}
}
The following is the information in the configuration file.
<connectionStrings>
<add name="CustomDatabase"
providerName="CustomDatabase"
connectionString="…" />
<connectionStrings>
<providerMappings>
<add databaseType="….CustomMockDatabase,…"
name="CustomDatabase"/>
</providerMappings>
The following is the test case.
[TestMethod]
public void CreateCustomDatabaseTest()
{
Database db= DatabaseFactory.CreateDatabase("Cus
tomDatabase");
Assert.IsNotNull(db);
}

Testing the Exception Handling
Application Block

This chapter explains how functional testing techniques were used to test the Excep-
tion Handling Application Block. If you have modified or extended the Exception
Handling Application Block, you can use the same techniques and adapt the chap-
ter’s templates and checklists to test your own work.

Requirements for the Exception Handling Application Block
The Exception Handling Application Block has the following requirements:

The application block should support commonly used exception handling
operations, such as logging the exceptions, replacing the original exception with
another exception and wrapping the original exception with another exception.
The application block should be able to combine the exception handlers. For
example, it should be possible to log the exception information and then replace
the original exception with another.
The application block should support configurable instrumentation, including
WMI (Windows Management Instrumentation), performance counters, and event
logs.
The application block should be extensible.
The application block should be able to read configuration information from any
configuration source, such as an XML file or a database.
The application block should work with desktop applications and with Web
applications.

These requirements must be incorporated into the design and implemented by the
code.

Selecting the Test Cases
The first step in a functional review is to make sure that the design and the code
support these requirements. You do this by deciding the test cases that the design
and code must satisfy. Table 1 lists the test cases that the application block’s design
must satisfy.

●

●

●

●

●

●

Enterprise Library Test Guide68

Table 1: Exception Handling Application Block Design Test Cases

Priority Design test case
High Verify that the exception handlers and the exception formatters are extensible.
High Verify that there is a consistent approach to creating exception policies, exception

handlers, and exception formatters.
High Verify that there is a façade that mediates between the client code and the application

block to handle exceptions.
High Verify that the application block generates a new GUID named the HandlingInstan-

ceID for every exception that is handled.
High Verify that the ability to create the application block’s domain objects from the con-

figuration data follows the Dependency Injection pattern.
High Verify that the application block can retrieve configuration data from different sources,

such as an application configuration file, a database, or from memory.
High Verify that the instrumentation uses loosely coupled events.
High Verify that situations that can cause exceptions are addressed and that the application

block logs the exceptions through the instrumentation.
High Verify that the application block supports custom property collections for the custom

exception handlers.

After you identify the design issues, you should do the same for the code. Table 2
lists the test cases that the Exception Handling Application Block code must satisfy.

Table 2: Exception Handling Application Block Code Test Cases

Priority Code test case
High Verify that the ExceptionPolicy façade exposes a public method to handle the

exceptions.
High Verify that the ExceptionPolicy façade uses the ExceptionPolicyFactory class to cre-

ate the exception handling provider.
High Verify that an assembler class creates exception handlers and injects the configuration

object values into those domain objects.
High Verify that the application block uses performance counters to monitor exception

handling operations when the performance counters are enabled.
High Verify that the application block uses WMI and the event log to monitor errors during

exception handling operations when the WMI and event log are enabled.
High Verify that the configuration properties of the exception handling policies are exposed

as public and that they are strongly typed.
High Verify that the configuration properties for the custom exception handlers are ex-

posed as public and that they are implemented as a collection.

Medium Verify that the application block validates the input at all the entry points, such as the
ExceptionPolicy façade.

High Verify that the ExceptionPolicyFactory class creates only a single instance of the
exception handling provider for all the requests.

High Verify that the application block supports post handling actions, such as None, Notify-
Rethrow, and ThrowNewException, after it executes the exception handlers.

Testing the Enterprise Library Core 69

Priority Code test case
High Verify that the application block uses the Logging Application Block to log the excep-

tions.
High Verify that the performance counters and the event log that are required by the ap-

plication block are installed during installation.
Medium Verify that the application block requests or demands the appropriate code access

security permissions to access protected system resources and operations.
High Verify that the application block follows exception management best practices.
High Verify that the application block follows security best practices.
Medium Verify that the application block follows globalization best practices.
High Verify that the application block follows performance best practices.

Verifying the Test Cases
After you identify all the design test cases, you can verify that the design satisfies
them. Table 3 lists how each of the design test cases were verified for the Exception
Handling Application Block.

Table 3: Exception Handling Application Block Design Verification

Design test case
Imple-
mented? Feature that implements design

Verify that the exception han-
dlers and the exception format-
ters are extensible.

Yes The IExceptionHandler interface allows users to
implement a configurable exception handler. The
ExceptionFormatter class allows users to extend
an exception formatter.

Verify that there is a consistent
approach to creating exception
policies, exception handlers,
and exception formatters.

Yes The ExceptionHandlerCustomFactory class is the
factory that creates the objects that implement the
IExceptionHandler interface.

Verify that there is a façade
that mediates between the
client code and the application
block to handle exceptions.

Yes The ExceptionPolicy class is a façade that acts
as the interface between the client code and the
application block.

Verify that the application block
generates a new GUID named
the HandlingInstanceID for
every exception that is
handled.

Yes The ExceptionPolicyEntry.Handle method gener-
ates a new GUID named the HandlingInstanceID
and passes that GUID to the exception handlers.

Verify that the ability to create
the application block’s domain
objects from the configuration
data follows the Dependency
Injection pattern.

Yes The ExceptionPolicyFactory class derives from the
LocatorNameTypeFactoryBase generic type, which
takes the configuration source as input, creates
the domain object, and injects the relevant configu-
ration data into the domain object.

continued

Enterprise Library Test Guide70

Design test case
Imple-
mented? Feature that implements design

Verify that the application block
can retrieve configuration data
from different sources, such
as an application configura-
tion file, a database, or from
memory.

Yes The ExceptionPolicyFactory class has a construc-
tor that accepts a configuration source as an input
parameter.

Verify that the instrumentation
is implemented with loosely
coupled events.

Yes The methods in the ExceptionHandlingInstrumen-
tationProvider class that raise the events bind to
the methods in the ExceptionHandlingInstrumen-
tationListener class at run time.

Verify that situations that can
cause exceptions are ad-
dressed and that the applica-
tion block logs the exceptions
through the instrumentation.

Yes For example, the ExceptionPolicyImpl class,
which handles the exception policies, includes the
InstrumentationProvider property. This property
retrieves the instrumentation provider that defines
the events for exception handling. The provider
logs the events to WMI and the event log.

Verify that the application block
supports custom property col-
lections for the custom excep-
tion handlers.

Yes The CustomHandlerData class provides the ability
to configure custom property collections for cus-
tom exception handlers.

After the code is implemented, you can review it to see if it satisfies its test cases.
Table 4 lists the results of a code review for the Exception Handling Application
Block.

Table 4: Exception Handling Application Block Code Verification

Code test case
Imple-
mented? Feature that is implemented

Verify that the Exception-
Policy façade exposes a
public method to handle
the exceptions.

Yes The ExceptionPolicy class is a façade that exposes
the HandleException method to handle an exception.
This is shown in the following code.
public static bool HandleException(Exception
exceptionToHandle, string policyName){}

Testing the Enterprise Library Core 71

Code test case
Imple-
mented? Feature that is implemented

Verify that the Exception-
Policy façade uses the
ExceptionPolicyFactory
class to create an Excep-
tionPolicyImpl object,
which handles exception
policies.

Yes The client code calls static methods on the Excep-
tionPolicy class to handle exceptions. The static
method instantiates a factory class. The factory uses
the configuration data from the configuration file and
creates the exception policies. The following code
demonstrates how the ExceptionPolicy.HandleExcep-
tion method calls the ExceptionPolicyFactory class to
create an ExceptionPolicyImpl object that handles the
exception.
public static class ExceptionPolicy
{
private static readonly ExceptionPolicyFac-
tory factory = new ExceptionPolicyFactory();

public static bool HandleException(Exception
exceptionToHandle, string policyName)
{
…
ExceptionPolicyImpl policy = GetExceptionPoli
cy(exceptionToHandle, policyName);

…

}

private static ExceptionPolicyImpl GetExcept
ionPolicy(Exception exception, string policy-
Name)
{
…
return factory.Create(policyName);
…

}

continued

Enterprise Library Test Guide72

Code test case
Imple-
mented? Feature that is implemented

Verify that an assembler
class that implements
the IAssembler interface
creates the exception
handlers and injects the
configuration object values
into those domain objects.

Yes The following code demonstrates how the Logging-
ExceptionHandlerAssembler class, which implements
the IAssembler interface, creates a LoggingException-
Handler object. The Assemble method in the Logging-
ExceptionHandlerAssembler class injects the configu-
ration data from the LoggingExceptionHandler object
into the LoggingExceptionHandler domain object. The
process is similar for all the exception handlers that
implement the IExceptionHandler interface.
public class LoggingExceptionHandlerAssembler
: IAssembler<IExceptionHandler, ExceptionHan-
dlerData>
{
public IExceptionHandler
Assemble(IBuilderContext context, Exception-
HandlerData objectConfiguration, IConfigu-
rationSource configurationSource, Configura-
tionReflectionCache reflectionCache)
{
LoggingExceptionHandlerData castedObjectCon-
figuration= (LoggingExceptionHandlerData)objec
tConfiguration;
…
LoggingExceptionHandler createdObject = new
LoggingExceptionHandler(castedObjectConfigur
ation.LogCategory,castedObjectConfiguration.
EventId,castedObjectConfiguration.Severity,ca
stedObjectConfiguration.Title,castedObjectCon
figuration.Priority,castedObjectConfiguration.
FormatterType,writer);

return createdObject;
}
}

Testing the Enterprise Library Core 73

Code test case
Imple-
mented? Feature that is implemented

Verify that the application
block uses performance
counters to monitor excep-
tion handling when the
performance counters are
enabled.

Yes For example, the ExceptionPolicyEntry.Handle method
increments the Exceptions Handled/sec performance
counter whenever the application block successfully
handles the exceptions according to the exception
policy. This is shown in the following code example.
public bool Handle(Exception exceptionTo-
Handle)
{
…
Exception chainException = ExecuteHandlerChai
n(exceptionToHandle, handlingInstanceID);

if (InstrumentationProvider != null) Instru-
mentationProvider.FireExceptionHandledE-
vent();
…
}
The ExceptionHandlingInstrumentationProvider class
fires the exceptionHandled event. The ExceptionHan-
dled method consumes the event and increments the
performance counters. This is shown in the following
code example.
[InstrumentationConsumer("ExceptionHandled")]
public void ExceptionHandled(…)
{
if (PerformanceCountersEnabled) exception-
HandledCounter.Increment();
}

continued

Enterprise Library Test Guide74

Code test case
Imple-
mented? Feature that is implemented

Verify that the application
block uses WMI and the
event log to monitor errors
during exception handling
operations when the WMI
and event log are enabled.

Yes For example, the ExceptionPolicyEntry.Handle method
calls the private method ExecuteHandlerChain to
execute the exception handlers that are defined in the
exception policy. If an exception occurs while the Exe-
cuteHandlerChain method handles the exceptions, the
FireExceptionHandlingErrorOccurred method notifies
WMI and the event log. The FireExceptionHandlingEr-
rorOccurred method sends the error message to the
ExceptionHandlingFailureEvent WMI event and logs
the error to the Enterprise Library Exception Handling
event log. This is shown in the following code example.
private Exception ExecuteHandlerChain(Excepti
on ex, Guid handlingInstanceID)
{
try
{
…
ex = handler.HandleException(ex, handlingIn-
stanceID);
}
catch (…)
{
…
InstrumentationProvider.FireExceptionHan-
dlingErrorOccurred(…));
…
}
The ExceptionHandlingInstrumentationProvider class
fires the exceptionHandlingErrorOccured event. The
ExceptionHandlingErrorOccured method consumes
the event and notifies WMI and logs the exception
to the event log. This is shown in the following code
example.
[InstrumentationConsumer("ExceptionHandlingEr
rorOccurred")]
public void ExceptionHandlingErrorOccurred(…)
{
if (EventLoggingEnabled)
{
…
EventLog.WriteEntry(GetEventSourceName(),
entryText, EventLogEntryType.Error);
}
if (WmiEnabled) ManagementInstrumentation.
Fire(new ExceptionHandlingFailureEvent(instan
ceName, e.Message));
}

Testing the Enterprise Library Core 75

Code test case
Imple-
mented? Feature that is implemented

Verify that the configuration
properties of the excep-
tion handling policies are
exposed as public and that
they are strongly typed.

Yes For example, in the ExceptionHandlingSettings class,
the ExceptionPolicies property can only contain an
ExceptionPolicyData collection. The following code
demonstrates this.
[ConfigurationProperty(policiesProperty)]
public NamedElementCollection<ExceptionPolicy
Data> ExceptionPolicies
{
get { return (NamedElementCollection
<ExceptionPolicyData>)this[policiesProperty];
}
}

Verify that the configuration
properties for the custom
exception handlers are
exposed as public and that
they are implemented as a
collection.

Yes The CustomHandlerData class has a reference to the
CustomProviderDataHelper class. This class adds the
properties that are defined in the configuration source
to an instance of the NameValueCollection class. This
is shown in the following code example.
private NameValueCollection attributes;

private void AddAttributesFromConfigura-
tionProperties()
{
foreach (ConfigurationProperty property in
propertiesCollection)
{
…
attributes.Add(property.Name, (string)helped
CustomProviderData.BaseGetPropertyValue(prop
erty));
}
}

Verify that the application
block validates the input at
all the entry points, such
as the ExceptionPolicy
façade.

Yes The ExceptionPolicy façade validates the input param-
eters that are passed to the HandleException method.
This is shown in the following code example.
public static bool HandleException(Exception
exceptionToHandle, string policyName)
{
if (exceptionToHandle == null) throw new
ArgumentNullException("exceptionToHandle");

if(string.IsNullOrEmpty(policyName))
throw new ArgumentException(…);
}

Verify that the Exception-
PolicyFactory class only
creates a single instance
of the exception handling
provider for all requests.

Yes The ExceptionPolicyFactory class derives from the
LocatorNameTypeFactoryBase class. This class only
creates a single instance for all requests.

continued

Enterprise Library Test Guide76

Code test case
Imple-
mented? Feature that is implemented

Verify that the applica-
tion block supports post
handling actions such as
None, NotifyRethrow, and
ThrowNewException after
it executes the exception
handlers.

Yes The ExceptionPolicyEntry class executes the ex-
ception handlers for the given exception. This class
contains a method named Handle that calls the private
method RethrowRecommended. This method ex-
ecutes the post handling action. This is shown in the
following code example.
private bool RethrowRecommended(Exception
chainException, Exception originalException)
{
if (postHandlingAction == PostHandlingAction.
None) return false;

if (postHandlingAction == PostHandlingAction.
ThrowNewException)
{
throw IntentionalRethrow(chainException,
originalException);
}
return true;
}

Verify that the application
block uses the Logging
Application Block to log the
exceptions.

Yes The LoggingExceptionHandler class logs the excep-
tions. This class has a method named WriteToLog that
uses an instance of the Logging Application Block’s
LogWriter class. This is shown in the following code
example.
public class LoggingExceptionHandler : IEx-
ceptionHandler
{
private readonly LogWriter logWriter;

protected virtual void WriteToLog(string log-
Message, IDictionary exceptionData)
{
this.logWriter.Write(entry);
}
}

Verify that the performance
counters and the event log
that are required by the ap-
plication block are installed
during installation.

Yes For example, the ExceptionHandlingInstrumentation-
Listener class contains the installer attribute type
[HasInstallableResourcesAttribute]. The EventLogIn-
stallerBuilder and the PerformanceCounterInstaller-
Builder installer classes, which are in the Enterprise
Library Core, recognize this attribute and install the
performance counters and event logs.

Testing the Enterprise Library Core 77

To learn how the test teams tested the application blocks to see if they conformed
to security best practices, see Testing for Security Best Practices. To learn how the test
teams tested the application blocks to see if they conformed to globalization best
practices, see Testing for Globalization Best Practices. To learn how the test teams tested
the application blocks to see if they met the performance and scalability require-
ments, see Testing for Performance and Scalability.

Using Automated Tests
Automated tests ensure that the application block functions in accordance with its
requirements. Automated tests make regression testing easier and certain tests, such
as simulating a large number of uses to test a multithreading scenario, require auto-
mation.

Table 5 lists the Visual Studio Team System tests that were used with the Exception
Handling Application Block.

Table 5: Visual Studio Team System Tests for the Exception Handling Application Block

Test case Result Automated test
Verify that the
application block
throws the appropri-
ate exception when
it receives invalid
data.

Passed The following test uses a null policy.
[TestMethod]
[ExpectedException(typeof(ArgumentException))]
public void NoPolicyTest()
{
Exception originalException = new System.Security.
SecurityException("No Policy defined");
bool rethrow = ExceptionPolicy.HandleException(orig
inalException, null);
}

continued

file:///C:/OTSI/EntLib/Test%20Guide/Testing for Security Best Practices.doc
file:///C:/OTSI/EntLib/Test%20Guide/Testing for Globalization Best Practices.doc
file:///C:/OTSI/EntLib/Test%20Guide/Testing for Performance and Scalability.doc

Enterprise Library Test Guide78

Test case Result Automated test
Verify that the post
handling action
can be configured
as NotifyRethrow,
None, or ThrowNew-
Exception. Also
verify that the
exception handler
executes the cor-
rect post handling
action.

Passed In the following test, the post handling action is NotifyRethrow.
This means that after the exception handler executes, the ap-
plication block should return true to the calling code. There are
similar tests for the other post handling actions.
<exceptionHandling>
 <exceptionPolicies>
<add name="Wrap Rethrow">
<exceptionTypes>
<add name="FileNotFoundException" type="System.
IO.FileNotFoundException, …" postHandlingAction="No
tifyRethrow">
<exceptionHandlers>
<add name="Wrap Handler" type="Microsoft.Practices.
EnterpriseLibrary.ExceptionHandling.WrapHandler,
Microsoft.Practices.EnterpriseLibrary.ExceptionHan-
dling" exceptionMessage="…" wrapExceptionType="…"
/>
</exceptionHandlers>
</add>
</exceptionTypes>
</add>
 </exceptionPolicies>
</exceptionHandling>

[TestMethod]
public void WrapPostHandlingRethrowTest()
{
bool rethrow = false;
Exception originalException = new System.IO.FileNo
tFoundException("Original Exception: File Not found
exception");
rethrow = ExceptionPolicy.HandleException(originalE
xception, "Wrap Rethrow");
Assert.IsTrue(rethrow);
}

Testing the Enterprise Library Core 79

Test case Result Automated test
Verify that the
logging exception
handlers log the
exceptions to the
trace listeners that
are in the configura-
tion source.

Passed In the following test, the LoggingExceptionHandler class is
configured to log exceptions to the event log. (The Logging
Application Block configuration is not shown.) The test case
verifies that the exception is logged to the event log. Similar
tests exist for other handlers, such as the WrapHandler and
the ReplaceHandler classes.
The following is the configuration information.
<exceptionHandling>
<exceptionPolicies>
<add name="Logging To Event Sink PostHandlingAction
None">
<exceptionTypes>
<add name="SecurityException" type="System.Securi-
ty.SecurityException, …" postHandlingAction="None">
<exceptionHandlers>
<add name="Logging Handler" type="Microsoft.Prac-
tices.EnterpriseLibrary.ExceptionHandling.Logging.
LoggingExceptionHandler, Microsoft.Practices.Enter-
priseLibrary.ExceptionHandling.Logging" logCategor
y="FormattedEventCategory" eventId="…" severity="…"
title="…" formatterType="…" priority="…" />
</exceptionHandlers>
</add>
</exceptionTypes>
</add>
</exceptionPolicies>
</exceptionHandling>
The following is the test.
[TestMethod]
public void LoggingNoneActionEventSinkTest()
{
Exception originalException = new System.Security.
SecurityException("Security Exception logged in
event sink");
bool rethrow = ExceptionPolicy.HandleException(ori
ginalException, "Logging To Event Sink PostHandlin-
gAction None");
using (EventLog eventlog = new
EventLog("Application"))
{
int entryCount = eventlog.Entries.Count;
Assert.AreEqual("ExceptionHandlingLogging",
eventlog.Entries[eventlog.Entries.Count -
1].Source);
Assert.AreEqual(Convert.ToInt64(100), eventlog.
Entries[eventlog.Entries.Count - 1].InstanceId);
}
}

continued

Enterprise Library Test Guide80

Test case Result Automated test
Verify that Excep-
tionHandler objects
can be created
directly, without
using a configura-
tion source.

Passed The following example verifies that a WrapHandler object
can be created directly, without using a configuration source.
There are similar tests for ReplaceHandler objects and Log-
gingExceptionHandler objects.
[TestMethod]
public void WrapExceptionCreateDirect()
{
Exception originalException = new System.Arithmetic
Exception("Arithmetic Exception is not handled");
WrapHandler handler = new WrapHandler("Wrapped
Exception: Arithmetic Exception wrapped with Se-
curity Exception", Type.GetType("System.Security.
SecurityException, mscorlib, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089")
);
Exception wrappedException = handler.HandleExceptio
n(originalException, new Guid());
Assert.IsTrue(wrappedException is System.Security.
SecurityException);
 Assert.AreEqual(wrappedException.Mes-
sage, "Wrapped Exception: Arithmetic Exception
wrapped with Security Exception");
 Assert.IsTrue(wrappedException.InnerEx-
ception is ArithmeticException);
}

Verify that custom
exception handlers
can be added to the
application block
from information in
the configuration
source.

Passed In this example, a custom exception handler implements the
IExceptionHandler interface. The test verifies that that custom
handler class can be added to the application block from infor-
mation in the configuration source.
The following is the custom exception hander.
CustomExceptionHandler class
[ConfigurationElementType(typeof(CustomHandlerData)
)]
public class CustomExceptionHandler : IException-
Handler
{
…
NameValueCollection attributes;

public CustomExceptionHandler(){}
public CustomExceptionHandler(NameValueCollection
attributes){…}

public Exception HandleException(Exception excep-
tion, Guid correlationID)
{
 …
 return exception;
}
}

Testing the Enterprise Library Core 81

Test case Result Automated test
The following is the information in the configuration file.
<add name="Custom Handler">
<exceptionTypes>
<add name="SecurityException" type="System.Secu-
rity.SecurityException, …" postHandlingAction="Thro
wNewException">
<exceptionHandlers>
<add name="Custom Handler Throw" type="….CustomEx-
ceptionHandler,…" />
</exceptionHandlers>
</add>
</exceptionTypes>
</add>
The following is the test case.
[TestMethod]
public void CustomExceptionHandlerTest()
{
string expectedException = "";
try
{
ExceptionPolicy.HandleException(new
SecurityException("To test custom handler"), "Cus-
tom Handler");
}
catch(Exception ex)
{
expectedException = ex.Message;
}
Assert.AreEqual(expectedException, "To test custom
handler");
}

continued

Enterprise Library Test Guide82

Test case Result Automated test
Verify that the ap-
plication block can
be configured with a
dictionary configura-
tion source.

Passed This test verifies that the application block can be configured
from information in a dictionary configuration source. In this
test, the replace handler replaces the original exception mes-
sage with the one that is configured in the dictionary source.
There are similar tests for other handlers.
public class DictionarySourceSection
{
public DictionaryConfigurationSource BuildDiction-
arySourceSection()
{
DictionaryConfigurationSource section = new Diction-
aryConfigurationSource();
ExceptionHandlingSettings setting = new Exception-
HandlingSettings();

ExceptionPolicyData policyData = new ExceptionPolic
yData("Replace Handler Test");
ExceptionTypeData typeData = new ExceptionTypeData
("SecurityException",Type.GetType("System.Security.
SecurityException, …),PostHandlingAction.ThrowNew-
Exception);
ReplaceHandlerData replaceHandlerData = new Replac
eHandlerData("Replace Handler", "Testing Dictionary
Source", Type.GetType(…));
typeData.ExceptionHandlers.Add(replaceHandlerData);
policyData.ExceptionTypes.Add(typeData);
setting.ExceptionPolicies.Add(policyData);
section.Add("exceptionHandling", setting);
…
return section;
}
}

Testing the Enterprise Library Core 83

Test case Result Automated test
To execute the test method the source has to be created. The
Initialize method creates the source and passes it to the fac-
tory.
private DictionaryConfigurationSource configSource;
private ExceptionPolicyFactory factory;

[TestInitialize()]
public void Initialize()
{
DictionarySourceSection sourceSection = new Dic-
tionarySourceSection();
configSource = sourceSection.BuildDictionarySourceS-
ection();
factory = new ExceptionPolicyFactory(configSource)
;
}
The following is the test.
[TestMethod]
public void ReplaceHandlerDicSourceTest()
{
string expectedMessage = "";
try
{
ExceptionPolicyImpl policy = factory.Create("Replace
Handler Test");
policy.HandleException(new System.Security.Security
Exception("Original Exception"));
}
catch (Exception ex)
{
expectedMessage = ex.Message;
}
Assert.AreEqual (expectedMessage, "Testing Diction-
ary Source");
}

Testing the Logging Application
Block

This chapter explains how functional testing techniques were used to test the Log-
ging Application Block. If you have modified or extended the Logging Application
Block, you can use the same techniques and adapt the chapter’s templates and check-
lists to test your own work.

Requirements for the Logging Application Block
The Logging Application Block has the following requirements:

The application block should be extensible.
The application block should support common logging operations.
The application block should be able to distribute logging information to multiple
sources.
The application block should support tracing to mark the start and end of an
activity.
The trace listeners, filters, and formatters should be configurable.
The application block should be able to read configuration information from any
configuration source, such as an XML file or a database.
The application block should support configurable instrumentation, including
WMI (Windows Management Instrumentation), performance counters, and event
logs.
The application block should work with desktop applications and with Web
applications.

Selecting the Test Cases
The first step in a functional review is to make sure that the design and the code sup-
port these requirements. You do this by deciding the test cases that the design and
code must satisfy. Table 1 lists the test cases that the application block’s design must
satisfy.

●

●

●

●

●

●

●

●

Enterprise Library Test Guide86

Table 1: Logging Application Block Design Test Cases

Priority Design test case
High Verify that the application block can be extended with custom trace listeners, custom

formatters, and custom filters.
High Verify that the application block uses a simple façade to log messages.
High Verify that there is a consistent approach to creating filters, formatters, and trace

listeners.
High Verify that the application block can retrieve configuration data from different sources,

such as an application configuration file, a database, or from memory.
High Verify that the design addresses situations that can cause exceptions and that the

application block logs the exceptions through the instrumentation.
High Verify that the instrumentation is implemented with loosely coupled events.
High Verify that the application block can use .NET trace listeners.
High Verify that the application block supports custom property collections for the custom

trace listeners, custom formatters and custom filters.

After you identify the design issues, you should do the same for the code. Table 2
lists the test cases that the Logging Application Block code must satisfy.

Table 2: Logging Application Block Code Test Cases

Priority Code test case
High Verify that the Logger façade exposes all public members as static and that it uses

overloads to support different ways to log information.
High Verify that the application block validates the input at all of its entry points.
High Verify that any errors that occur during a logging operation are logged to the errors

special trace source, if it is in the configuration source.
High Verify that the application block can distribute information to multiple trace sources.
High Verify that the application block responds to run-time configuration changes.
High Verify that the application block disposes of the old LogWriteStructureHolder object

and creates a new one, if the configuration information changes at run time.
High Verify that the Logger façade creates the LogWriter object only once and that it uses

the same object for all logging requests that come from the same application.
High Verify that all logged messages are also logged to the all events special trace source,

if it is in the configuration source.
High Verify that the assembler classes that implements the IAssembler interface inject the

configuration values into the domain objects.
High Verify that the application block can trace an activity from start to finish.
High Verify that the application block uses performance counters to monitor the logging

operations, if the performance counters are enabled.
High Verify that the application block uses WMI and the event log to monitor and record

errors that occur during logging operations, if WMI and the event log are enabled.
High Verify that the application block exposes a dictionary collection property so that the

application block can log customized logging information.

Testing the Logging Application Block 87

Priority Code test case
High Verify that the logging application block can log the same message to multiple catego-

ries.
High Verify that the application block logs messages to the trace listeners in a thread safe

manner.
High Verify that the performance counters and the event log that are required by the appli-

cation block are installed during installation.
Medium Verify that the application block requests or demands the appropriate code access

security permissions to access protected resources and operations.
High Verify that the application block follows exception management best practices.
High Verify that the application block follows security best practices.
Medium Verify that the application block follows globalization best practices.
High Verify that the application block follows performance best practices.

Verifying the Test Cases
After you identify all the design test cases, you can verify that the design satisfies
them. Table 3 lists how each of the design test cases were verified for the Logging
Application Block.

Table 3: Logging Application Block Design Verification

Design test case Implemented? Feature that implements design
Verify that the application
block can be extended with
custom trace listeners, cus-
tom formatters, and custom
filters.

Yes The CustomTraceListener class and the
TraceListener class allow users to create
custom trace listeners.
The ILogFormatter interface and the LogFor-
matter class allow users to create custom
formatters.
The ILogFilter interface and the LogFilter
class allow users to create custom filters.

Verify that the application
block uses a simple façade to
log messages.

Yes The Logger class is a façade that provides
simple methods to log messages.

Verify that there is a consis-
tent approach to creating
trace listeners, formatters,
and filters.

Yes The TraceListenerCustomFactory class cre-
ates trace listener objects. The LogFormat-
terCustomFactory class creates formatter
objects. The LogFilterCustomFactory class
creates filter objects.

Verify that the application block
can retrieve configuration data
from different sources, such
as an application configura-
tion file, a database, or from
memory.

Yes The LogWriterFactory class has a construc-
tor that accepts a configuration source as an
input parameter.

continued

Enterprise Library Test Guide88

Design test case Implemented? Feature that implements design
Verify that the design ad-
dresses situations that can
cause exceptions and that
the application block logs the
exceptions through the instru-
mentation.

Yes For example, the LogWriter class includes
the InstrumentationProvider property. This
property retrieves the instrumentation pro-
vider that defines the events for the applica-
tion block. It logs the events to WMI and to
the event log.

Verify that the instrumentation
is implemented with loosely
coupled events.

Yes The methods in the LoggingInstrumentation-
Provider class that raise the events bind to
the methods in the LoggingInstrumentation-
Listener class at run time.

Verify that the application
block can use .NET trace
listeners.

Yes The SystemDiagnosticsTraceListenerData
class configures .NET trace listeners so that
the application block can use them.

Verify that the application
block supports custom prop-
erty collections for the custom
trace listeners, custom for-
matters, and custom filters.

Yes The CustomTraceListenerData class sup-
ports custom property collections for custom
trace listeners. Similarly, the CustomFilter-
Data class and the CustomFormatterData
class support custom property collections for
custom filters and custom formatters.

After the code is implemented, you can review it to see if it satisfies its test cases.
Table 4 lists the results of a code review for the Logging Application Block.

Table 4: Logging Application Block Code Verification

Code test case Implemented? Feature that is implemented
Verify that the
Logger façade
exposes all public
members as static
and that it uses
overloads to sup-
port different ways
to log information.

Yes The Logger.Write method has multiple overloads to log
messages that have different properties. Some of the
overloads are shown in the following code examples.
// writes a message to the category specified
// in the log object
public static void Write(LogEntry log){}
// writes a log entry to the default category
public static void Write(object message){}
// writes a log message to a specific category
public static void Write(object message, string
category){}
// writes a log message to a specific category
// and assigns a priority to the message
public static void Write(object message, string
category, int priority){}

Testing the Logging Application Block 89

Code test case Implemented? Feature that is implemented
Verify that the
application block
validates the input
at all of its entry
points.

Yes For example, the Tracer class that traces the log meth-
ods first validates the LogWriter object before it starts
to trace a method. An invalid input causes an exception.
This is shown in the following code example.
public Tracer(…, LogWriter writer, …)
{
if (writer == null) throw new ArgumentNullExcep
tion("writer", …);
}

Verify that the
errors that occur
during a logging
operation are
logged to the er-
rors special trace
source, if it is in
the configuration
source.

Yes For example, in the following code, if the missingCat-
egories category is not in the configuration source, the
application block logs an error to the errors special trace
source that is in the configuration source.
private void ReportMissingCategories(List<strin
g> missingCategories, LogEntry logEntry)
{
…
structureHolder.ErrorsTraceSource.TraceData(…);
…
}

Verify that the
application block
can log information
to multiple trace
sources.

Yes The Logger.Write method calls the LogWriter.Process-
Log private method. This method logs the information
to multiple trace sources. This is shown in the following
code example.
private void ProcessLog(LogEntry log)
{
…
foreach (LogSource traceSource in matching-
TraceSources)
{
…
traceSource.TraceData(…);
…
}
}

continued

Enterprise Library Test Guide90

Code test case Implemented? Feature that is implemented
Verify that the
application block
responds to run-
time configuration
changes.

Yes The LogWriterStructureHolderUpdater internal class reg-
isters a handler with the configuration source that will be
notified if its data changes. This is shown in the following
code example.
configurationSource.AddSectionChangeHandler(Logg
ingSettings.SectionName, UpdateLogWriter);
If the configuration source changes at run time, the con-
figuration source notifies the UpdateLogWriter method.
This method replaces the old object with a new LogWrit-
erStructureHolder object. This is shown in the following
code example.
public void UpdateLogWriter(…)
{
…
logWriter.ReplaceStructureHolder(newStructureH
older);
}

Verify that the
application block
disposes of the
old LogWriteStruc-
tureHolder object
and creates a
new one when the
configuration infor-
mation changes
during run time.

Yes The UpdateLogWriter method calls the LogWriter.
ReplaceStructureHolder method when the configuration
data changes. This method creates a new LogWriter-
StructureHolder object and disposes of the old one. This
is shown in the following code example.
internal void ReplaceStructureHolder(LogWriterS
tructureHolder newStructureHolder)
{
LogWriterStructureHolder oldStructureHolder =
structureHolder;

structureHolder = newStructureHolder;

oldStructureHolder.Dispose();
}

Verify that the Log-
ger façade creates
the LogWriter ob-
ject only once and
that it uses the
same object for all
logging requests
that come from the
same application.

Yes The Logger class only creates a Writer object if the
object is currently null and is static. This is shown in the
following code example.
public static LogWriter Writer
{
get
{
 if (writer == null)
 {
 …
 writer = factory.Create();
 }
}
}

Testing the Logging Application Block 91

Code test case Implemented? Feature that is implemented
Verify that all
logged messages
are also logged to
the all events spe-
cial trace source, if
it is in the configu-
ration source.

Yes The LogWriter.DoGetMatchingTraceSources method
adds the AllEventsTraceSource object to to the match-
ing trace sources for every request. This is shown in the
following code example.
private IEnumerable<LogSource> DoGetMatchingTra
ceSources(LogEntry logEntry)
{
…
matchingTraceSources.Add(structureHolder.AllEv-
entsTraceSource);
…
}

Verify that an
assembler class
that implements
the IAssembler
interface injects
the configuration
values into the
domain objects.

Yes For example, the PriorityFilterAssembler class creates
the PriorityFilter domain objects. The TextFormatterAs-
sembler class creates the TextFormatter domain objects
and the FormattedEventLogListenerAssembler class
creates the FormattedEventLogListener domain objects.
All these classes implement the IAssembler interface.

Verify that the
application block
can trace an activ-
ity from start to
finish.

Yes The Tracer class traces an activity from start to finish.
The trace is initialized when the application block creates
a Tracer object in the Tracer class constructor. Tracing
stops when the Dispose method of the Tracer object is
invoked. This is shown in the following code example.
public Tracer(string operation)
{
…
Initialize(operation,…);
}

protected virtual void Dispose(bool disposing)
{
…
if (IsTracingEnabled()) WriteTraceEndMessage(e
ndTitle);
…
}

continued

Enterprise Library Test Guide92

Code test case Implemented? Feature that is implemented
Verify that the
application block
uses performance
counters to
monitor the logging
operations, if the
performance coun-
ters are enabled.

Yes For example, the LogSource class increments the Trace
Listener Entries Written/sec performance counter when
it writes to a trace listener. This is shown in the following
code example.
public void TraceData(TraceEventType eventType,
int id, LogEntry logEntry, TraceListenerFilter
traceListenerFilter)
{
…
listener.TraceData(…);
instrumentationProvider.FireTraceListenerEntry-
WrittenEvent();
…
}
The LoggingInstrumentationProvider class raises the
traceListenerEntryWritten event. The TraceListenerEnt-
ryWritten method consumes this event and increments
the performance counters. This is shown in the following
code example.
[InstrumentationConsumer("TraceListenerEntryWr
itten")]
public void TraceListenerEntryWritten(…)
{
if (PerformanceCountersEnabled) traceListe-
nerEntryWritten.Increment();
}

Testing the Logging Application Block 93

Code test case Implemented? Feature that is implemented
Verify that the
application block
uses WMI and
the event log to
monitor and record
errors that occur
during logging
operations, if WMI
and the event log
are enabled.

Yes If an error occurs while the application block logs an
error message, the application block uses the instrumen-
tation provider to log exceptions to WMI and to the event
log. In addition, the LogWriter class logs an exception
to the errors special trace source, if it is included in the
configuration file. This is shown in the following code
example.
private void ReportUnknownException(…)
{
try
{
…
structureHolder.ErrorsTraceSource.TraceData(…);
}
catch (Exception ex)
{
instrumentationProvider.FireFailureLoggingEr-
rorEvent(…);
}
}
If the error cannot be logged to the errors special trace
source, the LoggingInstrumentationProvider class raises
the failureLoggingError event. The FailureLoggingError
method consumes the event and logs the exception to
WMI and to the event log. This is shown in the following
code example.
[InstrumentationConsumer("FailureLoggingError"
)]
public void FailureLoggingError(…)
{
if (WmiEnabled) ManagementInstrumentation.
Fire(new LoggingFailureLoggingErrorEvent(…);
if (EventLoggingEnabled)
{
EventLog.WriteEntry(GetEventSourceName(), en-
tryText, EventLogEntryType.Error);
}
}

continued

Enterprise Library Test Guide94

Code test case Implemented? Feature that is implemented
Verify that the ap-
plication block ex-
poses a dictionary
collection property
so that the applica-
tion block can log
customized logging
information.

Yes The LogEntry.ExtendedProperties property is a diction-
ary collection that supports customized logging informa-
tion. This is shown in the following code example.
private IDictionary<string, object> extended-
Properties;

public IDictionary<string, object> Extended-
Properties
{
get
{
if (extendedProperties == null)
{
extendedProperties = new Dictionary<string,
object>();
}
return this.extendedProperties;
}
set { this.extendedProperties = value; }
}

Verify that the
logging application
block can log the
same message to
multiple catego-
ries.

Yes The LogEntry class has a categories collection that al-
lows the application block to log a message to multiple
categories. This is shown in the following code example.
private ICollection<string> categories

Verify that the
application block
logs messages to
the trace listeners
in a thread safe
manner.

Yes The LogSource class verifies that the trace listeners are
thread safe before it logs the information. This is shown
in the following code example.
public void TraceData(…)
{
try
{
 if (!listener.IsThreadSafe)
 Monitor.Enter(listener);
 listener.TraceData(…);
}
finally
{
if (!listener.IsThreadSafe)
 Monitor.Exit(listener);
}
}

Verify that the per-
formance counters
and the event log
that are required
by the application
block are installed
during installation.

Yes For example, the LoggingInstrumentationListener class
contains the installer attribute type [HasInstallableRe-
sourcesAttribute].
The EventLogInstallerBuilder and PerformanceCoun-
terInstallerBuilder installer classes, which are part of
the Enterprise Library Core, recognize this attribute and
install the performance counters and event logs.

Testing the Logging Application Block 95

To learn how the test teams tested the application blocks to see if they conformed
to security best practices, see Testing for Security Best Practices. To learn how the test
teams tested the application blocks to see if they conformed to globalization best
practices, see Testing for Globalization Best Practices. To learn how the test teams tested
the application blocks to see if they met the performance and scalability require-
ments, see Testing for Performance and Scalability.

Using Automated Tests
Automated tests ensure that the application block functions in accordance with its
requirements. Automated tests make regression testing easier and certain tests, such
as simulating a large number of uses to test a multithreading scenario, require auto-
mation.

Table 5: Visual Studio Team System Tests for the Logging Application Block

Test cases Result Automated test
Verify that the
application block
throws the appropri-
ate exception when it
receives invalid data.

Passed The following test uses an invalid log entry.
[TestMethod]
[ExpectedException(typeof(ArgumentNullException)
)]
public void LogNullValueLogEntryMessage()
{
 Logger.Write(new LogEntry(null, "", -1, -1,
System.Diagnostics.TraceEventType.Critical, "",
null));
}

continued

file:///C:/OTSI/EntLib/Test%20Guide/Edit/Testing for Security Best Practices.doc
file:///C:/OTSI/EntLib/Test%20Guide/Edit/Testing for Globalization Best Practices.doc
file:///C:/OTSI/EntLib/Test%20Guide/Edit/Testing for Performance and Scalability.doc

Enterprise Library Test Guide96

Test cases Result Automated test
Verify that, if the in-
put data is valid, the
application block can
log messages to the
MsmqTraceListener
trace listener.

Passed The following test uses Message Queuing and verifies that
the message is logged to the queue. Similar tests exist to
verify that all the other trace listeners are supported by the
application block.
[TestMethod]
public void LogToMsmq()
{
using (MessageQueue queue = new MessageQueue(@".\
Private$\EntlibTest"))
{
queue.Purge();
queue.Formatter = new XmlMessageFormatter();
string[] types = { "System.String" };
((XmlMessageFormatter)queue.Formatter).Target-
TypeNames = types;
Logger.Write(new LogEntry("To test Msmq listener
using Logger facade","MsmqCategory",1,1,TraceEven
tType.Critical,"",null));
Message message = queue.Receive(new TimeS-
pan(0,0,5));
Assert.IsNotNull(message);
string content = (string) message.Body;
 Assert.IsTrue(content.
Contains("To test Msmq listener using Logger fa-
cade"));
 }

}

Verify that trace
listeners can be cre-
ated directly, without
using a configuration
source.

Passed The following test uses a constructor to create a database
listener and a custom object that is logged to the data-
base.
[TestMethod]
public void LogToDbListenerUsingCustomObject()
{
FormattedDatabaseTraceListener listener = new
FormattedDatabaseTraceListener(DatabaseFactory.
CreateDatabase("SqlServer"), "WriteLog", "AddCat-
egory", new TextFormatter());
 listener.TraceData(null, "Error : ",
TraceEventType.Critical, 1, new MyObject());

Database db = DatabaseFactory.CreateDatabase("Sq
lServer");

DbCommand command = db.GetSqlStringCommand("SELEC
T TOP 1 Message FROM Log ORDER BY LogId DESC");
string messageContents = Convert.ToString(db.
ExecuteScalar(command));
 Assert.AreEqual(messageContents,
"CustomClasses.MyObject");
}

Testing the Logging Application Block 97

Test cases Result Automated test
Verify that custom
classes can be add-
ed to the application
block and configured
from information in
the configuration
source.

Passed In this example, the CustomRegistryListener custom trace
listener derives from the CustomTraceListener class. The
Enterprise Library Core uses information in the configura-
tion source to add the custom class to the application
block. The test verifies that the custom trace listener logs
the registry data to the registry path that is specified in the
configuration file.
The following code defines the CustomRegistryListener
class.
CustomRegistryListener class
[ConfigurationElementType(typeof(CustomTraceListe
nerData))]
public class CustomRegistryListener: Custom-
TraceListener
 {
public CustomRegistryListener():base(){}
public CustomRegistryListener(string initialize-
Data): base(){}

public override void TraceData(…)
{
 …write it to registry
}
public override void Write(){…}

public override void WriteLine(string message){…}
The following is the information in the configuration file.
<listeners>
<add regKey=" SOFTWARE\EntlibTestApp"
regName="LogEntry" listenerDataType="Microsoft.
Practices.EnterpriseLibrary.Logging.Configura-
tion.CustomTraceListenerData, Microsoft.Prac-
tices.EnterpriseLibrary.Logging, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=null"
traceOutputOptions="***" type="***.CustomRegis-
tryListener, ***"
name="***" initializeData="" formatter="***" />
The following is the test.
[TestMethod]
public void LogToRegistryListener()
{
LogEntry log = new LogEntry();
log.Message = "To test CustomTrace Listener that
derives from CustomTraceListener";
log.Title= "LogToRegistryListener";
log.Categories.Add("RegistryCategory");
Logger.Write(log);
RegistryKey key = Registry.LocalMachine.
OpenSubKey(@"Software\EntlibTestApp");
string content = (string) key.
GetValue("LogEntry");
key.Close();
Assert.IsTrue(content.Contains(log.Message));
}

continued

Enterprise Library Test Guide98

Test cases Result Automated test
Verify that a provider
that is configured
with data in a diction-
ary configuration
source can log mes-
sages.

Passed The following example uses a dictionary configuration
source to log messages to a database.
[TestMethod]
public void LogToDb()
{
LogEntry log = new LogEntry("", "DatabaseCatego-
ry", 4, 1000, TraceEventType.Critical, "", null);
log.Title = "Enterprise Library";
log.Message = "Test";
LogWriterFactory factory = new LogWriterFactory(
source);
using (LogWriter writer = factory.Create())
{
 writer.Write(log);
}

DatabaseProviderFactory Dbfactory = new DatabaseP
roviderFactory(source);
Database db = Dbfactory.Create("SqlServer");
DbCommand command = db.GetSqlStringCommand("SELEC
T TOP 1 Message FROM Log ORDER BY LogId DESC");
string messageContents = Convert.ToString(db.
ExecuteScalar(command));
 Assert.AreEqual(messageContents, log.
Message);

}

Testing the Logging Application Block 99

Test cases Result Automated test
Verify that the trace
listeners are thread
safe.

Passed This test verifies that the FormattedEventLogListener
method is thread safe.
[TestMethod]
public void FormattedEventLogListenerTest()
{
using (EventLog eventlog = new
EventLog(HelperClass.GetEventLogName()))
{
int initialCount = eventlog.Entries.Count;
category = "General";
InitiateThread();
int finalCount = eventlog.Entries.Count;
 Assert.IsTrue((finalCount - ini-
tialCount) == threadCount, "Count : " + (final-
Count - initialCount));
}
}
The test uses the InitiateThread and LogToEventLog
helper methods.
private void InitiateThread()
{
Thread[] th = new Thread[threadCount];
for (int i = 0; i < threadCount; i++)
{
th[i] = new Thread(new ThreadStart(LogToEventLog
));
th[i].Start();
}
for (int i = 0; i < threadCount; i++)
{
th[i].Join();
}
}

private void LogToEventLog()
{
LogEntry entry = new LogEntry();
entry.Message = "Test: Thread Test";
entry.Categories.Add(category);
Logger.Write(entry);
}

Testing the Security Application
Block

This chapter explains how functional testing techniques were used to test the Secu-
rity Application Block. If you have modified or extended the Security Application
Block, you can use the same techniques and adapt the chapter’s templates and check-
lists to test your own work.

Requirements for the Security Application Block
The Security Application Block has the following requirements:

The application block should be extensible.
The application block should provide a simple interface for authorization opera-
tions.
The application block should provide a simple interface for saving, expiring, and
retrieving the identity from a caching store.
The application block should provide a standard provider model for authorization
and security-related caching.
Authorization providers and security cache providers should be configurable.
The application block should be able to read configuration information from any
configuration source, such as an XML file or a database.
The application block should support configurable instrumentation, including
WMI (Windows Management Instrumentation), performance counters, and event
logs.
The application block should work with desktop applications and with Web
applications.

These requirements must be incorporated into the design and implemented by the
code.

●

●

●

●

●

●

●

●

Enterprise Library Test Guide102

Selecting the Test Cases
The first step in a functional review is to make sure that the design and the code sup-
port these requirements. You do this by deciding the test cases that they must satisfy
so that the application block fulfills all its requirements.

Table 1 lists the test cases that the application block’s design must satisfy.

Table 1: Security Application Block Design Cases

Priority Design test case
High Verify that the application block can be extended with custom authorization providers

and custom security cache providers.
High Verify that there is a consistent approach to creating authorization providers and secu-

rity cache providers.
High Verify that the application block provides a simple method to perform authorization.
High Verify that the application block provides simple methods to save, expire, and retrieve

an identity from a caching store.
High Verify that the application block implements the standard provider model for authoriza-

tion and security-related operations.
High Verify that the ability to create the application block’s domain objects from the configu-

ration data follows the Dependency Injection pattern.
High Verify that the application block can retrieve configuration data from different sources,

such as an application configuration file, a database, or from memory.
High Verify that the instrumentation is implemented with loosely coupled events.
High Verify that situations that can cause exceptions are addressed and that the application

block logs the exceptions through the instrumentation.
High Verify that the application block supports custom property collections for the custom

authorization providers and custom caching stores.

After you identify the design issues, you should do the same for the code. Table 2
lists the test cases that the Security Application Block code must satisfy.

Table 2: Security Application Block Code Test Cases

Priority Code test case
High Verify that the application block creates one instance of the AuthorizationProvider

class for each request.
High Verify that the application block only creates one instance of the SecurityCachePro-

vider class for the specified instance name.
High Verify that the assembler classes that implements the IAssembler interface create the

authorization providers and the security cache providers, and verify that the assembler
classes inject the configuration object values into those domain objects.

High Verify that the configuration properties of the authorization and security cache provid-
ers are exposed as public and that they are strongly typed.

High Verify that the configuration properties for the custom providers are exposed as public
and that they are implemented as custom property collections.

Testing the Security Application Block 103

Priority Code test case
High Verify that the application block can use default instance names that are defined in

the configuration source to create the authorization providers and the security cache
providers. Verify that the application block can also use specific instance names to
create these providers.

High Verify that the security cache provider encrypts the data stored in the cache.
High Verify that the application block uses performance counters and WMI to monitor autho-

rization and caching operations, if the instrumentation is enabled.
High Verify that the performance counters and the event log that are required by the applica-

tion block are installed during installation.
Medium Verify that the application block requests or demands access to protected system

resources and operations.
High Verify that the application block follows exception management best practices.
High Verify that the application block follows security best practices.
Medium Verify that the application block follows globalization best practices.
High Verify that the application block follows performance best practices.

Verifying the Test Cases
After you identify all the design test cases, you can verify that the design satisfies
them. Table 3 lists how each of the design test cases were verified for the Security
Application Block.

Table 3: Security Access Application Block Design Verification

Design test case Implemented? Feature that implements design
Verify that the ap-
plication block can
be extended with
custom authorization
providers and secu-
rity cache providers.

Yes The IAuthorizationProvider interface and the Au-
thorizationProvider class allow users to implement
or extend a configurable authorization provider. The
ISecurityCacheProvider interface and the Security-
CacheProvider class allow users to implement or
extend a security cache provider.

Verify that there is a
consistent approach
to creating autho-
rization providers
and security cache
providers.

Yes The AuthorizationProviderFactory class creates the
AuthorizationProvider objects.
The SecurityCacheProviderFactory class creates
the SecurityCacheProvider objects.

Verify that the appli-
cation block provides
a simple method to
perform authoriza-
tion.

Yes Both the IAuthorizationProvider interface and the
AuthorizationProvider class expose simple methods
named Authorize that perform authorization. The
AuthorizationRuleProvider class that derives from
the AuthorizationProvider class implements the
Authorize method.

continued

Enterprise Library Test Guide104

Design test case Implemented? Feature that implements design
Verify that the appli-
cation block provides
simple methods to
save, expire, and
retrieve an identity
from a caching store.

Yes The CachingStoreProvider class that derives from
the SecurityCacheProvider exposes the SaveIden-
tity method to save an identity, the ExpireIdentity
method to expire an identity, and the GetIdentity
method to retrieve an identity. Similarly, it also it
exposes methods to retrieve, save, and expire princi-
pals and profiles.

Verify that the appli-
cation block imple-
ments the standard
provider model for
authorization and se-
curity related-caching
and that the provider
is configurable.

Yes The provider model that is implemented in the ap-
plication block is similar to the standard provider
model implemented by ASP.NET.
The ASP.NET provider model defines a contract in
the ProfileProvider class that all providers, such as
SqlProfileProvider, implement. Any custom provider
that derives from the ProfileProvider class can be
added to the configuration file and used without ASP.
NET knowing any of the implementation details.
Similarly, the Security Application Block defines a
contract in the IAuthorizationProvider and ISecuri-
tyCacheProvider interfaces. These interfaces are
implemented by providers such as Authorization-
RuleProvider, AzmanAuthorization Provider, and
CachingStoreProvider. Also, custom providers that
derive from the IAuthorizationProvider and the ISe-
curityCacheProvider interfaces can be added to the
application block and used without the application
block knowing any of the implementation details.

Verify that the ability
to create the applica-
tion block’s domain
objects from the
configuration data fol-
lows the dependency
injection pattern.

Yes The SecurityCacheProviderFactory class derives
from the LocatorNameTypeFactoryBase generic
type, which takes the configuration source as input,
creates the domain object and injects the relevant
configuration data into the domain object. Similarly,
the AuhthorizationProviderFactory class derives
from the NameTypeFactoryBase, which follows the
same pattern.

Verify that the ap-
plication block can
retrieve configuration
data from different
sources such as an
application configura-
tion file, a database,
or from memory.

Yes The SecurityCacheProviderFactory class and the
AuhthorizationProviderFactory class have construc-
tors that accept configuration sources as input
parameters.

Testing the Security Application Block 105

Design test case Implemented? Feature that implements design
Verify that the
instrumentation
uses loosely coupled
events.

Yes The methods in the SecurityCacheProviderInstru-
mentationProvider class and the AuthorizationPro-
viderInstrumentationProvider class raise the events
that bind to the methods in the SecurityCachePro-
viderInstrumentationListener class and the Au-
thorizationProviderInstrumentationListener class
respectively during run time.

Verify that situa-
tions that can cause
exceptions are
addressed and that
the application block
logs the exceptions
through the instru-
mentation.

Yes For example, both the CachingStoreProvider class
and the AuthorizationRuleProvider class include
the InstrumentationProvider property. This property
retrieves the instrumentation provider that defines
the events for the security cache and the authoriza-
tion provider. The provider logs the events to WMI
and the event log.

Verify that the
application block
supports custom
property collections
for custom security
cache providers and
for custom authoriza-
tion providers.

Yes The CustomAuthorizationProviderData class
and the CustomSecurityCacheProviderData class
support custom property collections for custom
providers.

After the code is implemented, you can review it to see if it satisfies its test cases.
Table 4 lists the results of a code review for the Security Application Block.

Table 4: Security Application Block Code Verification

Code test case Implemented? Feature that is implemented
Verify that, for
each request,
the applica-
tion block only
creates one
instance of
a class that
derives from
the Autho-
rizationPro-
vider or that
implements
the IAuthori-
zationProvider
interface.

Yes The AuthorizationFactory class creates instances of classes
that derive from the AuthorizationProvider class as well as in-
stances of classes that implement the IAuthorizationProvider
interface. It does this by calling the AuthorizationProviderFac-
tory class. The AuthorizationProviderFactory class derives
from the NameTypeFactoryBase class. This class creates a
new instance of a provider for every request. This derivation is
shown in the following code.
public class AuthorizationProviderFactory : NameTyp
eFactoryBase<IAuthorizationProvider>{}

continued

Enterprise Library Test Guide106

Code test case Implemented? Feature that is implemented
Verify that, for
a specific in-
stance name,
the applica-
tion block only
creates one
instance of
a class that
derives from
the Security-
CacheProvider
class or that
implements
the ISecurity-
CacheProvider
interface.

Yes The SecurityCacheFactory class creates instances of classes
that derive from the SecurityCacheProvider class as well as
instances of classes that implement the ISecurityCachePro-
vider interface. It does this by calling the SecurityCachePro-
viderFactory class. The SecurityCacheProviderFactory class
derives from the LocatorNameTypeFactoryBase. This class
creates a single instance of the provider for the given instance
name. This derivation is shown in the following code.
public class SecurityCacheProviderFactory : Locator
NameTypeFactoryBase<ISecurityCacheProvider>{}

Verify that an
assembler
class that
implements
the IAssem-
bler interface
creates the
authorization
providers and
the security
cache provid-
ers and injects
the configura-
tion object
values into
those domain
objects.

Yes The following code demonstrates how the AuthorizationRu-
leProviderAssember class, which implements the IAssembler
interface, creates an AuthorizationRuleProvider object. The
process is similar for creating AzmanAuthorizationProvider
objects and CachingStoreProvider objects.
public class AuthorizationRuleProviderAssembler :
IAssembler<IAuthorizationProvider, Authorization-
ProviderData>
{
public IAuthorizationProvider
Assemble(IBuilderContext context, AuthorizationPro-
viderData objectConfiguration, IConfigurationSource
configurationSource, ConfigurationReflectionCache re-
flectionCache)
{
…
IAuthorizationProvider createdObject= new Authoriza
tionRuleProvider(authorizationRules);

return createdObject;
}
}

Testing the Security Application Block 107

Code test case Implemented? Feature that is implemented
Verify that the
authorization
and security
cache provid-
ers’ configura-
tion properties
are exposed
as public and
that they are
strongly typed.

Yes In the SecuritySettings class, the AuthorizationProviders
property can only contain a collection of type AuthorizationPro-
viderData. The following code demonstrates this. The equiva-
lent is true for the SecurityCacheProviders property.
[ConfigurationProperty(authorizationProvidersPropert
y, IsRequired= false)]
public
NameTypeConfigurationElementCollection<Authorization
ProviderData> AuthorizationProviders
{
 get
 {
 return (NameTypeConfigurationElementCollection<
AuthorizationProviderData>)base[authorizationProvid
ersProperty];
 }
}

Verify that the
configuration
properties for
the custom
providers are
exposed as
public and
that they are
implemented
as custom
property col-
lections.

Yes The CustomAuthorizationProviderData class and the Cus-
tomSecuityCacheProviderData class have references to the
CustomProviderDataHelper generic class. This class defines
a NameValueCollection class that holds the attributes as
custom property collections. This is shown in the following
code example.
private NameValueCollection attributes;

private void AddAttributesFromConfigurationProper-
ties()
{
foreach (ConfigurationProperty property in proper-
tiesCollection)
{
…
attributes.Add(property.Name, (string)helpedCustomP
roviderData.BaseGetPropertyValue(property));
}
}

continued

Enterprise Library Test Guide108

Code test case Implemented? Feature that is implemented
Verify that
the applica-
tion block can
use default
instance
names that
are defined in
the configura-
tion source
to create the
authorization
providers and
the security
cache provid-
ers. Verify that
the application
block can also
use specific in-
stance names
to create
these provid-
ers.

Yes The AuthorizationProviderFactory. CreateDefault method
creates AuthorizationProvider-derived objects with the default
instance name specified in the configuration source. The
AuthorizationProviderFactory. Create method creates Autho-
rizationProvider-derived objects with the specified instance
name. The SecurityCacheFactory class has similar methods
to create security cache providers. The following code shows
the two AuthorizationProviderFactory methods.
public static IAuthorizationProvider GetAuthoriza-
tionProvider()
{
…
return factory.CreateDefault();
}

public static IAuthorizationProvider GetAuthorizati
onProvider(string authorizationProviderName)
{
…
return factory.Create(authorizationProviderName);
}

Testing the Security Application Block 109

Code test case Implemented? Feature that is implemented
Verify that
the security
cache provider
encrypts the
data stored in
the cache.

Yes The CachingStoreProvider class derives from the Securi-
tyCacheProvider class. This class uses a CacheManager
instance to add, remove, and retrieve an identity from the
cache. In the following example, the CacheManager instance
adds the identity to the caching store. The Caching Application
Block’s database cache encrypts the data stored in the cache.
public class CachingStoreProvider : Security-
CacheProvider
{
private CacheManager securityCacheManager;

public override void SaveIdentity(IIdentity iden-
tity, IToken token)
{
GetSecurityCacheItem(token, true).Identity = iden-
tity;
}

private SecurityCacheItem GetSecurityCacheItem(ITok
en token, bool createIfNull)
{
…
securityCacheManager.Add(token.Value, item, CacheI-
temPriority.Normal, null, GetCacheExpirations());
…
}
}
The following code demonstrates how the DatabaseBacking-
Store object encrypts the data before adding it to the data-
base.
public class DatabaseBackingStore : BaseBacking-
Store
{
protected override void AddNewItem(int storageKey,
CacheItem newItem)
{
…
this.encryptionProvider.Encrypt(valueBytes);
…
}
}
Similarly, the Caching Application Block’s IsolatedStorage-
CacheProvider class also encrypts the data stored in the
cache.

continued

Enterprise Library Test Guide110

Code test case Implemented? Feature that is implemented
Verify that the
application
block uses
performance
counters and
WMI to moni-
tor authoriza-
tion and cach-
ing operations
if the instru-
mentation is
enabled.

Yes In the following example, whenever an AuthorizationRulePro-
vider object performs an authorization, it triggers the Autho-
rizationCheckPerformedEvent event, which notifies WMI and
increments the Authorization Requests/sec performance
counter. This is shown in the following code.
public class AuthorizationRuleProvider : Authoriza-
tionProvider
{

public override bool Authorize(IPrincipal principal,
string ruleName)
{
…
InstrumentationProvider.FireAuthorizationCheckPerfor
med(principal.Identity.Name, ruleName);
…
}
}
The AuthorizationProviderInstrumentationProvider class
raises the authorizationCheckPerformed event. The Security-
CacheReadPerformed method consumes this event. It notifies
WMI and increments the performance counters. This is shown
in the following code example.
[InstrumentationConsumer("AuthorizationCheckPerform
ed")]
public void AuthorizationCheckPerformed(…)
{
if (PerformanceCountersEnabled) authorizationCheck-
PerformedCounter.Increment();
if (WmiEnabled) ManagementInstrumentation.Fire(new
AuthorizationCheckPerformedEvent(…));
}
Similarly, whenever the CachingStoreProvider object retrieves
an identity from the cache, it raises the SecurityCacheRead-
PerformedEvent method. This method notifies WMI and incre-
ments the Security Cache Reads/sec performance counter.
public class CachingStoreProvider : Security-
CacheProvider
{
public override IIdentity GetIdentity(IToken token)
{
…
InstrumentationProvider.FireSecurityCacheReadPerform
ed(SecurityEntityType.Identity, token);
…
}
}

Testing the Security Application Block 111

Code test case Implemented? Feature that is implemented
The SecurityCacheInstrumentationProvider class raises the
securityCacheReadPerformed event. The SecurityCacheRe-
adPerformed method consumes this event, notifies WMI, and
increments the performance counters. This is shown in the
following code example.
[InstrumentationConsumer("SecurityCacheReadPerform
ed")]
public void SecurityCacheReadPerformed(…)
{
if (PerformanceCountersEnabled) securityCacheRead-
PerformedCounter.Increment();
if (WmiEnabled) ManagementInstrumentation.Fire(newS
ecurityCacheReadPerformedEvent(…));
}

Verify that the
performance
counters and
the event
log that are
required by
the application
block are in-
stalled during
installation.

Yes For example, the SecurityCacheProviderInstrumentationLis-
tener class contains the installer attribute type [HasInstall-
ableResourcesAttribute].
The EventLogInstallerBuilder and the PerformanceCounterIn-
stallerBuilder installer classes identify the attribute and install
the event logs and performance counters.

To learn how the test teams tested the application blocks to see if they conformed
to security best practices, see Testing for Security Best Practices. To learn how the test
teams tested the application blocks to see if they conformed to globalization best
practices, see Testing for Globalization Best Practices. To learn how the test teams tested
the application blocks to see if they met the performance and scalability require-
ments, see Testing for Performance and Scalability.

file:///C:/OTSI/EntLib/Test%20Guide/Edit/Testing for Security Best Practices.doc
file:///C:/OTSI/EntLib/Test%20Guide/Edit/Testing for Globalization Best Practices.doc
file:///C:/OTSI/EntLib/Test%20Guide/Edit/Testing for Performance and Scalability.doc

Enterprise Library Test Guide112

Using Automated Tests
Automated tests ensure that the application block functions in accordance with its
requirements. Automated tests make regression testing easier and certain tests, such
as simulating a large number of users to test a multithreading scenario, require auto-
mation.

Table 5 lists the Visual Studio Team System tests that were used with the Security
Application Block.

Table 5: Visual Studio Team System Tests for the Security Application Block

Test case Result Automated test
Verify that the
application block
throws the appro-
priate exception
when it receives
invalid data.

Passed The following test supplies an invalid instance name to the Get-
AuthorizationProvider name, which causes the application block
to throw the ConfigurationErrorsException exception.
[TestMethod]
[ExpectedException(typeof(ConfigurationErrorsException
))]
public void CreateInvalidAuthRuleProviderFromConfig-
File()
{
IAuthorizationProvider authRuleProvider = Authoriza-
tionFactory.GetAuthorizationProvider("InvalidRule");
}

Testing the Security Application Block 113

Test case Result Automated test
Verify that if
the input data
is valid, the ap-
plication block
either creates an
AuthorizationRu-
leProvider object
with the default
instance name or
with the specified
instance name.

Passed The following test creates one AuthorizationRuleProvider object
with a specific instance name and another AuthorizationRulePro-
vider with the default instance name. The following is the configu-
ration data that provides the default instance name.
<securityConfiguration defaultAuthorizationInstance="De
faultRuleProvider"
defaultSecurityCacheInstance="">
<authorizationProviders>
<add
name="DefaultRuleProvider"
type="Microsoft.Practices.EnterpriseLibrary.Security.
AuthorizationRuleProvider, Microsoft.Practices.Enter-
priseLibrary.Security">
<rules>
<add name="TestAnonymousRule expression="I:?"
…
/>
</rules>
</add>
</authorizationProviders>
</securityConfiguration>
The following are the tests.
// This test is for the specified instance name.
[TestMethod]
public void CreateNamedAuthRuleProviderInConfigFile()
{
IAuthorizationProvider authRuleProvider = Authoriza-
tionFactory.GetAuthorizationProvider("DefaultRuleProv
ider");
 Assert.IsNotNull(authRuleProvider);

}

// This test is for the default instance name.
[TestMethod]
public void CreateDefaultAuthRuleProviderFromConfig-
File()
{
IAuthorizationProvider authRuleProvider = Authoriza-
tionFactory.GetAuthorizationProvider();
Assert.IsNotNull(authRuleProvider);
}

continued

Enterprise Library Test Guide114

Test case Result Automated test
Verify that the
AuthorizationRu-
leProvider object
uses the rule in
the configuration
source to autho-
rize an identity.

Passed This test applies a rule named TestAnonymousRule that is de-
fined in the configuration source. The test verifies that the Autho-
rizationRuleProvider object authorizes an anonymous identity.
[TestMethod]
public void AuthorizeAnonymousIdentityTest()
{
AuthorizationRuleProvider authRuleProvider = Authori-
zationFactory.GetAuthorizationProvider("DefaultRulePro
vider") as AuthorizationRuleProvider;
bool authorized = authRuleProvider.Authorize(new
WindowsPrincipal(WindowsIdentity.GetAnonymous()),"Test
AnonymousRule");
Assert.IsTrue(authorized);
}

Verify that the
AzManAuthori-
zationProvider
object uses
the operations
specified in the
AzMan store to
grant permission
to an identity to
perform a task.

Passed This test verifies that an anyonymous identity has permission
to view a purchase order. The purchase order is defined in the
AzManFuncTestsConfig.xml AzMan store. The store grants per-
mission to everyone to perform the View Purchase Order opera-
tion.
The following is the information in the configuration file.
<authorizationProviders>
 <add name="DefaultAzManProvider"
type="Microsoft.Practices.EnterpriseLibrary.Security.
AzMan.AzManAuthorizationProvider, Microsoft.Practices.
EnterpriseLibrary.Security.AzMan"
storeLocation="msxml://{currentPath}/AzManFuncTest-
sConfig.xml" application ="SecurityAzManFuncTests"
auditIdentifierPrefix="" scope=""
 />
</authorizationProviders>
The following is the test.
[TestMethod]
public void AzManOperationAuthorizeTest()
{
IAuthorizationProvider azManProvider = Authorization-
Factory.GetAuthorizationProvider("DefaultAzManProvide
r");
WindowsIdentity identity = WindowsIdentity.GetAnony-
mous();
bool isAuthorized = azManProvider.Authorize(new Window
sPrincipal(identity), "O:View Purchase Order");
Assert.IsTrue(isAuthorized);
}

Testing the Security Application Block 115

Test case Result Automated test
Verify that, if
the input data
is valid, the ap-
plication block
either creates a
CachingStore-
Provider object
with the default
instance name or
with the specified
instance name.

Passed The following test creates one CachingStoreProvider object with
a specific instance name and another CachingStoreProvider ob-
ject with the default instance name. The following is the configu-
ration data that provides the default instance name.
<securityCacheProviders>
<add
name="CacheProvider"
type="Microsoft.Practices.EnterpriseLibrary.Security.
Cache.CachingStore.CachingStoreProvider, Microsoft.
Practices.EnterpriseLibrary.Security.Cache.Caching-
Store"
cacheManagerInstanceName="DefaultCacheManager"
defaultSlidingSessionExpirationInMinutes="1"
defaultAbsoluteSessionExpirationInMinutes="1"
/>
</securityCacheProviders>

//Thisis the test for the specified instance name
public void CreateNamedSecurityCacheInConfigFile()
{
ISecurityCacheProvider cacheProvider = SecurityCache-
Factory.GetSecurityCacheProvider("CacheProvider");
 Assert.IsNotNull(cacheProvider);
}

//This is the test for the default instance name
[TestMethod]
public void CreateDefaultSecurityCacheFromConfigFile()
{
ISecurityCacheProvider cacheProvider = SecurityCache-
Factory.GetSecurityCacheProvider();
Assert.IsNotNull(cacheProvider);
}

continued

Enterprise Library Test Guide116

Test case Result Automated test
Verify that a
CachingStorePro-
vider object can
add an identity to
the cache and re-
trieve an identity
from the cache.

Passed This test uses information in the configuration store to create
a secure cache provider. It then uses the cache provider first to
save an identity to the cache and then to retrieve an identity from
the cache.
The following is the configuration information.
<securityCacheProviders>
<add
name="CacheProviderDB"
type="Microsoft.Practices.EnterpriseLibrary.Security.
Cache.CachingStore.CachingStoreProvider, Microsoft.
Practices.EnterpriseLibrary.Security.Cache.Caching-
Store"
…

/>
</securityCacheProviders>
The following is the test.
[TestMethod]
public void DBAddIdentityTest()
{
ISecurityCacheProvider securityCache = SecurityCache-
Factory.GetSecurityCacheProvider("CacheProviderDB");
 Assert.IsNotNull(securityCache);
IToken token = securityCache.SaveIdentity(identity);
Assert.IsNotNull(token);
Assert.IsNotNull(token.Value);

IIdentity cachedIdentity = securityCache.
GetIdentity(token);
 Assert.IsNotNull(cachedIdentity);
Assert.AreEqual(cachedIdentity.Name, "testuser");
}

Testing the Security Application Block 117

Test case Result Automated test
Verify that autho-
rization provid-
ers and security
cache providers
can be created
directly, without
using a configura-
tion source.

Passed This test uses a constructor to create a AuthorizationRulePro-
vider object. The test then verifies that the object can perform
authorizations. The process is similar for AzmanAuthorizationPro-
vider objects and CachingStoreProvider object.
[TestMethod]
public void CreateAuthRuleProviderDirect()
{
IAuthorizationRule ruleData= new AuthorizationRuleData
("TestRule","I:TestUser");
 IDictionary<string,IAuthorizationRule>
ruleDict= new Dictionary <string,IAuthorizationRule>(
);
ruleDict["TestRule"]= ruleData;
IAuthorizationRule ruleData1 = new AuthorizationRuleDa
ta("TestRule1", "I:TestUser1");
ruleDict["TestRule1"] = ruleData1;
IAuthorizationProvider provider = new AuthorizationRul
eProvider(ruleDict);
bool isAuthorized = provider.Authorize(new
GenericPrincipal(new GenericIdentity("TestUser"), new
string[]{}),"TestRule");
 Assert.IsTrue(isAuthorized);
}

continued

Enterprise Library Test Guide118

Test case Result Automated test
Verify that autho-
rization provid-
ers and security
cache providers
can be created
from a dictionary
or from an in-
memory configu-
ration source.

Passed This test verifies that an AuthorizationRuleProvider can be cre-
ated from a dictionary source. Similar tests were used with an
AzmanAuthorizationProvider object and a CachingStoreProvider
object. The following code defines the dictionary.
public class AuthorizationRuleDictSource
{
public DictionaryConfigurationSource BuildDiction-
arySourceSection()
{
DictionaryConfigurationSource section = new Dictionary-
ConfigurationSource();
SecuritySettings secSettings = new SecuritySettings();
 secSettings.DefaultAuthorizationProvider-
Name = "DefaultRuleProviderDic";
…
arpd.Type = Type.GetType("Microsoft.Practices.Enter-
priseLibrary.Security.AuthorizationRuleProvider, Mi-
crosoft.Practices.EnterpriseLibrary.Security");
 secSettings.AuthorizationProviders.
Add(arpd);

section.Add("securityConfiguration", secSettings);

return section;
}
The following is the test.
// This initializes the constructor
[TestInitialize()]
public void MyTestInitialize()
{
AuthorizationRuleDictSource sourceSection = new Autho-
rizationRuleDictSource();
configSource = sourceSection.BuildDictionarySourceSec-
tion();
 AuthorizationProviderFactory authFactory =
new AuthorizationProviderFactory(configSource);
authRuleProvider = authFactory.Create("DefaultRuleProv
iderDic") as AuthorizationRuleProvider;

identity = new GenericIdentity("TestUser");
string[] roles = new string[] { "Manager" };
principal = new GenericPrincipal(identity, roles);
}

[TestMethod]
public void AuthorizeIdentityDicTest()
{
bool authorized = authRuleProvider.
Authorize(principal, "TestIdentityRuleDic");
 Assert.IsTrue(authorized);
}

Testing the Security Application Block 119

Test case Result Automated test
Verify that
custom authoriza-
tion classes that
derive from the
AuthorizationPro-
vider class can
be added to the
application block
and configured
from the configu-
ration source.

Passed In this example, the CustomAuthorizationProvider custom autho-
rization class derives from the AuthorizationProvider class. The
Enterprise Library Core uses information in the dictionary configu-
ration source to add the custom class to the application block.
The following is the configuration information.
public DictionaryConfigurationSource BuildDiction-
arySourceSection()
{
DictionaryConfigurationSource section = new Dictionary-
ConfigurationSource();

SecuritySettings secSettings = new SecuritySettings();
 CustomAuthorizationProviderData customAu-
thProvider = new CustomAuthorizationProviderData("MyA
uthorizationProvider",Type.GetType("….CustomAuthoriza-
tionProvider,…"));
 customAuthProvider.Attributes.Add("key1",
"value1");
 secSettings.AuthorizationProviders.Add(cus
tomAuthProvider);

section.Add("securityConfiguration", secSettings);
}
The following is the custom class.
[ConfigurationElementType(typeof(CustomAuthorizationPro
viderData))]
public class CustomAuthorizationProvider:Authoriza-
tionProvider
{
public CustomAuthorizationProvider()
{
}
public CustomAuthorizationProvider(System.Collections.
Specialized.NameValueCollection collection)
{
}

public override bool Authorize(IPrincipal principal,
string context)
{
…
}
}
The following is the test.
[TestMethod]
public void CustomAuthorizeRoleDicTest()
{

continued

Enterprise Library Test Guide120

Test case Result Automated test
AuthorizationProviderFactory factory = new Authorizati
onProviderFactory(configSource);

IAuthorizationProvider authRuleProvider = factory.
Create("MyAuthorizationProvider");
bool authorized = authRuleProvider.Authorize(null,"");
 Assert.IsTrue(authorized);
}

Verify that
custom security
cache classes
that derive from
the Security-
CacheProvider
class can be
added to the
application block
and configured
from configura-
tion source.

Passed In this example, the custom authorization class, CustomSecuri-
tyCacheProvider, derives from the SecurityCacheProvider class.
The Enterprise Library Core uses information in the dictionary
configuration source to add the custom class to the application
block.
The following is the configuration information.
public DictionaryConfigurationSource BuildDiction-
arySourceSection()
{
DictionaryConfigurationSource section = new Dictionary-
ConfigurationSource();

SecuritySettings secSettings = new SecuritySettings();

 CustomSecurityCacheProviderData customData
= new CustomSecurityCacheProviderData("MyCache", Type.
GetType("SecurityCachingFuncTests.CustomSecurityCacheP
rovider,SecurityCachingFuncTests"));
 customData.Attributes.Add("key1", "val-
ue1");
 secSettings.SecurityCacheProviders.
Add(customData);

section.Add("securityConfiguration", secSettings);
}
The following is the custom class.
[ConfigurationElementType(typeof(CustomSecurityCachePro
viderData))]
class CustomSecurityCacheProvider:SecurityCachePro-
vider
{
public override IToken SaveIdentity(IIdentity iden-
tity){…}

public override void SaveIdentity(IIdentity identity,
IToken token)
{…}

public override IToken SavePrincipal(IPrincipal prin-
cipal)
{…}

Testing the Security Application Block 121

Test case Result Automated test
public override void SavePrincipal(IPrincipal princi-
pal, IToken token){…}

public override IToken SaveProfile(object profile){…}

public override void SaveProfile(object profile, IToken
token) {…}

public override void ExpireIdentity(IToken token){…}

public override void ExpirePrincipal(IToken token){…}

public override void ExpireProfile(IToken token){…}

public override IIdentity GetIdentity(IToken token){…}

public override IPrincipal GetPrincipal(IToken to-
ken){…}

public override object GetProfile(IToken token){…}
}
The following is the test.
[TestMethod]
public void CreateCustomSecurityCache()
{
SecurityCacheProviderFactory factory = new SecurityC
acheProviderFactory(new SecurityCachingDictSource().
BuildDictionarySourceSection());

ISecurityCacheProvider cacheProvider = factory.
Create("MyCache");
 Assert.IsNotNull(cacheProvider);
}

Testing for Security Best Practices

Testing the Enterprise Library application blocks to see if they conform to security
best practices involves several activities:

Establish the security requirements. Security requirements are the goals and
constraints that affect the confidentiality, integrity, and availability of the applica-
tion blocks.
Analyze the application block. To analyze an application block, identify such
things as its assets, its entry points, and its dependencies. Create a diagram that
shows the relevant subsystems that make up the application block
Build the threat models. Threat models allow you to systematically identify and
rate the threats that are most likely to affect your applications. By identifying and
rating threats based, you can address threats with appropriate countermeasures in
a logical order, starting with the threats that present the greatest risk.
Perform the security reviews. Apply a set of security rules, known as security
checklists, which constitute the security review. These checklists incorporate the
knowledge acquired by performing the previous steps. The review process should
be an iterative one that frequently occurs.

This chapter focuses on the security review of the Logging Application Block. How-
ever, because the material is intended to show all the aspects of a security review,
there are some examples that other application blocks in the Enterprise Library.
You can adapt the templates and checklists included here to suit your own security
review process.

For more information about what constitutes security best practices, see Additional
Resources.

●

●

●

●

Enterprise Library Test Guide124

Establishing the Security Requirements
The security requirements for the Enterprise Library focus on maintaining the con-
fidentiality of the data, the integrity of the data, and the availability of the applica-
tion blocks. In general, maintaining availability meant preventing denial of service
attacks. Here are the Enterprise Library security requirements:

Ensure that an attacker cannot read confidential information, such as a connection
string, in the configuration files.
Ensure that an attacker cannot read confidential information in the log message
repositories, such as a database, event log, or flat file.
Ensure that an attacker cannot alter information in the log message repositories.
Ensure that an attacker cannot tamper with the configuration files.
Ensure that an attacker cannot tamper with or replace the assemblies.
Ensure that an attacker cannot launch denial of service attacks.

These requirements form the basis for the rest of the security review. To make these
general requirements more specific requires a thorough understanding of how the
application block works.

Analyzing the Logging Application Block
Analyzing the Logging Application Block means identifying its assets, dependencies,
and subsystems. Use the security requirements as a guideline for identifying the rel-
evant components. It is also important to identify the underlying assumptions about
security that were made when the application block was first designed.

To analyze the application block, you should:
Identify the assets.
Create an architectural drawing.
Identify the entry points.
Identify the relevant classes.
Identify the external dependencies.
Identify the assumptions.
Identify any other information that might affect the application block's security.

Identifying the Assets
Assets are resources that need to be protected from an attack. Table 1 lists the
Logging Application Block’s assets.

●

●

●

●

●

●

●

●

●

●

●

●

●

Testing for Security Best Practices 125

Table 1: Logging Application Block Assets

Assets Vulnerabilities
Assemblies You should protect the Logging Application Block assemblies from

malicious users who could tamper with them, replace them with
other assemblies, or override them with other assemblies.

Resource files Resource files contain static error messages. You should protect
them from unauthorized read/write operations.

Configuration files The configuration files contain separate sections for each applica-
tion block and for the instrumentation. This is sensitive data that
you should protect from unauthorized read/write operations.

Configuration value ob-
jects

The configuration value objects hold configuration information
in memory. Configuration data is sensitive information that you
should protect from unauthorized read/write operations.

Database The Logging Application Block exposes interfaces that allow you
to use the Data Access Application Block to log messages to a
database. This information may be sensitive and unauthorized
users should not be allowed to see it. This may also true of other
information in the database. Also, you should protect the database
from unauthorized read/write operations.

Database connection
string

The Logging Application Block uses the Data Access Application
Block to log information to a database. The Data Access Applica-
tion Block uses a connection string that is specified in the configu-
ration file to access the database. This file stores the connection
string as plaintext. The connection string can include a server
name, a database name, a user ID, and a password. You should
protect this information from unauthorized read/write operations.

File system log files The Logging Application Block exposes interfaces that allow you to
log messages to a log file. These messages may contain sensitive
information. You should use access control lists (ACL) or encryp-
tion to protect the log file from unauthorized read/write operations.

SMTP server The Logging Application Block exposes interfaces that allow you to
use an SMTP server to send e-mail. Malicious users can use the
server to send unsolicited e-mail messages. You should protect the
SMTP server from unauthorized access.

Message queues and
distributor service

The Logging Application Block exposes interfaces that allow you to
place log messages in a Message Queuing queue and distribute
them to trace listeners. These messages may contain sensitive
information. You should protect the queue and the messages from
unauthorized read/write operations.

Event log The Logging Application Block exposes interfaces that allow you
to log messages in the event log. These messages may contain
sensitive information. You should protect them from unauthorized
read/write operations.

continued

Enterprise Library Test Guide126

Assets Vulnerabilities
WMI events The Logging Application Block exposes interfaces that allow you

to raise instrumentation events. By providing this access, the
application block exposes system resources, such as flat files, a
SQL Server database, message queues, and the event log, through
WMI (Windows Management Instrumentation) events. You should
prevent unauthorized users from being able to raise instrumenta-
tion events.

System files The Logging Application Block exposes interfaces that allow you
to log messages to a log file. Information in the configuration file
determines the location of that file. By changing this location,
malicious users can modify or overwrite system files. You should
protect this location from unauthorized read/write operations.

System resources The Logging Application Block exposes interfaces that allow you to
extend the application block. For example, you can add a custom
log handler. Malicious users can use these extensions to expose
system resources that can then be used by an unauthorized ap-
plication.

Create an Architectural Diagram
A diagram is often helpful in understanding the architecture of a system. Figure 1 is
a diagram of the Logging Application Block. The drawing shows the major subsys-
tems that are of concern during a security review. For example, the diagram does not
show the trace listener classes because they are trusted components. It does show the
custom trace listener classes because custom code may not be trusted.

Testing for Security Best Practices 127

Figure 1  Architecture of Logging Application Block

The emphasis of the drawing can be on features instead of on specific classes. After
the drawing is in place, you can use it to identify the specific entry points, classes,
and dependencies.

Identify the Entry Points
Entry points are points of contact in the application block that allow external clients
to interact with it, either directly or by supplying data. Table 2 lists the Logging
Application Block entry points.

Enterprise Library Test Guide128

Table 2: Logging Application Block Entry Points

No. Entry Points Clients Descriptions
1 Assemblies Administrators and ap-

plication processes
The Logging Application Block assem-
blies ship with the application that uses
the application block.

2 Configuration file Administrators and ap-
plication processes

The Logging Application Block uses the
<loggingConfiguration> and possibly
the <dataConfiguration> sections of the
configuration file.

3 Configuration source Administrators and ap-
plication processes

A configuration source implements the
IConfigurationSource interface.

4 Configuration value
objects

Administrators and ap-
plication processes

Configuration value objects contain data
about the application block’s configura-
tion.

5 Trace listeners Administrators and ap-
plication processes

Trace listeners receive tracing informa-
tion and send it to an output destina-
tion, such as an event log or a data-
base.

6 Formatting handlers Administrators and ap-
plication processes

The Logging Application Block can for-
mat log messages with a text formatter,
a binary formatter, or a custom format-
ter.

7 Logging filters Administrators and ap-
plication processes

The Logging Application Block can filter
messages with a category filter, a prior-
ity filter, or a custom filter.

8 Database Administrators and ap-
plication processes

The Logging Application Block can log
messages to a database.

9 Event log Administrators and ap-
plication processes

The Logging Application Block can log
messages to an event log.

10 Flat files Administrators and ap-
plication processes

The Logging Application Block can log
messages to a flat file

11 Message queu-
ing and distributor
service

Administrators, ap-
plication processes,
Message Queuing, the
distributor service, and
the Windows Service
Identity page

The Logging Application Block’s distribu-
tor service uses message queuing to
asynchronously distribute log mes-
sages. The service uses the Windows
Service Identity page to access a mes-
sage queue.

12 Public classes and
static methods

Administrators and ap-
plication processes

The Logger, LogEntry, and Native-
Methods classes expose static meth-
ods. (The NativeMethods class is a
managed class that includes wrappers
to call Win32 APIs.)

Testing for Security Best Practices 129

Identify the Relevant Classes
Identify the relevant classes and the ways you expect them to be used. These are
classes that, if misused, can affect the security of the application block. Table 3 lists
the Logging Application Block classes.

Table 3: Logging Application Block Classes

No. Scenario
1 The Logger class can access the default configuration file.
2 The EnterpriseLibraryFactory class can access custom configuration sources and the

default configuration source.
3 The CustomTraceListener class is the base class for custom trace listeners.
4 The EmailTraceListener class creates e-mail messages from log messages and sends

them.
5 The FormattedEventLogTraceListener class logs information to the event log.
6 The FormattedTextWriterTraceListener class uses streams to log messages.
7 The FlatFileTraceListener class logs messages to flat files.
8 The WMITraceListener class raises instrumentation events.
9 The MsmqTraceListener class sends log messages to a message queue.
10 The FormatterDatabaseTraceListener class logs information to a database.
11 The LoggingInstrumentationProvider class implements the instrumentation. The Loggin-

gInstrumentationListener class receives performance counter data.
12 The CategoryFilter class filters log messages based on their categories. Users specify

these categories when they configure the application block.
13 The LogEnabledFilter class enables and disables logging.
14 The PriorityFilter class filters log messages based on their priorities.
15 The ILogFilter interface is the basis for custom log filters that filter log messages accord-

ing to their attributes.
16 The BinaryLogFormatter class serializes log messages in binary format.
17 The TextFormatter class formats log messages according to a specified template.
18 The ILogFormatter interface is the basis for custom log formatters.
19 The ComPlusInformationProvider class gathers information about COM objects that can be

included in a log message.
20 The DebugInformationProvider class gathers diagnostic debugging information, such as

stack traces that can be included in a log message.
21 The ManagedSecurityContextInformationProvider class gathers diagnostic information

about the managed code security context that can be included in a log message.
22 The UnmanagedSecurityContextInformationProvider class gathers diagnostic information

about the unmanaged code security context.
23 The IExtraInformationProvider interface is the basis for custom configuration classes,

such as dictionaries, that gather diagnostic information.
24 The MsmqListener class configures a message queue.
25 The MsmqLogDistributor class transfers the message queue SOAP messages to trace

sources that are specified in the configuration file.

continued

Enterprise Library Test Guide130

No. Scenario
26 The Tracer class marks the start and end of a transaction.
27 The LoggingDatabase.SQL and CreateLoggingDb.Cmd methods create logging databases.

(The Enterprise Library Windows Installer creates these methods.)
28 The LogWriterFactory class creates LogWriter objects.
29 The LogSource class specifies the trace listeners that log the messages.
30 The TracerInstrumentationListener class instruments Tracer class tracing operations.

Identify the External Dependencies
External dependencies are other components in the Enterprise Library or external
resources such as databases and mail servers that the Logging Application Block can
use. If a malicious user misuses any of these dependencies then the security of the
application block may be compromised. The data direction matters because “push”
and “pull” have different security implications. The Logging Application Block
receives data that moves in the “pull” direction. For example, it receives configura-
tion information from the Enterprise Library Core. It is important to know that this
information is reliable. The application block can also “push” information to output
sources, such as a database or event log. It is important to know that the output
source will not be corrupted by the information.

Table 4 lists the Logging Application Block external dependencies.

Table 4: Logging Application Block External Dependencies

No.
External
Dependencies Descriptions

Data
Direction Trusted?

1 Enterprise
Library core

The Enterprise Library Core reads and writes con-
figuration information that is used by the Logging
Application Block.

Pull Yes

2 Data Access
Application
Block

The Logging Application Block can use the Data
Access Application Block to log messages to a
database.

Push Yes

3 SMTP server The Logging Application Block can use an SMTP
server to e-mail log messages.

Push Yes

4 File system The Logging Application Block can use the file
system to save log messages in a flat file.

Push Yes

5 Database The Logging Application Block can save log mes-
sages to a database.

Push Yes

6 Message
queuing

The Logging Application Block uses message
queuing to distribute log messages. The applica-
tion block can send these messages to a remote
computer.

Push Yes

7 Event log The Logging Application Block can save log mes-
sages to the event log.

Push Yes

Testing for Security Best Practices 131

No.
External
Dependencies Descriptions

Data
Direction Trusted?

8 WMI The Logging Application Block uses WMI to raise
events.

Push Yes

9 Performance
counters

The Logging Application Block uses performance
counters to track its performance.

Push Yes

Identify the Implementation Assumptions
Implementation assumptions are premises about how the application block works.
Implementers describe these assumptions when they write the specification for the
application block and before they begin writing the code. Typically, these assump-
tions are reviewed again once the implementation is complete. Table 5 lists the imple-
mentation assumptions about the Logging Application Block. The term “application”
refers to the application that uses the Logging Application Block.

Table 5: Logging Application Block Implementation Assumptions

No. Category Assumptions
1 ACLs for event log The event log’s ACLs protect the log against unauthorized users and

processes.
2 Database access

privileges
The application has the appropriate privileges to access the data-
base.

3 Message queuing
access privileges

The application has the appropriate privileges to access the mes-
sage queues.

4 File system
privileges

The application has the appropriate privileges to access the file
system.

5 SMTP server
privileges

The application has the appropriate privileges to use the SMTP
server to send e-mail messages.

6 WMI privileges The application has the appropriate privileges to raise WMI events.
7 The application

that uses the Data
Access Applica-
tion Block to log
messages to a
database

The application can identify and authorize the Data Access Applica-
tion Block. In this case, “identify” means that the application can
trust the Data Access Application Block assemblies. Authorization
means that the application has the correct SQL Server permissions
to allow the appropriate groups of users to read and write to the
database.

8 Other subsystems
and application
blocks

The Logging Application Block is dependent on the Enterprise
Library Core for configuration information and the Data Access
Application Block to use the Database Trace Listener. The Logging
Application Block must ensure that it uses the correct Enterprise
Library Core assemblies for configuration and the correct Data Ac-
cess Application Block assemblies to log messages to a database.

9 Performance
counters

The Logging Application Block requires the necessary read and
write access permissions to use the performance counters.

continued

Enterprise Library Test Guide132

Identify Any Additional Security Notes
Additional security notes are other threats or information that are not covered else-
where. Table 6 lists the Logging Application Block additional security notes.

Table 6: Logging Application Block Additional Security Notes

No. Notes
1 The configuration file or the custom configuration store should be protected by ACLs or, if

possible, encrypted.
2 The application must have the proper ACLs and privileges to log messages to different

resources such as the event log, a database, a message queue, an SMTP server, and the
file system. The application must also have the correct ACLs and privileges to raise WMI
events.

3 Log messages that contain sensitive information should be protected by ACLs or else
encrypted.

4 Log messages should be encrypted when sent over a network.

Building the Threat Models
After you have analyzed the application block, you can build the threat models.
Threat models identify threats against specific resources, assets, and trust boundaries,
pinpoint vulnerabilities, and provide countermeasures. Each table contains a STRIDE
classification. STRIDE is the acronym used at Microsoft to categorize different threat
types. STRIDE stands for Spoofing, Tampering, Repudiation, Information disclosure,
Denial of service, and Elevation of privilege. To learn more about STRIDE see Threats
and Countermeasures in Improving Web Application Security: Threats and Countermeasures
on MSDN.

A DREAD table follows each threat model. DREAD stands for Damage potential,
Reproducibility, Exploitability, Affected users, and Discoverability. In DREAD, you
assign each of these categories a number that rates the potential risk it poses to your
application. To learn more about DREAD, see Threat Modeling in Improving Web Ap-
plication Security: Threats and Countermeasures on MSDN.

Table 7 lists details about threat 1.

Table 7: Logging Application Block Threat 1

Threat 1 Logging Application Block assemblies are not strong named.
Name Tampering with assemblies
Entry points Assemblies
Threat
description

The Logging Application Block assemblies are not strong named.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/thcmch02.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/thcmch02.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh03.asp

Testing for Security Best Practices 133

Threat 1 Logging Application Block assemblies are not strong named.
Countermeasures The Logging Application Block assemblies must be strong named in order

to prevent malicious users from tampering with them or replacing them.
Tampering can occur when the assemblies are distributed or when the ap-
plication that uses the Logging Application Block is installed. Replacing the
legal assemblies with other assemblies can occur after the application is
installed. The legal assemblies also can be overridden at run time.
In addition to being strong named, assemblies should be signed with
Authenticode. Strong naming ensures the integrity of the code and Authenti-
code ensures its authenticity. For more information about Authenticode, see
Authenticode on MSDN.

STRIDE
classification

Tampering, Information Disclosure, Denial of Service, Elevation of Privileges

Risk High
Mitigation No
Investigative
notes

None

Table 8 lists the DREAD rating for threat 1.

Table 8: Threat 1 DREAD Rating

D R E A D Total Rating
3 3 2 3 3 14 High

Table 9 lists details about threat 2.

Table 9: Logging Application Block Threat 2

Threat 2 Attackers can alter the configuration files.
Name Tampering with configuration files
Entry points Configuration files
Threat description The configuration files are in plaintext. They contain information about trace

listeners, formatters, and filters. An attacker can alter this information and
also add custom handlers. These actions can change the behavior of the
application block and expose sensitive information.

Countermeasures The configuration files should be encrypted or else plaintext configuration
files should not be used. The application should use the Cryptography Ap-
plication Block in conjunction with the Logging Application Block to encrypt
the configuration file.

STRIDE
classification

Tampering, Information Disclosure, Denial of Service

Risk High
Mitigation No
Investigative
notes

None

http://msdn.microsoft.com/library/default.asp?url=/workshop/security/authcode/authenticode_node_entry.asp

Enterprise Library Test Guide134

Table 10 lists the DREAD rating for threat 2.

Table 10: Threat 2 DREAD Rating

D R E A D Total Rating
3 3 2 3 3 14 High

Table 11 lists details about threat 3.

Table 11: Logging Application Block Threat 3

Threat 3 Attackers can flood the event log with false error messages.
Name Flooding the event log
Entry points Public classes and static methods
Threat description The Logging Application Block exposes interfaces that allow you to log

messages to the event log. An attacker can use these interfaces to flood
the event log with false messages. This can constitute a denial of service
attack. In addition, the event log may contain sensitive information.

Countermeasures Check the event log to see if it has reached its threshold limit, which con-
trols how many messages can be in the log. If the event log has reached
its limit, generate an exception. The application should appropriately handle
this exception. Also, the application should include code that uses an
instance of the EventLogPermission class. Finally, the administrator should
assign the appropriate ACLs to the event log for read/ write operations.

STRIDE
classification

Tampering, Information Disclosure, Denial of Services, Elevation of
Privileges

Risk High
Mitigation No
Investigative
notes

None

Table 12 lists the DREAD rating for threat 3.

Table 12: Threat 3 DREAD Rating

D R E A D Total Rating
3 3 2 3 3 14 High

Table 13 lists details about threat 4.

Table 13: Logging Application Block Threat 4

Threat 4 Attackers can flood the database log with false messages.
Name Flooding the database
Entry points Public classes and static methods

Testing for Security Best Practices 135

Threat 4 Attackers can flood the database log with false messages.
Threat
description

The Logging Application Block exposes interfaces that allow an application
to use the Data Access Application Block to log messages to a database.
An attacker can use these interfaces to flood the database with false mes-
sages. This can eventually cause a denial of service. In addition, log mes-
sages in the database may contain sensitive information.

Countermeasures The Data Access Application Block requires explicit Code Access Security
permissions to access SQL Server or an Oracle database. No such permis-
sions are necessary to access a generic database. The GenericDatabase
class’s access methods have overloads that can request custom permis-
sions that derive from the .NET Framework DBDataPermission class. These
permissions ensure that the application has the proper level of security to
access the database.

STRIDE
classification

Tampering, Denial of Services, Elevation of Privileges

Risk High
Mitigation Yes
Investigative
notes

None

Table 14 lists the DREAD rating for threat 4.

Table 14: Threat 4 DREAD Rating

D R E A D Total Rating
3 3 2 3 3 14 High

Table 15 lists details about threat 5.

Table 15: Logging Application Block Threat 5

Threat 5 Attackers can flood the flat file log with false messages.
Name Flooding the flat file log
Entry points Public classes and static methods
Threat
description

The Logging Application Block exposes interfaces that allow you to log mes-
sages to a flat file. An attacker can use these interfaces to flood the flat file
with false messages. This can constitute a denial of service attack. In addi-
tion, log messages in the flat file may contain sensitive information.

Countermeasures Check the hard disk space to see if it has reached its threshold limit, which
controls how many messages can be in the file. If the flat file has reached
its limit, generate an exception. The application should appropriately handle
this exception. Also, the application should include code that uses an
instance of the FileIOPermission class. Finally, the administrator should as-
sign the appropriate ACLs to the event log for read/ write operations.

continued

Enterprise Library Test Guide136

Threat 5 Attackers can flood the flat file log with false messages.
STRIDE
classification

Tampering, Information Disclosure, Denial of Services, Elevation of Privileges

Risk High
Mitigation No
Investigative
notes

None

Table 16 lists the DREAD rating for threat 5.

Table 16: Threat 5 DREAD Rating

D R E A D Total Rating
3 3 2 3 3 14 High

Table 17 lists details about threat 6.

Table 17: Logging Application Block Threat 6

Threat 6
Log messages that are stored in the event log, the database, a message
queue, or a flat file are not protected.

Name Unprotected log messages
Entry points Flat files, database, event log, message queue, and distributor service
Threat
description

The Logging Application Block exposes interfaces that allow you to log mes-
sages to different resources. These resources include the event log, flat
files, a database, message queuing, WMI events, and e-mail. Log messages
are stored as plaintext both in memory and in a physical storage system.
An attacker can read these messages if they are not properly protected with
ACLs, authorization, or encryption.

Countermeasures The log messages should be encrypted whether they are stored or being
transferred over a network or with message queuing. If the log messages
are not encrypted, attackers can use network monitoring tools to read them.
Also, the administrator should assign the appropriate ACLs to the event log,
database, flat file, or message queue and distributor service.

STRIDE
classification

Tampering, Information Disclosure

Risk High
Mitigation No
Investigative
notes

None

Table 18 lists the DREAD rating for threat 6.

Table 18: Threat 6 DREAD Rating

D R E A D Total Rating
3 3 2 3 3 14 High

Testing for Security Best Practices 137

Table 19 lists details about threat 7.

Table 19: Logging Application Block Threat 7

Threat 7
Attackers can use some of the application block interfaces to send unsolic-
ited e-mail messages.

Name Unsolicited e-mail
Entry points Public classes and static methods
Threat
description

The Logging Application Block exposes interfaces that allow you to e-mail log
messages. An attacker can use these interfaces to send unsolicited e-mail
messages.

Countermeasures The administrator should assign the appropriate ACLs to the SMTP server.
STRIDE
classification

Information Disclosure, Denial of Services

Risk High
Mitigation No
Investigative
notes

None

Table 20 lists the DREAD rating for threat 7.

Table 20: Threat 7 DREAD Rating

D R E A D Total Rating
3 3 2 3 3 14 High

Table 21 lists details about threat 8.

Table 21: Logging Application Block Threat 8

Threat 8 Attackers can flood the message queues with false messages.
Name Flooding of message queues and distributor service
Entry points Public classes and static methods
Threat
description

The Logging Application Block exposes interfaces that allow you to send
messages to the message queues so that the log messages can be asyn-
chronously processed. An attacker can use these interfaces to send false
messages to the message queue. The distributor service then processes
these messages. These false messages can constitute a denial of service
attack.
In addition, messages in a message queue may contain sensitive information.

Countermeasures The application should perform authentication and authorization before
granting a user access to the message queue.

STRIDE
classification

Tampering, Information Disclosure, Denial of Services, Elevation of
Privileges

Risk High
Mitigation No
Investigative
notes

None

Enterprise Library Test Guide138

Table 22 lists the DREAD rating for threat 8.

Table 22: Threat 8 DREAD Rating

D R E A D Total Rating
3 3 2 3 3 14 High

Table 23 lists details about threat 9.

Table 23: Logging Application Block Threat 9

Threat 9 Attackers can flood WMI event instrumentation with false events.
Name Flooding WMI events
Entry points Public classes and static methods
Threat
description

The Logging Application Block exposes interfaces that allow you to raise
WMI events. An attacker can use these interfaces to raise false instrumen-
tation events. This can constitute a denial of service attack.

Countermeasures Validate the input.
STRIDE
classification

Denial of Services, Elevation of Privileges

Risk High
Mitigation No

Testing for Security Best Practices 139

Threat 9 Attackers can flood WMI event instrumentation with false events.
Investigative
notes

The following code examples show how the application block should first
validate the input to the Logger.Write method before it raises an event.
public static void Write(object message, ICollection<string>
categories, int priority, int eventId, TraceEventType sever-
ity, string title, IDictionary properties)
{
 LogEntry log = new LogEntry();
//input validation should have been done here for message
 log.Message = message.ToString();
 log.Categories = categories;
 log.Priority = priority;
 log.EventId = eventId;
 log.Severity = severity;
 log.Title = title;
 log.ExtendedProperties = properties;
 Write(log);
}
The following examples show other places that require input validation.
Logger.Write(object,..) for message
SoapLogFormatter. DeserializeLogEntry(string) for serialized-
LogEntry
ContextItems.ProcessContextItems(LogEntry) for log
LoggingSettings.GetLoggingSettings(IConfigurationSource) for
configurationSource
ComPlusInformationProvider.PopulateDictionary(IDictionary) for
dict
DebugInformationProvider.PopulateDictionary(IDictionary) for
dict
ManagedSecurityContextInformationProvider.PopulateDictionary(I
Dictionary) for dict
UnmanagedSecurityContextInformationProvider.PopulateDictionary
(IDictionary) for dict
DebugUtils.GetStackTraceWithSourceInfo(StackTrace) for stack-
Trace
PriorityFilter.Filter(LogEntry) for log
DictionaryToken.FormatToken(String, LogEntry) for log
KeyValueToken.FormatToken(String, LogEntry) for log
TimeStampToken.FormatToken(String, LogEntry) for log
TokenFunction.Format(StringBuilder, LogEntry) for message-
Builder
FormatterDatabaseTraceListener.ValidateParameters(LogEntry)
for logEntry
MsmqListener.MsmqListener(DistributorService, Int32, String)
for distributorService
MsmqDistributorSettings.GetSettings(IConfigurationSource) for
configurationSource

Enterprise Library Test Guide140

Table 24 lists the DREAD rating for threat 9.

Table 24: Threat 9 DREAD Rating

D R E A D Total Rating
3 3 2 3 3 14 High

Table 25 lists details about threat 10.

Table 25: Logging Application Block Threat 10

Threat 10 Input validation is not performed
Name The Logging Application Block does not perform input validation.
Entry points Public classes and static methods
Threat
description

The Logger class exposes the static Write method. This method accepts a
log message as a parameter. However, it does not perform input validation
on the message to check for NULL values. An invalid input can cause the
application block to throw an unhandled exception to the application.

Countermeasures The application block must perform input validation. For details, see the
investigative notes for threat 9.

STRIDE
classification

Information Disclosure

Risk High
Mitigation No
Investigative
notes

See threat 9.

Table 26 lists the DREAD rating for threat 10.

Table 26: Threat 10 DREAD Rating

D R E A D Total Rating
3 3 2 3 3 14 High

Table 27 lists details about threat 11.

Table 27: Logging Application Block Threat 11

Threat 11 Altering the log file’s directory path in the configuration file
Name Flat file path canonical input validation
Entry points Configuration files, custom configuration stores
Threat description The Logging Application Block allows you to log messages to a flat file.

The location of this file is included in the configuration file or custom con-
figuration source. An attacker can change the file’s directory path to point
away from the flat file and to a system file. The attacker can then send
harmful log messages to that system file.

Countermeasures The application block should only log messages to a file in the current
directory. All log files should have a .txt file name extension.

Testing for Security Best Practices 141

Threat 11 Altering the log file’s directory path in the configuration file
STRIDE
classification

Tampering, Denial of Services, Elevation of Privileges

Risk High
Mitigation No
Investigative notes None

Table 28 lists the DREAD rating for threat 11.

Table 28: Threat 11 DREAD Rating

D R E A D Total Rating
3 3 2 3 3 14 High

Table 29 lists details about threat 12.

Table 29: Logging Application Block Threat 12

Threat 12
The Debug.Assert statements can cause a denial of service when the
application is in debug mode

Name Debug.Assert statements halt code while in debug mode
Entry points Public classes and static methods
Threat
description

The LogEntry public class has a static method named GetProcessName.
The method uses the NativeMethods class to retrieve the name of the
current process. (The NativeMethods class calls unmanaged APIs.) If an ex-
ception is thrown inside a call to unmanaged code and the process name is
not properly returned, the Debug.Assert statement displays a message box.
This message box requires a user to select Abort, Retry, or Ignore before
the application can proceed. This can constitute a denial of service attack
in the case of service applications.

Countermeasures Remove all Debug.Assert statements from the Logging Application Block
code before it is shipped.

STRIDE
classification

Denial of Services

Risk High
Mitigation No
Investigative
notes

The following code shows an example of a Debug.Assert statement that
should be removed.
public static string GetProcessName()
{
 StringBuilder buffer = new StringBuilder(1024);
 int length = NativeMethods.GetModuleFileName(NativeMethods
.GetModuleHandle(null), buffer, buffer.Capacity);
 Debug.Assert(length > 0);
 //This line can halt the code when in debug mode.
 return buffer.ToString();
}

Enterprise Library Test Guide142

Table 30 lists the DREAD rating for threat 12.

Table 30: Threat 12 DREAD Rating

D R E A D Total Rating
3 3 2 3 3 14 High

Performing Security Reviews
The security reviews are the final steps in ensuring that the application block follows
security best practices. The security reviews for Enterprise Library focused on the
code, access considerations, and design and deployment. All of the security reviews
had the following common characteristics:

Security reviews were done on small pieces of code and reviews had multiple
iterations.
Security reviews were performed in a timely manner to avoid backlogs and to
ensure that problems were discovered as early as possible.
The security reviews were performed by more than one tester and/or developer.
The reviewers were people with expertise in the pertinent areas. For example,
people with experience in cryptography performed the security reviews of cryp-
tography and secrets.
Security review checklists were used to make sure that all the relevant points were
covered and to serve as documentation.
FXCOP was used as the analysis tool.

Security Review Checklists
Checklists enumerate recommendations as itemized lists. The checklists included
here were used in the Enterprise Library security reviews. You can use them as mod-
els or templates. The categories of checklists are:

General code review
Managed code review
Resource access
Code access
Design and deployment

General Code Review Checklist
Table 31 lists the general code review recommendations.

●

●

●

●

●

●

●

●

●

●

Testing for Security Best Practices 143

Table 31: General Code Review Checklist

Check Description
Yes Clearly document potential threats and log them in a bug tracking database. (Threats

are dependent on the specific scenario and application block.)
Yes Develop code that is based on the .NET Framework design guidelines. For more infor-

mation, see Design Guidelines for Class Library Developers on MSDN.
Yes Run the FxCop analysis tool on assemblies and address all security warnings.

Managed Code Review Checklists
The checklists that are in the managed code category are:

Assembly-level checklist
Class-level checklist
Cryptography checklist
Secrets checklist
Exception management checklist
Delegates checklist
Serialization checklist
Threading checklist
Reflection checklist
Unmanaged code access checklist

Assembly-level Checklist

Table 32 lists the assembly-level recommendations.

Table 32: Assembly-level Checklist

Check Description
No Assemblies can have a strong name to guarantee that no one has tampered with them.

The threat model specifies that customers should sign assemblies for this purpose.
However, because the Enterprise Library ships as source code, the assemblies do not
have strong names.

Yes Consider delay signing the assemblies to reduce exposure of the private key that is
used in the strong naming and signing processes.

●

●

●

●

●

●

●

●

●

●

continued

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp

Enterprise Library Test Guide144

Check Description
Yes Assemblies can include declarative security attributes that are implemented with the

.NET Framework SecurityAction.RequestMinimum enumeration. This enumeration
requests the minimum permissions required for the code to run. The run time loads the
assemblies only if the security policy can grant them the permissions they need. Addi-
tionally, specifying the necessary permission level in the code lets administrators know
what the application needs to successfully load. The following example shows how the
Logging Application Block’s AssemblyInfo.cs file requests permissions.
[assembly: ReflectionPermission(SecurityAction.RequestMinimum, Flags =
ReflectionPermissionFlag.MemberAccess)]
[assembly: FileIOPermission(SecurityAction.RequestMinimum)]
[assembly: EventLogPermission(SecurityAction.RequestMinimum)]
[assembly: MessageQueuePermission(SecurityAction.RequestMinimum, Unre-
stricted = true)]
[assembly: PerformanceCounterPermission(SecurityAction.RequestMinimum)]

Class-level Checklist

Table 33 lists the class-level recommendations.

Table 33: Class-level Checklist

Check Description
Yes Restrict the visibility of classes and their members. Use the most restrictive access

modifier you can. Use private where possible.
Yes Seal non-base classes.
Yes Validate all input that originates outside of the current trust boundary. Check the input

to see that it is the proper type, length, format, and range. The following example shows
how the Logging Application Block checks the input for non-NULL values and valid files.
Public FileConfigurationSource(string configurationFilepath)
{
 if (string.IsNullOrEmpty(configurationFilepath)) throw new
 ArgumentException(Resources.ExceptionStringNullOrEmpty,
 "configurationFilepath");
 this.configurationFilepath =
 RootConfigurationFilePath(configurationFilepath);

 if (!File.Exists(this.configurationFilepath)) throw new
 FileNotFoundException(string.Format(Resources.Culture,
 Resources.ExceptionConfigurationLoadFileNotFound,
 this.configurationFilepath));
 EnsureImplementation(this.configurationFilepath);
}

Testing for Security Best Practices 145

Check Description
Yes Implement declarative checks for virtual internal methods.

Derived classes can override virtual internal methods. This can change the behavior of
the application block. (Public types do not have internal virtual members so they do not
need these checks.)

Yes Fields should be private. When necessary, expose field values with read-write or read-
only public properties. The following example shows how to use the read-only property
to prevent an attacker from changing the tokens that make up a database connection
string.
public abstract class Database : IInstrumentationEventProvider
{
 private static readonly string VALID_USER_ID_TOKENS =
 Resources.UserName;
 private static readonly string VALID_PASSWORD_TOKENS =
 Resources.Password;
(Code access security checks do not apply to fields.)

Yes Use read-only properties where possible.
Yes Review how the application block uses event handlers.

Cryptography Checklist

Table 34 lists the cryptography recommendations.

Table 34: Cryptography Checklist

Check Description
Yes Use the .NET Framework-provided cryptography providers instead of custom providers.

The Cryptography Application Block wraps standard .NET providers. Customers can
choose to use a custom provider but this is not a recommended practice.

continued

Enterprise Library Test Guide146

Check Description
Yes Use DPAPI to encrypt configuration secrets so as to eliminate the key management

issue. (DPAPI uses the password of the user account associated with the code that
calls the DPAPI functions in order to derive the encryption key. As a result, the operat-
ing system, and not the application, manages the key.) The Cryptography Application
Block uses DPAPI to encrypt the key. It retrieves the key from the key file or cache each
time it must encrypt or decrypt information. The following code example shows how the
Cryptography Application Block stores and retrieves the key.
public static ProtectedKey Read(string protectedKeyFileName, DataProtec-
tionScope dpapiProtectionScope)
{
 string completeFileName =
 Path.GetFullPath(protectedKeyFileName);
 if (cache[completeFileName] != null) return
 cache[completeFileName];

 using (FileStream stream = new
 FileStream(protectedKeyFileName, FileMode.Open,
 FileAccess.Read, FileShare.Read))
 {
 ProtectedKey protectedKey = Read(stream,
 dpapiProtectionScope);
 cache[completeFileName] = protectedKey;

 return protectedKey;
 }
}
The following code example shows how to use DPAPI to decrypt the key.
public byte[] Encrypt(byte[] plaintext)
{
 byte[] output = null;
 byte[] cipherText = null;
 this.algorithm.Key = Key;
 private byte[] Key
 {
 get
 {
 return key.DecryptedKey;
 }
 }
}

public byte[] DecryptedKey
{
 get { return Unprotect(); }
}

public virtual byte[] Unprotect()
{
 return ProtectedData.Unprotect(protectedKey, null,
 protectionScope);
}

Testing for Security Best Practices 147

Check Description
Yes Use the appropriate key sizes for the chosen cryptography algorithm. Identify and docu-

ment any reasons for not following this guideline.
Yes Do not store keys in code and configuration files.
Yes Restrict access to persisted keys.
Yes Periodically cycle keys.

Secrets Checklist

Table 35 lists the secrets recommendations.

Table 35: Secrets Checklist

Check Description
Yes Do not hard-code secrets.
No Do not store plaintext secrets in configuration files. The connection strings that the

Data Access Application Block uses to connect to databases are stored in the configu-
ration files. The Data Access Application Block threat model documents this issue. It
recommends that you encrypt the configuration file. For more information on how to do
this, see Configuring the Application Blocks in the Enterprise Library documentation.

No Do not store plaintext secrets in memory for extended periods of time.
Currently, the Caching Application Block cannot encrypt information.

continued

Enterprise Library Test Guide148

Check Description
Yes Clear sensitive data from memory as soon as possible. The Cryptography Application

Block byte arrays contain unencrypted keys. The application block clears them from
memory as soon as it uses them. The following example shows how the application
block uses a key and then removes it.
public byte[] Encrypt(byte[] plaintext)
{
 byte[] output = null;
 byte[] cipherText = null;

 this.algorithm.Key = Key;

 using (ICryptoTransform transform =
 this.algorithm.CreateEncryptor())
 {
 cipherText = Transform(transform, plaintext);
 }

 output = new byte[IVLength + cipherText.Length];
 Buffer.BlockCopy(this.algorithm.IV, 0, output, 0,
 IVLength);
 Buffer.BlockCopy(cipherText, 0, output, IVLength,
 cipherText.Length);

 CryptographyUtility.ZeroOutBytes(this.algorithm.Key);

 return output;
}

 public static void ZeroOutBytes(byte[] bytes)
 {
 if (bytes == null)
 {
 return;
 }
 Array.Clear(bytes, 0, bytes.Length);
}

Exception Management Checklist

Table 36 lists the general exception management recommendations.

Testing for Security Best Practices 149

Table 36: Exception Management Checklist

Check Description
Yes Use exception handling. Catch only the exceptions that you have anticipated in your

design. Exceptions to this rule are exceptions that are not Common Language Specifica-
tion (CLS)-compliant. (These are exceptions that do not derive from the .NET Framework
System.Exception namespace.) These exceptions can occur if the application block
uses a customer-supplied extension of if there is a call to unmanaged code. The ap-
plication block should include a generic catch handler for these situations. (In C#, this
takes the form of catch{ ... }). The inability to handle non-CLS-compliant exceptions may
leave the application block vulnerable to denial of service attacks.
An example of this situation is when the Data Access Application Block attempts to
use a custom database class that is included in the configuration source. The following
code example shows how to handle any non-CLS-compliant exceptions that may occur.
private static void TryLogConfigurationError(ConfigurationErrorsException
configurationException, string instanceName)
 {
 try
 {
DefaultDataEventLogger eventLogger = EnterpriseLibraryFactory.BuildUp<De
faultDataEventLogger>();
 if (eventLogger != null)
 {
 eventLogger.LogConfigurationError(configurationExcepti
on, instanceName);
 }
 }
 catch { }
 }

Yes Log the details of the exceptions to assist in diagnosing problems.
Yes All code paths that can result in an exception should provide a way to first check for a

successful outcome before throwing an exception. In the following code example, the
code first checks to see that the configuration file exists and is valid before it throws an
exception.
Public FileConfigurationSource(string configurationFilepath)
{
 if (string.IsNullOrEmpty(configurationFilepath)) throw new
 ArgumentException(Resources.ExceptionStringNullOrEmpty,
 "configurationFilepath");
 this.configurationFilepath =
 RootConfigurationFilePath(configurationFilepath);
 if (!File.Exists(this.configurationFilepath)) throw new
 FileNotFoundException(string.Format(Resources.Culture,
 Resources.ExceptionConfigurationLoadFileNotFound,
 this.configurationFilepath));
 EnsureImplementation(this.configurationFilepath);
}

Yes If there is a problem, an exception should occur as early as possible to avoid needlessly
using any more resources.

Enterprise Library Test Guide150

Delegates Checklist

Table 37 lists the delegates recommendations.

Table 37: Delegates Checklist

Check Description
Yes Delegates should not be accepted from untrusted sources. In Enterprise Library, it is

possible to use external configuration sources. This threat is documented in the code
so that users are aware of it. The following code example shows this documentation.
LogEntry log = new LogEntry();
log.Message = "memory leak";
log.Categories.Add(DropDownList1.SelectedValue);
log.Priority = 0;
log.EventId = 100;
log.Severity = TraceEventType.Information;
FileConfigurationSource source = new
// This configuration source comes from an external source.
// Only use configuration sources that come from
// trusted sources.
FileConfigurationSource(@"c:\pag\FileSource.config");
LogWriterFactory factory = new LogWriterFactory(source);
LogWriter writer = factory.Create();
writer.Write(log);
writer.Dispose();

Serialization Checklist

Table 38 lists the serialization recommendations.

Table 38: Serialization Checklist

Check Description
Yes Any type that implements the ISerializable interface or derives from such a type should

protect the GetObjectData method with a serialization formatter security action. In the
Security Application Block, the SyntaxException type implements the GetObjectData
method and protects it with the SecurityAction.Demand enumeration. This means that
all callers higher in the call stack must have been granted the permission specified by
the current permission object. The following example shows how the Security Applica-
tion Block protects the GetObjectData method.
public class SyntaxException : Exception
{
[SecurityPermission(SecurityAction.Demand, SerializationFormatter=true)]
public override void GetObjectData(SerializationInfo info, StreamingCon-
text context)
{
 base.GetObjectData(info, context);
 info.AddValue(IndexKey, this.index);
}

Testing for Security Best Practices 151

Check Description
Yes Restrict serialization to privileged code.
Yes Do not serialize sensitive data or else document it if you do. In the Logging Application

Block, the LogEntry object contains the logging information. Users who log sensitive in-
formation should be aware that that the data is serialized, The following example shows
that the LogEntry class has a Serializable attribute.
[Serializable]
[InstrumentationClass(InstrumentationType.Event)]
public class LogEntry : ICloneable

Yes Validate field data from serialized data streams.

Threading Checklist

Table 39 lists the threading recommendations.

Table 39: Threading Checklist

Check Description
Yes Stress test the application blocks to guarantee that they are not susceptible to denial

of service attacks. For example, the Caching Application Block’s background scheduler
that is used for scavenging and expiration was tested to ensure that its threads do not
deadlock or leak (this means that the threads are properly released), and that each
request does not generate a new thread.

Yes Synchronize Dispose methods.

Reflection Checklist

Table 40 lists the reflection recommendations.

Table 40: Reflection Checklist

Check Description
Yes Callers cannot influence dynamically generated code (for example, by passing assembly

and type names as input arguments). It is possible to alter the configuration files to
dynamically generate code. Threat 2 in Building the Threat Models documents
this issue.

Yes Use full assembly names when the .NET Framework’s Activator.CreateInstance method
creates an instance of the specified type.

Enterprise Library Test Guide152

Unmanaged Code Access Checklist

Table 41 lists the unmanaged code access recommendations.

Table 41: Unmanaged Code Access Checklist

Check Description
Yes Constrain and validate input and output strings that are passed between managed and

unmanaged code.
Yes Assemblies that call unmanaged code use declarative security (SecurityAction.Re-

questMinimum) to specify unmanaged security permissions. The application blocks use
API wrappers to call unmanaged APIs. All of the application blocks’ AssemblyInfo files
contain the SecurityAction.RequestMinimum enumeration. The following code example
shows how to use declarative security.
[assembly : SecurityPermission(SecurityAction.RequestMinimum, Flags=
 SecurityPermissionFlag.SerializationFormatter |
 SecurityPermissionFlag.ControlThread |
 SecurityPermissionFlag.UnmanagedCode
)]

Resource Access Checklist
Table 42 lists the resource access recommendations.

Table 42: Resource Access Checklist

Check Description
Yes Security decisions are not made based on file names.
Yes Input file paths and file names are well formed.
Yes Stress testing does not detect any memory leaks and concurrent scenarios do not

cause deadlocks. This reduces the possibility of denial of service attacks.

Testing for Security Best Practices 153

Check Description
Yes Specify an assembly’s file I/O requirements with declarative security attributes (this

should be SecurityAction.RequestMinimum). For example, the Caching Application
Block’s FileDependecy method calls the EnsureTargetFileAccessible method. This
method demands Read permission to access a file in case it is a protected resource.
The following code example demonstrates this.
[assembly : FileIOPermission(SecurityAction.RequestMinimum)]
In the Caching Application Block, the FileDependency class calls the
EnsureTargetFileAccessible method to demand I/O permission to read a
file.

public FileDependency(string fullFileName)
{
 if (Object.Equals(fullFileName, null))
 {
 throw new ArgumentNullException("fullFileName",
 SR.ExceptionNullFileName);
 }
 if (fullFileName.Length == 0)
 {
 throw new ArgumentOutOfRangeException("fullFileName",
 SR.ExceptionEmptyFileName);
 }
 dependencyFileName = Path.GetFullPath(fullFileName);
 EnsureTargetFileAccessible();
 if (!File.Exists(dependencyFileName))
 {
 throw new ArgumentException(SR.ExceptionInvalidFileName,
 "fullFileName");
 }

 this.lastModifiedTime =
 File.GetLastWriteTime(fullFileName);
}

private void EnsureTargetFileAccessible()
{
 FileIOPermission permission = new
 FileIOPermission(FileIOPermissionAccess.Read,
 dependencyFileName);
 permission.Demand();
}

Yes Use the EnvironmentPermission class to restrict code that accesses environment
variables. This is especially important if untrusted code can call the application block.

Yes Declare environment permission requirements with declarative security attributes (use
SecurityAction.RequestMinimum).

Enterprise Library Test Guide154

Code Access Security Checklist
Table 43 lists the general code review recommendations. An asterisk (*) next to an
entry means that the analysis was performed with FxCop.

Table 43: Code Access Security Checklist

Check Description
Yes If a virtual method, property, or event with the LinkDemand security check overrides

a base class method, the base class method must also have the same LinkDemand
security check for the overridden method in order to be effective. For example, the
InstrumentationCategoryAttribute class derives from the System.Attribute class that
has a link demand. The following code example shows how the Logging Application
Block uses the LinkDemand security check.
[System.Security.Permissions.PermissionSetAttribute
 (System.Security.Permissions.SecurityAction.LinkDemand,
Name="FullTrust")]
public sealed class InstrumentationCategoryAttribute : Attribute
{
 private string name = null;
 private string description = null;

Yes *Members that call late-bound members should have declarative security checks. In
the Enterprise Library, all provider types are late bound and use the Activator.CreateIn-
stance method to create the specified type, which is in the configuration source. All of
the application blocks’ threat models document the need for trusted configuration files.

Yes *Method-level declarative security should not mistakenly override class-level security
checks.

Yes None of the application blocks use the AllowPartiallyTrustedCallerAttribute (APTCA)
attribute.

Testing for Security Best Practices 155

Check Description
Yes Do not expose methods protected by a LinkDemand security check. Some method calls

in the .NET Framework are annotated with a LinkDemand. If they are called from within
an application block’s methods, the calling code is not checked for any security permis-
sions. An example of this is the Logging Application Block’s CollectIntrinsicProperties
method. This method calls the AppDomain.CurrentDomain property, which issues a link
demand to unmanaged code. Because of this, it is necessary to protect the CollectIn-
trinsicProperties method with the SecurityPermissionFlag.UnmanagedCode enumera-
tion.
[SecurityPermission(SecurityAction.Demand, Flags = SecurityPermission-
Flag.UnmanagedCode)]
private void CollectIntrinsicProperties()
{
 this.TimeStamp = DateTime.UtcNow;
 this.ActivityId = Trace.CorrelationManager.ActivityId;
 try
 {
 MachineName = Environment.MachineName;
 }
 catch (Exception e)
 {
 this.MachineName =
 String.Format(Properties.Resources.Culture,
 Properties.Resources.IntrinsicPropertyError, e.Message);
 }
 try
 {
 //AppDomain.CurentDomain issues a link demand to
 //unamanaged code. Link demands only check the immediate
 //caller. (In this case, this is the
 // CollectIntrinsicProperties method.)
 appDomainName = AppDomain.CurrentDomain.FriendlyName;

Yes None of the application block’s methods should include Assert statements or
LinkDemand security checks.

Enterprise Library Test Guide156

Design and Deployment Checklist
Table 44 lists the design and deployment recommendations.

Table 44: Design and Deployment Checklist

Check Description
Yes The design should address the scalability and performance criteria. Performance tests

and stress tests demonstrate that the application block meets these criteria. The appli-
cation block’s availability and ability to handle concurrent users should also be tested.

Yes Identify precautions that must be taken to satisfy the security requirements of the
infrastructure and network (examples include operating system services, communica-
tion protocols, and firewalls). For example, the Logging Application Block should use a
secure channel such as SSL or IPSEC, if it is logging sensitive data to a remote SQL
Server or a remote message queue. The Caching Application Block does not encrypt
data, so sensitive data logged to SQL store should be used over secured channel.

Yes Application blocks do not save sensitive data in the registry or in text files during instal-
lation.

Yes The application block respects the principle of least privilege. An application block does
not need permissions from an administrator to run on ASP.NET, which requires only a
network service account, or in Windows-based applications, which accepts any standard
security context with the appropriate permissions to write to resources such as the
event log and to use message queuing. The exact permissions depend on the applica-
tion block.

Yes Secure configuration stores with the appropriate ACLs.
No Do not store sensitive information in plain text configuration files. An example of such

information is a connection string that is used by the Data Access Application Block.
Users should encrypt the configuration file. For more information, see Configuring the
Application Blocks in the Enterprise Library documentation.

Yes The design identifies application trust boundaries.
Yes The design identifies the identities that are used to access resources across the trust

boundaries.
Yes The design identifies service account requirements.
Yes The design identifies the mechanisms, such as SSL, IPSec, and encryption, to protect

credentials when they are sent over a network.
Yes If SQL authentication is used, credentials are adequately secured over the network (with

SSL or IPSec) and in storage (with DPAPI).
Yes The application blocks do not change the ACLs of the registry or of any files during

installation or run time.
Yes The application blocks do not listen to unknown ports except for their internal use. An

example of where this is acceptable is when the Logging Application Block uses the
MSMQ Trace Listener.

Testing for Security Best Practices 157

Additional Resources
There are many additional resources on MSDN to help you make your applications
more secure. Here are some of them:

For information about coding guidelines, see Security Guidelines: .NET Framework
2.0.
For information about designing class libraries, see Design Guidelines for Class
Library Developers.
For information on building secure ASP.NET applications, see Building Secure ASP.
NET Applications.
For an index to a number of different checklist templates, see Security Checklists
Index.

For information about FxCop security rules, see FxCop Security Rules on GotDotNet.

●

●

●

●

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGGuidelines0003.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGGuidelines0003.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp
http://msdn.microsoft.com/practices/guidetype/Guides/default.aspx?pull=/library/en-us/dnnetsec/html/secnetlpmsdn.asp
http://msdn.microsoft.com/practices/guidetype/Guides/default.aspx?pull=/library/en-us/dnnetsec/html/secnetlpmsdn.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/securitychecklistsindex.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/securitychecklistsindex.asp
http://www.gotdotnet.com/team/libraries/FxCopRules/SecurityRules.aspx

Testing for Globalization Best
Practices

Globalization best practices ensure that the application code can support multiple
cultures with little or no change to the code base. A culture is a combination of a
language and a cultural environment. It includes information such as the format
of dates and times, currencies, character classification, and sorting rules for strings.
One globalization best practice is to separate the culture-dependent content from the
culture-independent content. Another best practice is to write code that can process
any culture-dependent content. This ensures that the application can be easily local-
ized for a particular culture.

Tests for globalization best practices detect problems in the application’s design that
violate these practices. The tests should prove that the code can handle any cultural
convention without incurring any difficulties that would either cause data loss or
display problems.

This chapter discusses how the Enterprise Library application blocks were tested to
see whether they followed globalization best practices.

The Test Approach
The test approach is the overall procedure that the test teams followed to ensure that
the application blocks adhered to globalization best practices.

	 To test the application blocks
	 1.	Create a test plan that consists of test cases that show whether the application

blocks follow globalization best practices.
	 2.	Design pseudo-localization tests to find localizability bugs.
	 3.	Choose a test environment by deciding on the operating system and the culture of

the server that hosts the application blocks.
	 4.	Execute the test cases and pseudo-localization tests and analyze the results to

ensure that the application blocks do not lose the data or incorrectly display the
data.

Enterprise Library Test Guide160

A tool that may help you prepare your code for globalization testing is Strgen. Strgen
is a multilingual text generator tool that generates multi-lingual strings. The tool can
be downloaded from Multilingual Text Generator – STRGEN on Microsoft.com.

Note: Strgen is distributed “as-is,” with no obligations or technical support from Microsoft
Corporation.

Creating a Test Plan
The test plan is made up of the test cases that determine whether the application
blocks adhere to globalization best practices. Table 1 lists the test cases for the
Enterprise Library application blocks.

Table 1: Test Plan for Enterprise Library Application Blocks

Test case Example
Verify that the application block con-
verts strings to Unicode characters
from the managed format (Unicode)
used within the application blocks.

In the following example, the platform uses the .NET
Framework CharSet.Unicode attribute to marshal strings
as Unicode characters.
[DllImport("kernel32.dll", CharSet =CharSet.
Unicode)]
public static extern IntPtr
GetModuleHandle(string moduleName);

Verify that any text that the ap-
plication block sends to external
resources, such as a file, a data-
base, a message queue, and e-mail,
are Unicode characters with UTF-8
encoding.

In the following example, messages that the application
block sends in e-mail are set to UTF-8 encoding.
MailMessage message = new MailMessage();
message.BodyEncoding = Encoding.UTF8;

Verify that application blocks that
use public APIs can accept cul-
ture-specific information such as
addresses, currency, dates, and
numerals. In addition, verify that the
output is displayed in the appropri-
ate, culture-specific format.

In the following example, the application block first con-
verts a date and time that are in local time to universal
time before processing them. It then converts them back
to local time before displaying them.
// Converts the local time to universal
// time before processing it.
System.DateTime univDateTime = localTime.ToUni-
versalTime();

// Do the processing using universal time.
// Convert the universal time back to local
// time to display it.
System localTime = univTime.ToLocalTime();

http://www.microsoft.com/globaldev/tools/strgen.mspx

Testing for Globalization Best Practices 161

Test case Example
Verify that text messages are not
dynamically created at run time by
concatenating multiple strings.

Concatenating multiple strings is not a globalization best
practice. For example, assume the following:
String 1 is “one after the other.”
String 2 is “The controls will be deleted”
String 3 is “The forms will be deleted”
If your code concatenates string 2 and string 1 or string 3
and string 1, the resulting English sentence is comprehen-
sible. However, when the same strings are converted to
a different language, such as German, the concatenation
does not form a complete sentence.

Verify that all the localizable strings
that the application block returns
to the user, such as exception
messages, are stored in external
resource files.

In the following example, the application block validates
the writer instance. If it is null, the application block
throws an ArgumentNullException exception. The first
parameter of the ArgumentNullException exception is the
instance name that is null. The second parameter is the
exception message. The application block uses the Re-
sources class to retrieve the message from the resource
file that stores strings for each culture. The application
block retrieves the appropriate string based on the current
culture setting.
if (writer == null) throw new ArgumentNullExcep
tion("writer", Resources.ExceptionWriterShould-
NotBeNull);
(Visual Studio generates the internal Resources class for
every project.)

Verify that strings that the applica-
tion block uses internally, such as
the GUID and keys for collections,
are not stored in external resource
files. Because these strings are
internal to the application block,
they do not belong in resource files
that store localized strings.

In the following example, the CallContextSlotName field
“EntlibLoggerContextItems” is the key that retrieves the
collection that stores additional context information that
belongs to the calling application. The Logging Application
Block uses this key name internally to retrieve information.
public const string CallContextSlotName =
"EntLibLoggerContextItems";

Verify that the application block
uses the .NET Framework Date-
Time.UtcNow property to log the
date and time to an external store
such as a database, Windows Man-
agement Instrumentation (WMI),
e-mail, or a message queue.

In the following example, the timestamp is logged in UTC
format to WMI.
[InstrumentationClass(InstrumentationType.
Event)]
 public abstract class BaseWmiEvent
 {
 private DateTime utcTimeStamp = Date-
Time.UtcNow;

 public DateTime UtcTimeStamp
 {
 get { return utcTimeStamp; }
 }
 }

continued

Enterprise Library Test Guide162

Test case Example
Verify that the application block
handles strings as entire strings in-
stead of as a series of characters.
This is especially important when
sorting or searching for substrings.
When the application block must
parse individual characters, verify
that the application block uses the
.NET Framework StringInfo class to
parse the individual text elements.

The StringInfo class contains methods that retrieve indi-
vidual text elements from a given string. A text element
can be a base character, a surrogate pair, or a combined
character sequence. In the following example, the applica-
tion block retrieves individual text elements from a string
and displays them on the console.
TextElementEnumerator charEnum = StringInfo.
GetTextElementEnumerator(s);
while (charEnum.MoveNext())
{
 Console.WriteLine(charEnum.GetTextElement());
 Console.WriteLine(Environment.NewLine);
}

Verify that strings that the applica-
tion block stores internally (the end
user cannot see them) are stored in
a culture-independent format.

By storing strings in a culture-independent format, you can
ensure that processes that require culture-independent
results behave consistently, regardless of the actual cul-
ture. Use the .NET Framework CultureInfo.InvariantCulture
property with strings that are culture-independent. This is
shown in the following example.
CultureInfo Invc = CultureInfo.InvariantCulture;
Thread.CurrentThread.CurrentCulture = Invc

Verify that the application block’s
buffers are large enough to hold
translated strings. Translated
strings are often longer than the
original strings. For example, when
you translate strings from English
to German, the German strings are
longer than the English strings.

In the following example, the application block reads an
array of 10 characters from a file. This may result in lost
data if the number of characters in the file for a local
language is larger than the number of characters used in
English.
char[] buffer = new char[10];
using (FileStream fs = new FileStream("", File-
Mode.Open))
{
using (StreamReader sr = new StreamReader(fs))
{
sr.Read(buffer, 0, 10);
}
}

Verify that the application block
uses culture-independent opera-
tions to compare strings such as
file names, persistence formats, or
symbolic information that the end
user does not see.

If an application block uses a comparison operation to de-
termine if a string is a recognized XML tag, that compari-
son should be culture-independent. If the application block
bases a security decision on the result of a string com-
parison or case change operation, the operation should
be culture-independent to ensure that the result is not
affected by the value of the CultureInfo.CurrentCulture
property. To make the comparison culture independent,
use the overload of the .NET Framework String.Compare
method that takes a CultureInfo object as a parameter.
Pass in the CultureInfo.InvariantCulture property, This is
shown in the following example.
int compareResult = String.Compare(string1,
string2, false, CultureInfo.InvariantCulture);

Testing for Globalization Best Practices 163

Test case Example
Verify that the collection classes
use culture-independent operations
to sort the keys.

For example, the .NET Framework SortedList class rep-
resents a collection of key/value pairs that are sorted by
the keys. A SortedList element can be accessed by its key
or by its index. When you use a SortedList object whose
keys are strings, the sorting and lookup operations can be
affected by the Thread.CurrentCulture property. To obtain
culture-independent behavior from a SortedList object,
create it with one of the constructors that accepts an
IComparer interface as a parameter. This parameter speci-
fies the IComparer implementation to use when compar-
ing keys. For the IComparer parameter, specify a custom
comparer class that uses the CultureInfo.InvariantCulture
property to compare keys. The following example illus-
trates a custom culture-insensitive implementation of the
IComparer interface that you can specify as the IComparer
parameter to a SortedList constructor.
internal class InvariantComparer : IComparer
{
 private CompareInfo m_compareInfo;
 internal static readonly InvariantComparer
Default = new
 InvariantComparer();

 internal InvariantComparer()
 {
 m_compareInfo = CultureInfo.Invariant-
Culture.CompareInfo;
 }

 public int Compare(Object a, Object b)
 {
 String sa = a as String;
 String sb = b as String;
 return m_compareInfo.Compare(sa, sb);
 }
}

Pseudo-Localization Testing
Pseudo-localization may be the most effective way of finding localizability bugs.
This technique involves translating the application block’s localizable resources into
something readable but drastically different from normal text. For example, you
could replace every “a” with an “â”. Pseudo-localization also adds extra padding
characters to the ends of strings. The types of errors that pseudo-localization helps
you find are hard-coded strings that need internationalization, strings that should
not be translated, non-Latin characters, and errors handling longer language strings.
A pseudo-localized version of an application block should behave the same as the
original version.

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemCollectionsIComparerClassTopic.asp

Enterprise Library Test Guide164

To use pseudo-localization, alter the application block’s localizable resources in the
following ways.

Replace English text with text that contains non-English characters.
Add extra characters to the resource strings. This ensures that the application
block functions even if the translated text is longer than the English text.
Add markers before and after the non-English strings. This test ensures that the
application block displays the complete string and does not lose data. For exam-
ple, you can enclose all strings within "[]" so that you can see where each string
begins and ends.
Use multi-lingual Unicode for all the substitutions and additions. This will help
you find places where the application block uses ANSI functions to process or
display text.

Creating the Test Environment
When you create a test environment, it is important to select the correct operating
system. Windows XP is often a good choice for globalization testing because it sup-
ports a broad range of cultures. This means you can simulate many different regions
on a single computer. Use the local build of Windows XP with a language group
installed. For example, if you use the U.S. build of Windows XP, you could install the
East Asian language group. Because German is installed by default, this combination
gives you good test coverage without imposing requirements on the testers’ language
skills.

Another option is to use the local build of the target operating system. If the appli-
cations are meant for specific regions, the versions of the operating system that are
tailored for these regions are the obvious choices for the builds. If the target oper-
ating system is Windows 2000 or Windows XP, you can use one language for the
system UI and another for the actual application. By using this configuration, you
can see how the application interacts with a localized system, where the names of the
system folders, built-in accounts, fonts, and other system objects might be different
from how they are represented in an English or Multilanguage User Interface (MUI)
system. You can choose to use whatever language for the system UI that the testers
understand.

The Enterprise Library application blocks do not have specific requirements for
the cultures that they must support. To see if the application blocks could support
diverse cultures, they were tested with a minimum of two language groups that be-
longed to linguistically unrelated regions, such as Japan and Germany.

●

●

●

●

Testing for Globalization Best Practices 165

Execute and Analyze the Results
Execute the tests that comprise the test plan in addition to the pseudo- localization
tests. Here are some of the most common problems that may occur:

Special characters, such as question marks, ANSI characters, vertical bars, boxes,
and tildes, appear randomly on the display.
The application block returns data, such as dates, times, and currency, that is
incorrectly formatted.
The error messages, or other hard-coded strings, are not in accordance with the
current culture setting.
The application block displays incomplete messages or strings (in other words, the
application block loses data).

Usually, a simple code review reveals mistakes such as hard-coded strings, misuse
of an overloaded method that has culture or culture-related parameters, or an incor-
rectly set culture-related property for the thread in which a call is executed. Here are
some specific issues.

If special characters appear on the display, there may be a problem with the
Unicode-to-ANSI conversion process. For example, a question mark may mean
that the Unicode-to-ANSI conversion is not using the correct conversion tables,
which are determined by the CultureInfo.LCID property. This property gets the
current culture identifier. If you are trying to convert Japanese Unicode strings to
ANSI on an English system, and if you do not explicitly specify the code page to
use, the system will use the default code page, which does not contain informa-
tion on how to convert the Japanese Unicode strings.
Incorrectly formatted data may indicate that the application block has methods
that do not use the current culture setting when they retrieve information.
If the application block displays incomplete messages or strings, the length of the
message or string may be too large in a non-English language for the application
block’s buffers.

For a complete list of globalization-related issues, see Globalization and Localization
Issues on MSDN.

●

●

●

●

●

●

●

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxconGlobalizationLocalization.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxconGlobalizationLocalization.asp

Testing for Performance and
Scalability

Testing the Enterprise Library application blocks for performance and scalability
involves testing the library’s set of application blocks under both normal and peak
loads. The tests are performed without incorporating the application blocks into a
full-fledged application. The goals of the performance tests are:

To verify that the application blocks meet the performance requirements while
staying within the budgeted constraints on system resources. The performance
requirements can include different measurements, such as the time it takes to
complete a particular scenario (this is known as the response time) or the number
of concurrent or simultaneous requests that can be satisfied for a particular opera-
tion within a given response time. Examples of system resources are CPU time,
memory, disk I/O, and network I/O.
To analyze the behavior of the application blocks at various load levels. Perfor-
mance tests that measure this behavior use metrics that relate to the performance
objectives and other metrics that help to identify the bottlenecks in the application
blocks. A bottleneck is the device or resource that constrains throughput. Most of
the time, performance bottlenecks in your application relate to resource issues that
may include server resources, such as CPU, memory, disk I/O, and network I/O
or other external resources, such as available database connections or network
bandwidth. Bottlenecks can be caused by various issues, such as memory leaks,
slow response times, and contention for resources while under load.

Performance tests for the application blocks fall into two broad categories:
Load tests. Load tests monitor and analyze the behavior of an application block
under both normal and peak load conditions. Load tests enable you to verify that
the application block meets the performance objectives.
Stress tests. Stress tests identify problems that occur both when the application
block operates under heavy load conditions and when it must operate under these
conditions for lengthy periods of time. The application block may fail under these
conditions because it has depleted some system resources. Another goal of stress
testing is to see if the application block can recover when its load exceeds the
specified limits and then returns to normal. In short, when you run stress tests,
monitor the application block to see if its performance degrades under heavy
loads and to see if its performance recovers after the load returns to normal.

●

●

●

●

Enterprise Library Test Guide168

Scalability tests are extensions of performance tests. The outstanding characteristic
of a scalable application is that it only requires additional resources to operate under
additional loads instead of requiring extensive modifications to its code. The goals of
scalability testing are:

To determine any performance gains the application block achieves with addition-
al system resources, such as CPUs or computers, or any additional external
resources, such as a SQL Server database or a disk array.
To identify any locking and contention problems that may not be detected by
performance tests.

Although performance affects how you determine the number of users that an ap-
plication can support, scalability and performance are two separate requirements.
Performance optimizations may reduce an application’s scalability and scalability
optimizations may reduce an application’s performance.

This chapter contains the following sections:
Defining Performance Criteria. This section defines the performance criteria that
are used to test the application blocks. The performance criteria describe the
performance goals for the Enterprise Library in terms of system metrics and
transaction times. For example, a performance goal may be to have less than 10
locks per second. Another goal may be to have transaction times that are less than
250 milliseconds (ms).
Setting Up the Test Environment. This section describes the Enterprise Library test
environment.
Building Test Harnesses. This section describes how to create a test project, Web
tests, test harness script, and a load test.
Testing the Application Blocks. This section describes how each application block
was tested.
Detecting Performance Issues. This section describes the performance parameters
you should monitor to detect performance issues in the application blocks.
Measuring Performance. The section describes the performance metrics for the
application blocks. Examples include the amount of system resources each appli-
cation block uses and the transaction times for API calls. It also describes perfor-
mance counters you can use to measure performance.
Testing for Scalability. This section describes the objectives of the scalability tests
and analyzes the results for several application blocks.
Measuring Initialization Costs. This section describes how to measure the amount
of system resources and time necessary to prepare an application block so that it
can begin to execute requests.
Extrapolating Workload Profiles. This section describes how to use Little’s Law to
characterize workloads.
Debugging Memory Leaks. This section explains how to use the WinDbg debug-
ger to detect memory leaks.

●

●

●

●

●

●

●

●

●

●

●

●

Testing for Performance and Scalability 169

Defining Performance Criteria
The most common approach to determining an application’s performance is to mea-
sure its response times and the resources it uses against criteria, such as the appli-
cation’s budgets for resources, its business needs, and its service level agreements.
However, it is not always possible to use these criteria with Enterprise Library,
treated as a whole. The reasons for this are:

There is no single application that encompasses all the application blocks.
Different applications require different resources.
Different applications have different goals.

Because the application blocks cannot be tested in the context of a specific appli-
cation, another approach is to measure an application block’s performance goals
against a baseline. This is the approach used with Enterprise Library. The baselines
are the .NET Framework and Enterprise Library 1.1. In this case, an example of a
performance goal may be that an Enterprise Library method should have less than a
15 percent overhead when compared to the overhead of the equivalent .NET Frame-
work method.

For example, the cost of adding an item to the ASP.NET cache serves as a baseline
measurement for the Caching Application Block’s equivalent Add method. By
comparing the two costs, the overhead of the Enterprise Library application block
becomes apparent.

Measurements of the performance criteria are collected with the Windows Perfor-
mance Monitor (Perfmon.exe). Here is the complete list of performance criteria for
Enterprise Library–January 2006:

Overhead cost
Initialization cost
Consistency
Availability

The next sections discuss these subjects.

Overhead Cost
The overhead cost is expressed as a percentage. It is the difference between the re-
sponse time of an application block (or one of its system resources) when it performs
a function and the response time of the .NET Framework and Enterprise Library 1.1
when it performs the same function. The overhead cost is expressed as a percentage
of total transactions (this is also termed “total hits” for Web applications) and as a
percentage of transactions per second. The next sections describe the calculations for
determining the overhead costs.

●

●

●

●

●

●

●

Enterprise Library Test Guide170

Total Transactions
This section describes how to calculate the overhead cost in terms of percentage of
total transactions. For Web applications, the term “total hits” is often used instead of
“total transactions.”

Overhead cost = ((Total transactions for .NET – Total transactions for application
block)/Total transactions for .NET) * 100

Table 1 lists the data that was collected during a 7 minute performance test. The goal
was to compare the cost of using the Caching Application Block in Enterprise Li-
brary–January 2006 to add an item to the cache against the ASP.NET and Enterprise
Library 1.1 baselines.

Table 1: Overhead of Using Caching Application Block Add Method

Component TPS Time (sec) Overhead
Total
transactions

ASP.NET 1844.215 0.048801 baseline 608591
Enterprise Library 1.1
(instrumentation off) 1692.394 0.053179 8.23% 558490
Enterprise Library 1.1
(instrumentation on) 1626.352 0.055339 11.81% 536696
Enterprise Library – January 2006
(instrumentation off) 1725.536 0.052158 6.44% 569427
Enterprise Library – January 2006
(instrumentation on) 1611.703 0.055842 12.61% 531862

The overhead of using the Enterprise Library–January 2006 Caching Application
Block is calculated as follows:

Total Transactions for ASP.NET = 608591

Total Transactions for Enterprise Library–January 2006 (instrumentation on) =
531862

Overhead = ((608591-531862)/608591*100) =12.61%

Transactions per Second
This section describes how to calculate the overhead cost in terms of percentage of
transactions per second (TPS).

Overhead cost = ((TPS for .NET – TPS for application block)/TPS for .NET) * 100

Testing for Performance and Scalability 171

The following is an example that uses the data in Table 1:

Transactions Per second for ASP.NET = 1844.21

Transactions Per Second for Enterprise Library – January 2006(
instrumentation on) = 1611.7

Overhead = ((1844.21-1611.70)/1844.21)*100) = 12.60%

Initialization Cost
The initialization cost is the cost of preparing an application block so that it can begin
to execute requests. This measurement is not relevant for Web applications because
the first hit (this is the initialization cost) is not considered an important factor in
terms of performance. However, the measurement does matter for smart client ap-
plications because users frequently stop and restart the application.

Consistency
The measurements for response times and use of system resources should be stable
and consistent during performance tests and stress tests. This means that transactions
should always return the expected results and there should be no interruptions of
service. In addition, there should be no spikes in the use of system resources, such as
memory or processors. Transactions that return data should show repeatable results.

Availability
The application block and the computer it runs on should be available. This means
that if there are failures while the application block is running, they should be re-
solved before there are problems, such as service errors or corrupted data. For exam-
ple, there should be no interruptions of service during the stress tests.

Setting Up the Test Environment
The test environment setup for Enterprise Library requires:

A host engine for the application blocks.
A network of computers to act as load agents.

Choosing the Host Engine
ASP.NET hosts the application blocks for the Enterprise Library tests. It has the
following advantages:

ASP.NET is well-documented and has readily available tools to measure
performance and scalability.
ASP.NET allows you to place the client and the server on separate computers.

●

●

●

●

Enterprise Library Test Guide172

Setting up the Test Environment
After you decide the host engine to use, you can set up the test environment. The
test environment is where you run your test harnesses and make your performance
measurements. Enterprise Library is tested with Visual Studio 2005 Team Edition for
Software Testers. The test environment consists of the following components:

3 agents to run the load tests
1 controller to administer the agents and collect test results
1 computer with Visual Studio 2005 to develop the test code
1 Web server to host Enterprise Library
1 SQL Server database

The tests use dedicated client computers as load generators (these are also referred
to as load agents) to ensure that there is no competition for system resources. In ad-
dition, it is good practice to use isolated networks with dedicated switches for the
performance lab benches. This prevents any unrelated issues from contaminating the
test results.

Load tests should use all of an agent’s CPU cycles by simulating concurrent virtual
users. This is because the Web server that hosts Enterprise Library is not used to
its full capacity. The greater the capacity of the Web server, the greater the load the
agents must put on the system to counteract the Web server’s effects. Otherwise, the
Web server may distort the measurements so the system’s response times appear to
be better than they actually are. You may have to add multiple load agents to accom-
plish this. The Enterprise Library test environment uses three load agents.

Figure 1 shows the Enterprise Library test environment.

●

●

●

●

●

Testing for Performance and Scalability 173

Figure 1  Enterprise Library test environment

Enterprise Library Test Guide174

After you set up the test environment, you should tune it to make sure that there are
no inherent problems that may distort the measurements.

Tuning the Test Environment
To ensure that the test measurements are accurate, you should first make sure that
the test environment is performing well and has no constraints or performance issues
that could contaminate your measurements. The areas you should monitor are identi-
cal to those for the application blocks. For information, see Detecting Performance
Issues.

Building Test Harnesses
A test harness is a Web application that loads the tests and runs them. The Enterprise
Library test harnesses use Web controls on a Web page to configure and run the tests.
Figure 2 illustrates the Caching Application Block test harness.

Testing for Performance and Scalability 175

Figure 2  Caching Application Block test harness

To create a test harness, you need a test project and a Web test script in addition to
the Web page.

Enterprise Library Test Guide176

Creating a Web Test Script
A Web test script simulates how an application might interact with an application
block. Typically, you create a test script by recording HTTP requests using the Web
Test Recorder in a browser session.

The following procedures generate a test script in Visual Studio 2005 Team Edition
for Software Testers.

	 To create a test project
	 1.	Open Visual Studio Team Edition for Testers
	 2.	Create a test project. Click File, point to New and click Visual C# Test.
	 3.	Type a name and click OK.

After you have created a test project you can record a Web test.

	 To record a Web test
	 1.	If the test project is not open, open it. On the File menu, point to New, and then

click the test project.
	 2.	On the Test menu, click New Test. The Add New Test dialog box appears.
	 3.	Click Web Test.
	 4.	In the Test Name box, type a name. Do not use the .webtest extension. Click OK.

The Web Test Recorder opens inside a new instance of Internet Explorer.
	 5.	Enter the URL of the Web site you want to test.
	 6.	Execute the actions the test will simulate by clicking the appropriate controls, such

as buttons and drop-down list boxes.
	 7.	Click Stop to stop recording.
	 8.	On the File menu, click Save to save the test.

Repeat this procedure for each test that is contained in the test harness.

The tree of nodes that contains URLs in the Web Test Editor is named the request tree.
You can select nodes in the request tree to view the properties associated with each
request after the test is recorded. Figure 3 is an example of a request tree.

Figure 3  Request tree

Testing for Performance and Scalability 177

After you create the test, you can convert the recorded Web test to a coded Web test.

	 To convert a recorded Web test
	 1.	Open a solution that contains a recorded Web test.
	 2.	Open the Web test file.
	 3.	In the Web Test Editor, click the Generate Code button. You are prompted for a

name for the coded Web test.
	 4.	Type a name, and then click OK.
	 5.	Click Build, and then click Build Solution. Your code compiles. The compiled

code is a test script.

When you build your test harnesses, remember two points:
Do not cache an application block's internal domain objects over iterations of the
tests to avoid the costs of creating them. Performance tests should assume the
worst case scenario, which is the most expensive code path. For example, the
Caching Application Block's most expensive code path is when the application
block creates a CacheManager object. The most expensive path for the Logging
Application Block is when the application block creates a LogEntry object. For an
example of how to create a CacheManager object, see Using the Test Script.
Do not distort the TPS measurements made with the performance monitor (ASP.
NET: Requests/sec) and the Visual Studio 2005 Team Edition for Software Testers
load test tool by reloading the Web page after the first request. Instead, read the
ViewState and EventValidation variables (and any other static variables that the
Web server returns).

There are two ways to implement these suggestions. You can either edit the test script
or you can use data binding. For information about editing the test script, see Using
the Test Script. For information about using data binding, see Using Data Binding.

Using the Test Script
You can add code to the test script to maintain the state of the Web page. This means
that the entire page is loaded only once, when the first user accesses it. The values
from the page and all of the controls are collected and formatted into a single en-
coded string and then saved in the _VIEWSTATE hidden field. In the example given
here, the test script stores this string in the ViewState variable. The test script tests
the ViewState variable to see if it is null. This is the equivalent of seeing if this is the
first time the page has been loaded. If the value is not null, the test script reloads the
page but executes only the POST request path, along with the required test actions.

The test script also uses the __EVENTVALIDATION hidden field. This field acts as
security against fraudulent postbacks. It validates any events (such as clicking a but-
ton) that occur. The EventValidation variable stores the value of the field.

●

●

Enterprise Library Test Guide178

The test script also demonstrates how you can define test parameters such as the type
of cache storage and the priority of a cached item by including them in a drop-down
list box. The test script selects the correct parameters at run time and no user action
is necessary. For example, the following line in the script selects the CacheManager
type object, which is named DefaultCacheManager. This object is created for each
test iteration.

request2Body.FormPostParameters.Add("ddlCacheManager","DefaultCacheManager");

The CacheManager object is created for each test iteration.

The following test script illustrates how to save the state of the Web page and how to
create objects for each test iteration. Although this test script is for the Caching Appli-
cation Block, the same script can be used with the other application blocks, except for
the section that generates unique keys for cached items. For more information about
this section of the test script, see Testing the Caching Application Block.

// Test script
// This script, except for the code that generates the unique keys,
// can be used with all application blocks. This code is specific to the
// Caching Application Block.
// Variables hold the ViewState and EventValidation hidden fields.
// Variables hold the KeyValue and lockn objects to generate the key item
// for the Caching Application Block.

 public class CachingBlockTestCoded : WebTest
 {
private static string ViewState;
private static string EventValidation;
private static int KeyValue=0;
private static object lockn = new object();
private const int MaxElements=2000
public Caching_Entlib20()
{
 this.PreAuthenticate = true;
}

public override IEnumerator<WebTestRequest> GetRequestEnumerator()
{
 // If it is the first hit, the value
 // is cached and used
 // on subsequent hits.
 if (ViewState == null)
 {
WebTestRequest request1 = new WebTestRequest("http://10.3.16.10/EntLib/Caching/
Caching.aspx");
ExtractHiddenFields rule1 = new ExtractHiddenFields();
 rule1.ContextParameterName = "1";
request1.ExtractValues += new EventHandler<ExtractionEventArgs>(rule1.Extract);
 yield return request1;
// The ViewState and EventValidation variables are extracted from
// the context of a Web test object.

http://10.3.16.10/EntLib/Caching/Caching.aspx
http://10.3.16.10/EntLib/Caching/Caching.aspx

Testing for Performance and Scalability 179

viewState = this.Context["$HIDDEN1.__VIEWSTATE"].ToString();
EventValidation = this.Context["$HIDDEN1.__EVENTVALIDATION"].ToString();
 }

 String KeyValueString;
 // The object is locked and the keyvalue is incremented.
 // It is stored in a local variable
 // and used in the post statement.
 // This is only applicable to the Caching Application Block.
 lock (lockn)
 {
 KeyValueString = KeyValue.ToString();
 KeyValue++;
 if (KeyValue > MaxElements)
 KeyValue = 1;
 }
 // A timer is set to measure transaction times.

this.BeginTransaction("Caching_Entlib20");
WebTestRequest request2 = new WebTestRequest("http://10.3.16.10/EntLib/Caching/
Caching.aspx");
 request2.Method = "POST";
 FormPostHttpBody request2Body = new FormPostHttpBody();
 // Add the ViewState hidden filed to the body of the request.
request2Body.FormPostParameters.Add("__VIEWSTATE", ViewState);
request2Body.FormPostParameters.Add("txtBoxKeyValue", KeyValue);
request2Body.FormPostParameters.Add("txtBoxCacheSize", "2000");
request2Body.FormPostParameters.Add("ddlCacheManager","DefaultCacheManager");
request2Body.FormPostParameters.Add("ddlExpirationType", "0");
 request2Body.FormPostParameters.Add("ddlPriority", "0");
request2Body.FormPostParameters.Add("btnAddItemToCache", "Add Item");
// Add the EventValidation hidden field to the body of the request.
request2Body.FormPostParameters.Add("__EVENTVALIDATION", EventValidation);
 request2.Body = request2Body;
 yield return request2;
 this.EndTransaction("Caching_Entlib20");
}

Using Data Binding
With data binding, you can use a data source to provide data for a Web test. You can
bind data from the data source to a part of a Web request that requires data, such as
a form post parameter. For example, in the Caching Application Block Web test, you
can set the value of the cache storage (this can be either SqlCacheManager or De-
faultCacheManager) in the data source and then pass this value to the Web test at
run time. The Cache Manager drop-down list will show the correct cache manager as
selected. You can use any OLE DB data source for data binding, including .csv files,
Microsoft Excel, Access and SQL Server databases.

To use data binding, first create a database table or a .csv file that contains the data
that will be bound to the Web control. The first row in the column is a name and the
subsequent rows are the values. For example, to data bind values to the drop-down

http://10.3.16.10/EntLib/Caching/Caching.aspx
http://10.3.16.10/EntLib/Caching/Caching.aspx

Enterprise Library Test Guide180

list that displays the cache manager, you could enter the name Cache in the first row,
the value DefaultCacheManager in the second row, and the value SqlCacheManager
in the third row, as shown here:

Cache

DefaultCacheManager

SqlCacheManager

After you create the data source, you can bind it to the correct form post parameter.

	 To data bind a form post parameter
	 1.	In Visual Studio, click the Web test. The Web test opens in the Web Test Editor.
	 2.	In the Web Test Editor, right-click the top node of your Web test, and then click

Add Data Source.
	 3.	In the OLE DB Provider drop-down list, select your data provider.
	 4.	In the Web test request tree, expand the Form Post Parameters node. Click the

Web control that will be bound to the database or .csv file.
	 5.	In the Properties window, click the Value property, and then click the down arrow

that appears.
	 6.	Click DataSource1. Expand the node that is named after the database table or .csv

file. Click the name of the column that contains the values for the Web control. The
Web control is now data bound. You should see this if you look at the Web control
in the Web test request tree.

After the Web control is data bound, click the Generate Code button on the toolbar.
This generates a new test script that includes the data binding. The following code is
an example of a test script that uses data binding.
Test code with the data binding information. Note that the post contains the call
to request2Body.FormPostParameters.Add("TextBox1", this.Context["DataSource1.
cache#csv.cacheitem"].ToString());
 [DataSource("DataSource1", "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=c:\\
pag\\entlibcode;Extended Propertie" +
 "s=text", Microsoft.VisualStudio.TestTools.WebTesting.DataBindingAccess-
Method.Sequential, "cache#csv")]
 [DataBinding("DataSource1", "cache#csv", "cacheitem", "DataSource1.cache#csv.
cacheitem")]
 public class WebTest2Coded : WebTest
 {

 public WebTest2Coded()
 {
 this.PreAuthenticate = true;
 }

 public override IEnumerator<WebTestRequest> GetRequestEnumerator()
 {
 WebTestRequest request1 = new WebTestRequest("http://localhost/
entlibtests/caching.aspx");

http://localhost/entlibtests/caching.aspx
http://localhost/entlibtests/caching.aspx

Testing for Performance and Scalability 181

 request1.ThinkTime = 13;
 ExtractHiddenFields rule1 = new ExtractHiddenFields();
 rule1.ContextParameterName = "1";
 request1.ExtractValues += new EventHandler<ExtractionEventArgs>(rule1.
Extract);
 yield return request1;

 WebTestRequest request2 = new WebTestRequest("http://localhost/
entlibtests/caching.aspx");
 request2.Method = "POST";
 FormPostHttpBody request2Body = new FormPostHttpBody();
 request2Body.FormPostParameters.Add("__VIEWSTATE", this.
Context["$HIDDEN1.__VIEWSTATE"].ToString());
 request2Body.FormPostParameters.Add("TextBox1", this.
Context["DataSource1.cache#csv.cacheitem"].ToString());
 request2Body.FormPostParameters.Add("TextBox2", "2000");
 request2Body.FormPostParameters.Add("DropDownList1", "0");
 request2Body.FormPostParameters.Add("DropDownList3", "DefaultCacheMan-
ager");
 request2Body.FormPostParameters.Add("DropDownList2", "0");
 request2Body.FormPostParameters.Add("Button1", "Add Item");
 request2Body.FormPostParameters.Add("__EVENTVALIDATION", this.
Context["$HIDDEN1.__EVENTVALIDATION"].ToString());
 request2.Body = request2Body;
 yield return request2;
 }
 }
}

Each test iteration uses a different cache store. If you want to use only one of the
cache stores, remove the other entry from the data source. Data binding is particular-
ly useful for stress tests, where you want to test all of the scenarios. Bind every Web
control to a data source to create a Web test with full coverage.

Defining the Workload Profile
The workload profile consists of an aggregate mix of users simultaneously perform-
ing various operations. This profile should yield the same results over multiple test
runs. A workload profile consists of an aggregate mix of users simultaneously per-
forming various operations. To create a workload profile, decide the number of users
you will simulate, how the operations the users perform will be distributed in terms
of percentages, and how much think time you will allow between operations. Think
times simulate behavior that causes people to wait between interactions with a Web
site. They should occur between requests in a Web test and between test iterations in
a load test. Including think times in a load test can be useful in creating more accu-
rate load simulations. In Visual Studio 2005 Team Edition for Software Testers, think
times are measured in seconds. (The Enterprise Library tests do not use think times
because they do not have to simulate that type of user behavior.)

Create a workload profile when you have to prove that an application block can con-
currently execute a variety of scenarios. The Caching Application Block performance

http://localhost/entlibtests/caching.aspx
http://localhost/entlibtests/caching.aspx

Enterprise Library Test Guide182

tests had to verify that the application block could support concurrent users access-
ing the same cache but for different reasons. For example, some of these users would
add items to the cache while other users would remove items. To see the workload
profile for the Caching Application Block, see Profiling the Workload in Testing the
Caching Application Block.

You will use the workload profile when you create the load tests. The settings in Cre-
ating a Load Test were used in the Enterprise Library load tests.

Creating a Load Test
After you create the Web tests, you can create the load test. The load test simulates
many clients accessing the application block at the same time.

	 To create a load test
	 1.	Open the solution that contains the Web test.
	 2.	In Solution Explorer, right-click the test project node. Click Add, and then click

Load Test. The Load Test Wizard appears.
	 3.	Click Next.
	 4.	Enter the name of the scenario.
	 5.	Set the Think Time Profile setting to Use normal distribution centered on re-

corded think times.
	 6.	Set the Think time between test iterations setting. The Enterprise Library tests set

this value to 0 because they did not use think times.
	 7.	Click Next. The Edit load pattern settings for a load test scenario dialog box

appears.
	 8.	Select Constant Load. Different iterations of the Enterprise Library tests used

different user counts. Each application block defines these counts in its workload
profile.

	 9.	Click Next. The Add tests to a load test scenario and edit the test mix dialog box
appears.

	 10.	Click Add to select tests. Click the tests in the Available tests pane that you want
to use in the load test. After you select all tests that you want to use, click the
arrow to add them to the Selected tests pane.

	 11.	Click OK.
	 12.	The text mix appears. You can use the sliders to adjust the test distribution. When

you are finished, click Next.
	 13.	The Select browser mix for test scenario dialog box appears. In the drop-down

list, click IE6. Click Next.
	 14.	The Select network mix for test scenario dialog box appears. Select the LAN

connection type you will use. Set the sliders to full bandwidth. Click Next.

Testing for Performance and Scalability 183

	 15.	The Specify computers to monitor with counter sets during load test run dialog
box appears. Click Add Computer to select the computers to monitor during the
load tests.

	 16.	Click Counter sets. Select the counters that interest you. For information about the
counters used in the Enterprise Library tests, see Detecting Performance Issues
and Measuring Performance. Click Next.

	 17.	The Review and edit run settings for a load test dialog box appears. Set the
Timing values. For the Enterprise Library tests, the sampling rate was 120 sam-
ples for any particular time frame. Stress tests ran from 12 hours to 72 hours.
Performance tests ran for 5 minutes to 7 minutes. Warm-up times varied from 30
seconds for 7 minute performance tests to 5 minutes for tests longer than 2 hours.

	 18.	Click Finish.

To run a load test, open the load test in the Load Test Editor, and then click the green
Run button.

Testing the Application Blocks
This section provides the specifics of the performance tests for each of the application
blocks. It includes the following information:

The scenarios used to test the application block
A description of the test harness
The test code for the application block
The test code for the .NET Framework baseline
The workload
A template to compare the application block metrics with the baseline metrics

The application blocks were tested both with the instrumentation enabled and with
it disabled. Use the Enterprise Library Configuration Console to enable or disable the
instrumentation. For more information, see the Enterprise Library documentation.

Note: Only Testing the Caching Application Block contains information about how the application
block was configured. This is the only application block where some of the configuration param-
eters could affect the performance and stress tests.

Testing the Caching Application Block
To run the performance tests, the Caching Application Block was configured as
follows:

The expiration poll frequency was 60 seconds.
The maximum number of elements in the cache before scavenging would begin
was 900.

●

●

●

●

●

●

●

●

Enterprise Library Test Guide184

The number of elements to remove during scavenging was 10.
The cache storage was both in-memory and a SQL Server database.
The cache size was 2, 000 KB.
The number of elements in the cache was between 900 items and 2,000 items.

Table 2 lists the scenarios for the Caching Application Block. Here is an explanation
of each of the columns:

ID. This column lists the ID number for each scenario.
Scenario. This column lists the Caching Application Block scenario being tested.
Users. This column lists the different numbers of users that the tests simulated.
Expiration policy. This column lists the different expiration policies that were
used during the tests.

Table 2: Caching Application Block Scenarios

ID Scenario Users Expiration policy
1 Add an item. 1, 10, 50, 150,

300
Never/Absolute/FileDependen-
cy/ Extended Format

2 Read an item. 1, 10, 50, 150,
300

Never/Absolute/FileDependen-
cy/ Extended Format

3 Remove an item. 1, 10, 50, 150,
300

Never/Absolute/FileDependen-
cy/ Extended Format

4 Add and remove an item. 1, 10, 50, 150,
300

Never/Absolute/FileDependen-
cy/ Extended Format

5 Add and remove and read an
item.

1, 10, 50, 150,
300

Never/Absolute/FileDependen-
cy/ Extended Format

6 Add and remove and read and
flush an item.

1, 10, 50, 150,
300

Never/Absolute/FileDependen-
cy/ Extended Format

7 Flush an item. 1, 5

Creating a Test Harness
Each iteration of the test should create the CacheManager object so that the cost of
creating the object is included in the performance metrics. In addition, every item in
the cache requires a unique key. For more information, see Generating Unique Keys.
For an example of how to create a test harness, see Building Test Harnesses. This sec-
tion also contains an example of a Web page for the Caching Application Block test
harness.

Generating Unique Keys

Every item that is added, read, or removed from the cache requires a unique key.
Another way to think of this is that each thread, which represents a virtual user, re-
quires its own key. The Caching Application Block test increments the key value until

●

●

●

●

●

●

●

●

Testing for Performance and Scalability 185

it reaches the maximum number of elements in the cache. (This number varied from
900 to 2,000.) When the maximum number was reached, the test resets the count and
begins again.

To generate keys, you can either modify the test script or use data binding.

Modifying the Test Script to Generate Keys

You can modify the test script to include code that generates a unique key value for
each cache item. In this approach, a static integer named KeyValue stores the key
value. The maximum value that can be generated is controlled by another variable
named MaxElements. If the key is higher than MaxElements, it is reset to 1. Because
the script runs in multithreaded scenarios, the code locks the steps that generate the
keys. This is shown in the following example.
private static int KeyValue=0;
private static object lockn = new object();
private const int MaxElements=2000

String KeyValueString;
lock (lockn)
{
 KeyValueString = KeyValue.ToString();
 KeyValue++;
 if (KeyValue > MaxElements)
 KeyValue = 1;
}

For more information, see Using the Test Script.

Using Data Binding to Generate Keys

Data binding allows you to use either a database or a .csv file to serve as the data
source for the keys. The first row of the table or file should contain the name of the
items that will go into the cache. For example, “Key” would be an appropriate name.
The other rows contain the values for the keys. For more information, see Using Data
Binding.

Creating the Test Code
The test code implements the scenarios. There are two versions of the test code
shown here. One version is for Enterprise Library and the other version is for ASP.
NET. Only the Add and Read scenarios were used to establish a baseline, so the .NET
Framework code implements only those two cases. During the baseline tests, the
Enterprise Library tests were performed both with and without scavenging. The code
for Enterprise Library 1.1 differs from the code for Enterprise Library–January 2006,
but it is not shown here.

Table 3 lists the Caching Application Block test code.

Enterprise Library Test Guide186

Table 3: Caching Application Block Test Code

ID Scenario Test code
1 Add This is the code to add items to the cache.

protected void AddItem_Click(object sender, EventArgs e)
{
// The cache element is created. The size is defined
// by the TextBox2.Text.
byte[] CacheObject = new byte[int.Parse(TextBox2.Text)];
// The GetCacheManager method is called for each iteration.
// The CacheManager is not cached. The call to GetCacheManager
// passes it the type of caching store from
// DropDownList3. SqlCacheManager uses SQL Server as the
cache.
// DefaultCacheManager is an in-memory cache.
this.primitivesCache = CacheFactory.GetCacheManager(DropDownLi
st3.SelectedItem.Value);
this.absolutetime = DateTime.Now + TimeSpan.FromSeconds(60);
switch (this.DropDownList1.SelectedIndex)
{
case 0:
primitivesCache.Add(TextBox1.Text, CacheObject, this.Priority,
new NullRefreshAction(), null);
break;
case 1:
primitivesCache.Add(TextBox1.Text, CacheObject, this.Priority,
new NullRefreshAction(),
new AbsoluteTime(this.absolutetime));
break;
case 2:
primitivesCache.Add(TextBox1.Text, CacheObject, this.Priority,
new NullRefreshAction(),
new SlidingTime(TimeSpan.FromSeconds(5)));
break;

case 3:
primitivesCache.Add(TextBox1.Text, CacheObject, this.Priority,
new NullRefreshAction(),
new ExtendedFormatTime("0 0 * * *"));
break;
case 4:
primitivesCache.Add(TextBox1.Text, CacheObject, this.Priority,
new NullRefreshAction(),
new FileDependency(@"c:\pag\entlibtests\web30.config"));
break;
}
}

Testing for Performance and Scalability 187

ID Scenario Test code
2 Read This is the code to read an item from the cache.

protected void ReadItem_Click(object sender, EventArgs e)
{
this.primitivesCache= CacheFactory.GetCacheManager(DropDownLis
t3.SelectedItem.Value);
byte[]b= (byte[])this.primitivesCache.
GetData(TextBox1.Text);
}

3 Remove This is the code to remove an item from the cache.
protected void RemovingItem_Click(object sender, EventArgs e)
{
this.primitivesCache= CacheFactory.GetCacheManager(DropDownLis
t3.SelectedItem.Value);
primitivesCache.Remove(TextBox1.Text);
}

7 Flush This is the code to flush the cache.
protected void FlusghingItem_Click(object sender, EventArgs e)
{
this.primitivesCache= CacheFactory.GetCacheManager(DropDownLis
t3.SelectedItem.Value);
primitivesCache.Flush();
}

Table 4 lists the ASP.NET test code.

Table 4: ASP.NET Framework Test Code

ID Scenario Test code
1 Add This is the code to add items to the cache.

protected void ASPNETadditem_Click(object sender, EventArgs e)
{
byte[] CacheObject = new byte[int.Parse(TextBox2.Text)];
Cache[TextBox1.Text] = CacheObject
}

2 Read This is the code to read items from the cache.
protected void ASPNETreaditem_Click(object sender, EventArgs e)
{
byte[] CacheObject= Cache[TextBox1.Text];
}

Profiling the Workload
The number of users increases over time. The number of users was 1, 10, 50, 150, and
300. There was no think time. Table 5 lists the distribution of operations.

Enterprise Library Test Guide188

Table 5: Caching Application Block Workload Profile

Test Case Percentage
Add 80 percent
Read 15 percent
Remove 4 percent
Flush 1 percent
Total 100 percent

Setting Up the Load Test
The load test simulates many clients accessing the application block at the same time.
Use the information in the workload profile to set the load test parameters. For more
information, see Creating a Load Test.

Recording Baseline and Application Block Metrics
The baseline tests are a subset of the Caching Application Block performance tests.
The application block is tested against ASP.NET and Enterprise Library 1.1. The two
operations that are tested are adding an item to the cache and reading an item from
the cache. These operations are tested with 1 user, 10 users, and 50 users.

Table 6 is the template to record the performance metrics both for the baseline and
for the application block. The first column lists the configuration options for Enter-
prise Library 1.1, ASP.NET, and Enterprise Library–January 2006. The Setting column
allows you to circle which option or operation you selected. Record the performance
metrics in the other columns. Note that ASP.NET uses its default configuration. For
information about these settings, see ASP.NET Configuration Settings on MSDN.

Table 6: Template to Record and Compare Metrics

Configuration
for Enterprise
Library 1.1 Setting Users TPS

Response
times (ms)

Total transac-
tions

Overhead
(percent)

Instrumenta-
tion

On/Off NA NA NA NA NA

Scavenging On/Off NA NA NA NA NA
Cache storage In-memory NA NA NA NA NA
Item size 2KB/50KB/

100KB
NA NA NA NA NA

Operation Add/Read 1 Baseline
Operation Add/Read 10 Baseline
Operation Add/Read 50 Baseline

http://msdn2.microsoft.com/en-us/library/b5ysx397.aspx

Testing for Performance and Scalability 189

Default con-
figuration for
ASP.NET Setting Users TPS

Response
times (ms)

Total transac-
tions

Overhead
(percent)

Instrumenta-
tion

Default NA NA NA NA NA

Scavenging Default NA NA NA NA NA
Cache storage Default NA NA NA NA NA
Item size Default NA NA NA NA NA
Operation Add/Read 1 Baseline
Operation Add/Read 10 Baseline
Operation Add/Read 50 Baseline

Configuration
for application
block Setting Users TPS

Response
times (ms)

Total transac-
tions

Overhead
(percent)

Instrumenta-
tion

On/Off NA NA NA NA NA

Scavenging On/Off NA NA NA NA NA
Cache storage In-memory NA NA NA NA NA
Item size 2KB/50KB/

100KB
NA NA NA NA NA

Operation Add/Read 1
Operation Add/Read 10
Operation Add/Read 50

For an explanation of these metrics, see Measuring Performance.

Testing the Logging Application Block
The tests for the Logging Application Block use a variety of trace listeners and
formatters. Table 7 lists the scenarios for the Logging Application Block. Here is an
explanation of each of the columns:

Logging mechanism. This column lists either the trace listeners or the message
queuing distributor service.
Action. This column lists the action the test case performs.
Users. This column lists the different numbers of users that the tests simulated.
Formatters. This column lists the Logging Application Block formatters that were
used.
Trace listeners. This column lists the Logging Application Block trace listeners
that were used.

●

●

●

●

●

Enterprise Library Test Guide190

Table 7: Logging Application Block Scenarios

Logging mecha-
nism Action Users Formatters Trace listeners
Trace listeners Log message 1, 10, 50, 150,

300
Text Formatter;
Binary Formatter

Event Log;
MSMQ

Place a log
message in a
message queue
and use the dis-
tributor service
to send the mes-
sage to the trace
listeners.

Log message 1, 10, 50, 150,
300

Text Formatter;
Binary Formatter

Event Log;
MSMQ; Data-
base; WMI; Flat
File

Creating the Test Harness
For an example of how to create a test harness, see Building Test Harnesses. Iterations
of the test should create the LogEntry object so that the cost of creating the object
is included in the performance metrics. For an example of how to create a domain
object for each iteration, see Using the Test Script. Create a Web page to run the test
harness. Figure 4 is an example of a test harness for the Logging Application Block.

Figure 4  Logging Application Block Test Harness

Clicking the LogEventCategory button logs a message that is formatted with one of
the formatters listed in Table 7. The application block sends the message to the trace
listener that is associated with the selected category. For more information about
using formatters, categories, and trace listeners, see the Enterprise Library documen-
tation for the Logging Application Block.

Creating the Test Code
The test code implements the scenarios. There are two versions of the test code. One
version is for Enterprise Library and the other version is for the .NET Framework.

Table 8 lists the test code for the Logging Application Block.

Testing for Performance and Scalability 191

Table 8: Logging Application Block Test Code

ID Scenario Test code
1 Log to trace listener using

the formatter associated
with the selected category.
The trace listener may be
the Event Log trace listener,
the MSMQ trace listener, or
the WMI trace listener. This
depends on the configuration
of the application block.

protected void btn_LogEventCategory_
Click(object sender, EventArgs e)
{
 // A LogEntry object is created for
each
 // test iteration. This is to
 // simulate the worst case code path.
 LogEntry log = new LogEntry();

 log.Message = "Logging To Event Log";
 log.Categories.Add(DropDownList1.Se-
lectedValue);

 log.Priority = 6;
 log.EventId = 100;
 log.Severity = TraceEventType.Informa-
tion;
 Logger.Write(log);
 }

Table 9 lists the .NET Framework test code.

Table 9: .NET Framework Test Code

ID Scenario Test code
1 Log to Event Log trace

listener.
protected void ButtonEventLog_Click(object
sender, EventArgs e)
{
 EventLog elog = new EventLog();
 elog.Source = "Entlib Tests2";
 elog.WriteEntry("Message");
 elog.Close();
}

2 Log to MSMQ trace listener. protected void ButtonMSMQ_Click(object sender,
EventArgs e)
{
MessageQueue(@".\Private$\entlib",true))
 {
 Message queueMessage = new Message();
 queueMessage.Body = "Message";
 queueMessage.Label = "label";
 queueMessage.Priority = MessagePriority.High;
 messageQueue.Send(queueMessage);
 messageQueue.Close();
 }
}

continued

Enterprise Library Test Guide192

ID Scenario Test code
3 Log to WMI trace listener. protected void WMITest_Click(object sender,

EventArgs e)
{
 LogEntry logEntry = new LogEntry();
 // Create a new event.
 EventDetails eventDetails = new EventDe-
tails();
 // Set the event details.
 eventDetails.Message = "Test WMIin .NET
Framework";
 eventDetails.Guid = Guid.NewGuid().To-
String();
 eventDetails.Type = 2;
 Instrumentation.Fire(eventDetails);
}

EventDetails class
[InstrumentationClass(InstrumentationType.
Event)]
 public class EventDetails
 {
 public string Message;
 public string Guid;
 public int Type;
 }

Profiling the Workload
The number of users increases over time. The number of users was 1, 10, 50, 150, and
300. There was no test mix and there was no think time.

Setting Up the Load Test
The load test simulates many clients accessing the application block at the same time.
Use the information in the workload profile to set the load test parameters. For more
information, see Creating a Load Test.

Recording Baseline and Application Block Metrics
The baseline tests are a subset of the Logging Application Block performance tests.
The objective is to compare the following overhead costs:

The cost of using the Logging Application Block Event Log trace listener with the
costs of using Enterprise Library 1.1 and the .NET Framework to write to the
system event log.
The cost of using the Logging Application Block WMI trace listener against the
costs of using Enterprise Library 1.1 and the .NET Framework WMI events.

●

●

Testing for Performance and Scalability 193

The cost of using the Logging Application Block MSMQ trace listener against the
costs of using Enterprise Library 1.1 and the .NET Framework Message Queuing
service.

These operations were tested with 1 user, 10 users, and 50 users.

Table 10 is the template to record the performance metrics both for the baseline and
for the application block.

Table 10: Template to Record and Compare Metrics

Operation Users TPS
Response time
(ms)

Total transac-
tions

Overhead
(percent)

.NET Framework
writes to event log.

1 Baseline

.NET Framework
writes to event log.

10 Baseline

.NET Framework
writes to event log.

50 Baseline

.NET Framework
raises a WMI
event.

1 Baseline

.NET Framework
raises a WMI
event.

10 Baseline

.NET Framework
raises a WMI
event.

50 Baseline

.NET Framework
uses Message
Queuing to write a
message.

1 Baseline

.NET Framework
uses Message
Queuing to write a
message.

10 Baseline

.NET Framework
uses Message
Queuing to write a
message.

50 Baseline

Enterprise Library
1.1 uses Event Log
sink.

1 Baseline

Enterprise Library
1.1 uses Event Log
sink.

10 Baseline

●

continued

Enterprise Library Test Guide194

Operation Users TPS
Response time
(ms)

Total transac-
tions

Overhead
(percent)

Enterprise Library
1.1 uses Event Log
sink.

50 Baseline

Enterprise Library
uses WMI sink.

1 Baseline

Enterprise Library
1.1 uses WMI
sink.

10 Baseline

Enterprise Library
1.1 uses WMI
sink.

50 Baseline

Enterprise Library
1.1 uses MSMQ
sink.

1 Baseline

Enterprise Library
1.1 uses MSMQ
sink.

10 Baseline

Enterprise Library
1.1 uses MSMQ
sink.

50 Baseline

Logging Application
Block uses Event
Log trace listener.

1

Logging Application
Block uses Event
Log trace listener.

10

Logging Application
Block uses Event
Log trace listener.

50

Logging Application
Block uses WMI
trace listener.

1

Logging Application
Block uses WMI
trace listener.

10

Logging Application
Block uses WMI
trace listener.

50

Logging Application
Block uses MSMQ
trace listener.

1

Logging Application
Block uses MSMQ
trace listener.

10

Testing for Performance and Scalability 195

Operation Users TPS
Response time
(ms)

Total transac-
tions

Overhead
(percent)

Logging Application
Block uses MSMQ
trace listener.

50

For an explanation of these metrics, see Measuring Performance.

Testing the Data Access Application Block
The tests for the Data Access Application Block use a variety of database access meth-
ods. To avoid external constraints, such as network I/O or disk I/O for SQL Server,
all the queries to the database return small payloads. Most of the test cases read from
the database. Some of the queries were stored procedures and Transact-SQL script
files that were used with the Northwind sample database. Because the target is Enter-
prise Library, it was important to ensure that there were no deadlocks or SQL Server
exceptions to contaminate the measurements. For more information, see Tuning the
Test Environment.

Table 11 lists the scenarios for the Data Access Application Block. Here is an explana-
tion of each of the columns:

ID. This column lists the ID number for each scenario.
Scenario. This column lists the Data Access Application Block scenario being
tested.
Transaction. This column lists that the scenarios are tested both with and without
a transaction.
Users. This column lists the different numbers of users that the tests simulated.
Database provider. This column lists the database provider that is used.

Table 11: Data Access Application Block Scenarios

ID Scenario Transaction Users
Database
provider

1 Use a DbDataReader to read
multiple rows

With/Without
Transaction

1, 10, 50, 150,
300

SQL Server

2 Use a DataSet to read
multiple rows

With/Without
Transaction

1, 10, 50, 150,
300

SQL Server

3 Use ExecuteDataSet to
execute a stored procedure
that has parameter values
and return the results in a
DataSet.

With/Without
Transaction

1, 10, 50, 150,
300

SQL Server

4 Use ExecuteScalar to
retrieve a single item.

With/Without
Transaction

1, 10, 50, 150,
300

SQL Server

●

●

●

●

●

continued

Enterprise Library Test Guide196

ID Scenario Transaction Users
Database
provider

5 Use ExecuteNonQuery to
retrieve output parameters.

With/Without
Transaction

1, 10, 50, 150,
300

SQL Server

6 Use a DataSet to update the
database.

With/Without
Transaction

1, 10, 50, 150,
300

SQL Server

7 Add a new DataTable to the
existing DataSet.

With/Without
Transaction

1, 10, 50, 150,
300

SQL Server

8 Retrieve multiple rows as
XML

With/Without
Transaction

1, 10, 50, 150,
300

SQL Server

Creating the Test Harness
For an example of how to create a test harness, see Building Test Harnesses. Iterations
of the test should call the CreateDatabase method and create any other objects, such
as a DbCommandWrapper, that the application block uses to execute a query. For an
example of how to create a domain object for each iteration, see Using the Test Script.
Create a Web page to run the test harness.

Creating the Test Code
The test code implements the scenarios. There are two versions of the test code
shown here. The Enterprise Library uses one version and ADO.NET uses the other
version. Enterprise Library 1.1 was also used to establish a baseline. Its database
methods differ slightly from the methods in Enterprise Library–January 2006. The
Enterprise Library 1.1 code is not shown. The only scenario used for baseline com-
parisons was scenario 5.

When the application block executes the scenarios within a transaction, it creates a
connection object and retrieves a transaction object. Then, the application block uses
the appropriate method overload for working with transactions.

Table 12 lists the Data Access Application Block test code.

Testing for Performance and Scalability 197

Table 12: Data Access Application Block Test Code

ID Scenario Test code
1 Use a DbDataReader to

read multiple rows.
protected void ButtonDataReader_Click(object send-
er, EventArgs e)
{
 Database db = DatabaseFactory.CreateDatabase("Da
taSQLTest");
string sqlCommand = "Select CategoryID from Catego-
ries where Description LIKE'Cheeses'";
DbCommand dbCommandWrapper = db.GetSqlStringCommand
(sqlCommand);
IDataReader dataReader = null;
// We pass a transaction object to ExecuteReader
// along with transaction the test cases.
 dataReader = db.ExecuteReader(dbCommandWrapper
);
 dataReader.Close();
}

2 Use a DataSet to read
multiple rows.

protected void ButtonExecuteDataSet_Click(object
sender, EventArgs e)
{
 Database db= DatabaseFactory.CreateDatabase("Data
SQLTest");
 string sqlCommand = "Select * from products where
productid=1";
 DbCommand dbCommandWrapper = db.GetSqlStringCo
mmand(sqlCommand);
 // We pass a transaction object to ExecuteDataSet
 // with the transaction test cases.
 DataSet dsActualResult= db.ExecuteDataSet(dbComman
dWrapper);
}

3 Use ExecuteDataSet to
execute a stored proce-
dure that has parameter
values and return the
results in a DataSet.

 protected void Button4_Click(object sender,
EventArgs e)
 {
 Database db = DatabaseFactory.CreateDatabas
e("DataSQLTest");

 using (DataSet dsActualResult = db.ExecuteD
ataSet("CustOrdersOrders", new object[] {"ALFKI"}))
 {

 }
 }

continued

Enterprise Library Test Guide198

ID Scenario Test code
4 Use ExecuteScalar to

retrieve a single item.
protected void ButtonExecuteScalarClick(object
sender, EventArgs e)
{
 Database db= DatabaseFactory.CreateDatabase("Data
SQLTest");
 string sqlCommand = "Select CategoryID from Cat-
egories where Description LIKE'Cheeses'";
 DbCommand dbCommandWrapper = db.GetSqlStringCom
mand(sqlCommand);
// We pass a transaction object to ExecuteScalar
// with transaction test cases.
 object actualResult = db.ExecuteScalar(dbCommandWr
apper);
 dbCommandWrapper.Dispose();
}

5 Use ExecuteNonQuery
to retrieve output param-
eters.

protected void ExecuteSP_Click(object sender, Even-
tArgs e)
{
 // The Database object is created over
 // load test iterations.
 Database db= DatabaseFactory.CreateDatabase("Data
SQLTest");
 string spName = "TenMostExpensiveProducts";
 db.ExecuteNonQuery(CommandType.StoredProcedure,
spName);
}

6 Use a DataSet to update
the database.

7 Add a new DataTable to
the existing DataSet.

protected void ButtonLoadDataSet_Click(object
sender, EventArgs e)
{
 Database db= DatabaseFactory.CreateDatabase("Data
SQLTest");
 DataSet ItemDataSet = new DataSet();
 string sqlCommand = "Select top 20 * from prod-
ucts";
 DbCommand dbCommandWrapper=db.GetSqlStringComman
d(sqlCommand);
 string ItemsTable = "Products";
 // We pass a transaction object to LoadDataSet
 // with transaction test cases.
 db.LoadDataSet(dbCommandWrapper, ItemDataSet,
ItemsTable);
 dbCommandWrapper.Dispose();
}

Testing for Performance and Scalability 199

ID Scenario Test code
8 Retrieve multiple rows

as XML.
protected void Button_Click(object sender, Even-
tArgs e)
{
 SqlDatabase dbSQL =
 DatabaseFactory.CreateDatabase("DataSQLTest") as
SqlDatabase;
 // Use "FOR XML AUTO" to have SQL return XML
data.
 string sqlCommand = "Select CategoryID from
Categories where Description LIKE'Cheeses'FOR XML
AUTO";
 System.Data.Common.DbCommand dbCommandWrapper =
 dbSQL.GetSqlStringCommand(sqlCommand) as DbCom-
mand;
 XmlReader productsReader = null
 // We pass a transaction object to
 // ExecuteXmlReader with transaction
 // test cases.
 productsReader = dbSQL.ExecuteXmlReader(dbCommand
Wrapper);
 dbCommandWrapper.Connection.Close();
 productsReader.Close();
 dbCommandWrapper.Dispose();
}

Table 13 lists the ADO.NET Framework test code.

Table 13: ADO.NET Framework Test Code

ID Scenario Test code
5 Use the equivalent of the

ExecuteNonQuery method
to retrieve output param-
eters.

protected void ButtonAdoNet_Click(object sender,
EventArgs e)
{
 SqlConnection sqlcon = new SqlConnect
ion("server=****;database=Northwind;User
Id=****;password=****");
 sqlcon.Open();
 SqlCommand sqlcommand = new SqlCommand();
 sqlcommand.Connection = sqlcon;
 sqlcommand.CommandType = CommandType.StoredPro-
cedure;
 sqlcommand.CommandText = "TenMostExpensiveProd-
ucts";
 sqlcommand.ExecuteNonQuery();
 sqlcommand.Dispose();
 sqlcon.Close();
}

Enterprise Library Test Guide200

Profiling the Workload
The number of users increases over time. The number of users was 1, 10, 50, 150, and
300. There was no test mix and there was no think time.

Setting Up the Load Test
The load test simulates many clients accessing the application block at the same time.
Use the information in the workload to set the load test parameters. For more infor-
mation, see Creating a Load Test.

Recording Baseline and Application Block Metrics
The baseline tests are a subset of the Data Access Application Block performance
tests. The objective is to compare the overhead costs of using the Data Access Appli-
cation Block’s ExecuteNonQuery method with the equivalent ADO.NET method and
with Enterprise Library 1.1.

Table 14 is the template to record the performance metrics for both the baseline and
the application block.

Table 14: Template to Record and Compare Metrics

Operation Users TPS
Response
time (ms)

Total
transactions

Overhead
(percent)

ADO.NET
equivalent of
ExecuteNonQuery
method

1 Baseline

ADO.NET
equivalent of
ExecuteNonQuery
method

10 Baseline

ADO.NET
equivalent of
ExecuteNonQuery
method

50 Baseline

Enterprise Library
1.1 ExecuteNon-
Query method

1 Baseline

Enterprise Library
1.1 ExecuteNon-
Query method

10 Baseline

Enterprise Library
1.1 ExecuteNon-
Query method

50 Baseline

Testing for Performance and Scalability 201

Operation Users TPS
Response
time (ms)

Total
transactions

Overhead
(percent)

Data Access
Application Block
ExecuteNonQuery
method

1

Data Access
Application Block
ExecuteNonQuery
method

10

Data Access
Application Block
ExecuteNonQuery
method

50

For an explanation of these metrics, see Measuring Performance.

Testing the Exception Handling Application Block
The tests for the Exception Handling Block use different handlers. Table 15 lists the
scenarios for the Exception Handling Application Block. Here is an explanation of
each of the columns:

ID. This column lists the ID number for each scenario.
Scenario. This column lists the Exception Handling Application Block scenario
being tested.
Users. This column lists the different numbers of users that the tests simulated.

Table 15: Exception Handling Application Block Scenarios

ID Scenario Users
1 Process an exception without handlers. 1, 5, 10, 50
2 Process an exception with the Wrap handler. 1, 5, 10, 50
3 Process an exception with the Replace handler. 1, 5, 10, 50
4 Process an exception with the Logging handler. 1, 5, 10, 50
5 Process an exception with the Replace and Logging

handlers.
1, 5, 10, 50

Creating the Test Harness
For an example of how to create a test harness, see Building Test Harnesses. Itera-
tions of the test should create an Exception object. For an example of how to create a
domain object for each iteration, see Using the Test Script. In addition, the applica-
tion block should handle and rethrow the exception for each iteration. Create a Web
page to run the test harness.

●

●

●

Enterprise Library Test Guide202

Creating the Test Code
The test code implements the scenarios. There are two versions of the test code. The
Enterprise Library uses one version and the .NET Framework uses the other version.
Only the first scenario is used in the baseline measurements.

Table 16 lists the Exception Handling Application Block test code. The code is the
same for all the scenarios. Only the exception policies vary from one scenario to
another.

Table 16: Exception Handling Application Block Test Code

ID Scenario Test code
1 Process an exception with

the Wrap handler.
protected void ButtonException_Click(object send-
er, EventArgs e)
{
 try
 {
Exception originalException = new System.FormatExc
eption("Original Exception: format exception");
bool rethrow
 =ExceptionPolicy.HandleException(originalEx
ception,
 "WrapThrowNewDifferentAssembly");
if (rethrow) throw originalException;
 }
 catch (Exception ex){ }
}

Table 17 lists the .NET Framework test code.

Table 17: .NET Framework Test Code

ID Scenario Test code
1 Throw a wrapped

exception.
protected void ExceptionHandling_Click(object send-
er, EventArgs e)
{
 try
 {
 Exception originalException = new
 System.FormatException("Original Exception:
format
 exception");
 throw (new System.FormatException("originalEx
ception",
 originalException));
 }
 catch {}
}

Testing for Performance and Scalability 203

Profiling the Workload
The number of users increases over time. The number of users was 1, 10, 50, 150, and
300. There was no test mix and there was no think time.

Setting Up the Load Test
The load test simulates many clients accessing the application block at the same time.
Use the information in the workload to set the load test parameters. For more infor-
mation, see Creating a Load Test.

Recording Baseline and Application Block Metrics
The baseline tests are a subset of the Exception Handling Application Block perfor-
mance tests. The objective is to compare the overhead costs of using the Exception
Handling Application Block’s wrap handler with the equivalent .NET Framework
method and with Enterprise Library 1.1.

Table 18 is the template to record the performance metrics both for the baseline and
for the application block.

Table 18: Template to Record and Compare Metrics

Operation Users TPS
Response time
(ms)

Total
transactions

Overhead
(percent)

.NET Frame-
work wraps
and throws an
exception.
Enterprise
Library 1.1
does the
same.

1 Baseline

.NET Frame-
work wraps
and throws an
exception.
Enterprise
Library 1.1
does the
same.

10 Baseline

.NET Frame-
work wraps
and throws
an exception.
Enterprise
Library 1.1
does the
same.

50 Baseline

continued

Enterprise Library Test Guide204

Operation Users TPS
Response time
(ms)

Total
transactions

Overhead
(percent)

Enterprise
Library 1.1
wraps and
throws an
exception.

1 Baseline

Enterprise
Library 1.1
wraps and
throws an
exception.

10 Baseline

Enterprise
Library 1.1
wraps and
throws an
exception.

50 Baseline

Exception
Handling
Application
Block wraps
and throws an
exception.

1

Exception
Handling
Application
Block wraps
and throws an
exception.

10

Exception
Handling
Application
Block wraps
and throws an
exception.

50

For an explanation of these metrics, see Measuring Performance.

Testing the Cryptography Application Block
The tests for the Cryptography Application Block use a variety of symmetric algo-
rithm providers and hash providers. Table 19 lists the scenarios for the Cryptography
Application Block. Here is an explanation of each of the columns.

ID. This column lists the ID number for each scenario.
Scenario. This column lists the Cryptography Application Block scenario being
tested.

●

●

Testing for Performance and Scalability 205

Users. This column lists the different numbers of users that the tests simulated.
Cryptography provider. This column lists the symmetric algorithm provider or
hash provider used in the scenario.

Table 19: Cryptography Application Block Scenarios

ID Scenario Users Cryptography provider
1 Hash plaintext and compare

hashed value with plaintext.
1, 10, 50, 150 HMACSHA1

2 Hash plaintext and compare
hashed value with plaintext.

1, 10, 50, 150 HMACSHA1NoSalt

3 Hash plaintext and compare
hashed value with plaintext.

1, 10, 50, 150 SHA512Managed

4 Hash plaintext and compare
hashed value with plaintext.

1, 10, 50, 150 SHA512ManagedNoSalt

5 Hash plaintext and compare
hashed value with plaintext.

1, 10, 50, 150 SHA384Managed

6 Hash plaintext and compare
hashed value with plaintext.

1, 10, 50, 150 SHA384ManagedNoSalt

7 Hash plaintext and compare
hashed value with plaintext.

1, 10, 50, 150 SHA256Managed

8 Hash plaintext and compare
hashed value with plaintext.

1, 10, 50, 150 SHA256ManagedNoSalt

9 Hash plaintext and compare
hashed value with plaintext.

1, 10, 50, 150 SHA1Managed

10 Hash plaintext and compare
hashed value with plaintext.

1, 10, 50, 150 SHA1ManagedNoSalt

11 Hash plaintext and compare
hashed value with plaintext.

1, 10, 50, 150 SHA1CryptoServiceProvider

12 Hash plaintext and compare
hashed value with plaintext.

1, 10, 50, 150 SHA1CryptoServiceProviderNoSalt

13 Encrypt and decrypt plaintext
with a symmetric algorithm
provider.

1, 10, 50, 150 MD5CryptoServiceProvider

14 Encrypt and decrypt plaintext
with a symmetric algorithm
provider.

1, 10, 50, 150 MD5CryptoServiceProviderNoSalt

15 Encrypt and decrypt plaintext
with a symmetric algorithm
provider.

1, 10, 50, 150 MD5CryptoServiceProvider

16 Encrypt and decrypt plaintext
with a symmetric algorithm
provider.

1, 10, 50, 150 MD5CryptoServiceProviderNoSalt

17 Encrypt and decrypt plaintext
with a symmetric algorithm
provider.

1, 10, 50, 150 MACTripleDES

●

●

continued

Enterprise Library Test Guide206

ID Scenario Users Cryptography provider
18 Encrypt and decrypt plaintext

with a symmetric algorithm
provider.

1, 10, 50, 150 MACTripleDESNoSalt

19 Encrypt and decrypt plaintext
with a symmetric algorithm
provider.

1, 10, 50, 150 DESCryptoServiceProvider

20 Encrypt and decrypt plaintext
with a symmetric algorithm
provider.

1, 10, 50, 150 DPAPI Symmetric Cryptography
Provider

21 Encrypt and decrypt plaintext
with a symmetric algorithm
provider.

1, 10, 50, 150 DPAPI Symmetric Cryptography Pro-
vider1

22 Encrypt and decrypt plaintext
with a symmetric algorithm
provider.

1, 10, 50, 150 RC2CryptoServiceProvider

23 Encrypt and decrypt plaintext
with a symmetric algorithm
provider.

1, 10, 50, 150 RijndaelManaged

24 Encrypt and decrypt plaintext
with a symmetric algorithm
provider.

1, 10, 50, 150 TripleDESCryptoServiceProvider

Creating the Test Harness
For an example of how to create a test harness, see Building Test Harnesses. Itera-
tions of the test should create the symmetric algorithm and hash providers. For an
example of how to create a domain object for each iteration of the test, see Using the
Test Script. Create a Web page to run the test harness. Figure 5 illustrates an example
of a Web page for the Cryptography Application Block test harness.

Testing for Performance and Scalability 207

Figure 5  Cryptography Application Block test harness

Creating the Test Code
The test code implements the scenarios. There are two versions of the test code. The
Enterprise Library uses one version and the .NET Framework uses the other version.
Enterprise Library 1.1 was not used as a baseline for the Cryptography Application
Block.

Table 20 lists the Cryptography Application Block test code.

Enterprise Library Test Guide208

Table 20: Cryptography Application Block Test Code

ID Scenario Test code
1 Hash

plain-
text and
compare
hashed
value with
plaintext.

protected void ButtonHash_Click(object sender, EventArgs e)
{
 byte[] b = new byte[Int32.Parse(TextBox1.Text)];
 byte[] hs=Cryptographer.CreateHash(ddlSymmetricProvider.Select-
edValue, strEncryptedText);
 Cryptographer.CompareHash("ddlSymmetricProvider.SelectedValue,
b, hs);
 // Optionally, the factory is created
 // instead of using the static CreateHash CompareHash.
 HashProviderFactory factory = new HashProviderFactory();
 IHashProvider hashProvider = factory.Create(ddlSymmetricProvide
r.SelectedValue);
 hashProvider.CreateHash(b);
 HashProviderFactory factory = new HashProviderFactory();
 IHashProvider hashProvider = factory.Create(ddlSymmetricProvide
r.SelectedValue);
 hashProvider.CompareHash(b);
}

23 Encrypt
and
decrypt
plaintext
with a
symmetric
algorithm
provider.

protected void ButtonCrypto_Click(object sender, EventArgs e)
{
 // The size of the byte array is read
 // from the text box.
 byte[] b = new byte[long.Parse(TextBox1.Text)];
 // The factory is created for each iteration.
 // The static EncryptSymmetric method creates the factory.
 byte[] enc = =Cryptographer.EncryptSymmetric(ddlSymmetric
Provider.SelectedValue b);
 ISymmetricCryptoProvider symmprovider =
 factory.Create(ddlSymmetricProvider.SelectedValue);
 Cryptographer.DecryptSymmetric(ddlSymmetricProvider.Selected-
Value, enc);
 // Or, optionally, the factory is created.
 SymmetricCryptoProviderFactory factoryEncrypt = new
 SymmetricCryptoProviderFactory();
 byte[] result = symmprovider.Encrypt(b);
 SymmetricCryptoProviderFactory factoryDecrypt = new
 SymmetricCryptoProviderFactory();
 byte[] result = symmprovider.Decrypt(b);
}

Table 21 lists the .NET Framework test code.

Testing for Performance and Scalability 209

Table 21: .NET Framework Test Code

ID Scenario Test code
1 Hash plaintext with

HMACSAH1 hash
provider and com-
pare hashed value
with plaintext.

protected void btnHashAndCompare_Click(object sender,
EventArgs e)
{
 string strKey =
"EC14B8D88ABBD892F8736193DD35103B4F83AF46C39C2745741215
0EAA2E840B
82C67CDCD7-
2ACDD457DB0D91E8EDA504A6F06B0AF98DA7E2BD7C44CCE3CD3907";
 byte[] byteArrayKey = new byte[64];
 byte[] byteArrayPlainText;
 byte[] byteArrayHashedText;
 byte[] byteArrayHashedTextToCompare;
 UnicodeEncoding textConverter = new UnicodeEn-
coding();

 // Convert the key in string format to byte array.
 byteArrayKey = textConverter.GetBytes(strKey);

 using (HMACSHA1 myHMACSHA1 = new
HMACSHA1(byteArrayKey))
 {
 // Convert the data to a byte array.
byteArrayPlainText = textConverter.
GetBytes(txtBoxPlainText.Text);
byteArrayHashedText = myHMACSHA1.ComputeHash(byteArrayP
lainText);

byteArrayHashedTextToCompare = myHMACSHA1.ComputeHash(by
teArrayPlainText);
 // Compare the computed hash with
 // the stored value.
 for (int i = 0; i < byteArrayHashedText.
Length; i++)
 {
if (byteArrayHashedTextToCompare[i] !=
byteArrayHashedText[i])
 	 {
Response.Write("Hash values differ! Encoded file
has been tampered with!");
 break;
 }
 }
 myHMACSHA1.Clear();
 }

continued

Enterprise Library Test Guide210

ID Scenario Test code
23 Encrypt and decrypt

plaintext with
RijndaelManaged
provider.

protected void btnEncryptAndDecrypt_Click(object sender,
EventArgs e)
{
 byte[] key1;
 byte[] byteArrayEncryptedText;
 byte[] byteArrayDecryptedText;
 byte[] byteArrayPlainText;
 UnicodeEncoding textConverter = new UnicodeEn-
coding();
 ICryptoTransform encryptor, decryptor;
 RijndaelManaged myRijndealManaged = new Rijndae-
lManaged();

 key1 =
 	 Convert.FromBase64String
 ("zKqffFs392WuxGMhFkfhYj/HtDDIjSiXnYqMlMMz-
rNc=");
 myRijndealManaged.GenerateIV();

 // Convert the data to a byte array.
 byteArrayPlainText =
 textConverter.GetBytes(txtBoxPlainText.Text);

 encryptor = myRijndealManaged.
CreateEncryptor(key1,
 myRijndealManaged.IV);
 byteArrayEncryptedText =
 encryptor.TransformFinalBlock(byteArrayPlainTe
xt, 0,
 byteArrayPlainText.Length);

 // Get a decryptor that uses the same key
 // and IV as the encryptor.
 decryptor = myRijndealManaged.
CreateDecryptor(key1,
 myRijndealManaged.IV);

 // Now decrypt the previously encrypted
 // message using the decryptor
 // obtained in the above step.
 byteArrayDecryptedText = new
 byte[byteArrayEncryptedText.Length];
 byteArrayDecryptedText =
 decryptor.TransformFinalBlock(byteArrayEncrypte
dText, 0,
 byteArrayEncryptedText.Length);

 // Convert the byte array back into a string.
 txtBoxPlainText.Text =
 textConverter.GetString(byteArrayDecryptedText);
}

Testing for Performance and Scalability 211

Profiling the Workload
The number of users increases over time. The number of users was 1, 5, 10, and 50.
There was no test mix and there was no think time.

Setting Up the Load Test
The load test simulates many clients accessing the application block at the same time.
Use the information in the workload profile to set the load test parameters. For more
information, see Creating a Load Test.

Recording Baseline and Application Block Metrics
The baseline tests are a subset of the Cryptography Application Block performance
tests. The first objective is to compare the cost of using the Cryptography Application
Block to encrypt and decrypt plaintext with the RijndaelManaged provider against
of the cost of using the .NET Framework to do the same thing. The second objective
is to compare the cost of using the Cryptography Application to hash plaintext with
the HMACSAH1 provider and then compare the hashed value with the plaintext
against of the cost of using the .NET Framework to do the same thing. For informa-
tion about acceptable performance limits, see Measuring Performance.

Table 22 is the template to record the performance metrics both for the baseline and
for the application block.

Table 22: Template to Record and Compare Metrics

Operation Users TPS
Response
time (ms)

Total transac-
tions

Overhead
(percent)

.NET Framework
uses RijndaelMan-
aged provider to
encrypt and decrypt
plaintext.

1 Baseline

.NET Framework
uses RijndaelMan-
aged provider to
encrypt and decrypt
plaintext.

10 Baseline

.NET Framework
uses RijndaelMan-
aged provider to
encrypt and decrypt
plaintext.

50 Baseline

.NET Framework
uses HMACSAH1
provider to hash
and compare plain-
text.

1 Baseline

continued

Enterprise Library Test Guide212

Operation Users TPS
Response
time (ms)

Total transac-
tions

Overhead
(percent)

.NET Framework
uses HMACSAH1
provider to hash
and compare plain-
text.

10 Baseline

.NET Framework
uses HMACSAH1
provider to hash
and compare plain-
text.

50 Baseline

Cryptography Ap-
plication Block
uses RijndaelMan-
aged provider to
encrypt and decrypt
plaintext.

1

Cryptography Ap-
plication Block
uses RijndaelMan-
aged provider to
encrypt and decrypt
plaintext.

10

Cryptography Ap-
plication Block
uses RijndaelMan-
aged provider to
encrypt and decrypt
plaintext.

50

Cryptography Appli-
cation Block uses
HMACSAH1 pro-
vider to hash and
compare plaintext.

1

Cryptography Appli-
cation Block uses
HMACSAH1 pro-
vider to hash and
compare plaintext.

10

Cryptography Appli-
cation Block uses
HMACSAH1 pro-
vider to hash and
compare plaintext.

50

Testing for Performance and Scalability 213

Testing the Security Application Block
The tests for the Security Application Block tested the application block’s authoriza-
tion methods. Table 23 lists the scenarios for the Security Application Block. Here is
an explanation of each of the columns.

ID. This column lists the ID number for each scenario.
Scenario. This column lists the Security Application Block scenario being tested.
Users. This column lists the different numbers of users that the tests simulated.
Configuration setting. This column lists the cache that stores the security informa-
tion or the authorization provider.

Table 23: Security Application Block Scenarios

ID Scenario Users Configuration setting
1 Save or read the Identity property. 1, 10, 50, 150 Property is cached in

SQL Server.
2 Save or read the Principal property. 1, 10, 50, 150 Property is cached in

SQL Server.
3 Save or read the Profile property. 1, 10, 50, 150 Property is cached in

SQL Server.
4 Authorize the user. 1, 10, 50, 150 Use AzMan to autho-

rize the user.
5 Authorize the user. 1, 10, 50, 150 Use the Authorization

Rule Provider to autho-
rize the user.

Creating a Test Harness
For an example of how to create a test harness, see Building Test Harnesses. Itera-
tions of the test should create the security provider objects. For an example of how to
create a domain object for each iteration of the test, see Using the Test Script. Create a
Web page to run the test harness.

Creating the Test Code
Because of time constraints, the Security Application Block was not measured against
a baseline. Table 24 lists the Security Application Block test code.

●

●

●

●

Enterprise Library Test Guide214

Table 24: Security Application Block Test Code

ID Scenario Test code
1 Save or read the

Identity property.
protected void SQLSaveReadIdentity_Click(object sender,
EventArgs e)
{
ISecurityCacheProvider securityCache = SecurityCacheFac-
tory.GetSecurityCacheProvider("CacheProvidersDB");
 IToken token = securityCache.
SaveIdentity(identity);
 securityCache.ExpireIdentity(token);
 IIdentity cachedIdentity = securityCache.
GetIdentity(token);
}

2 Save or read the
Principal property.

protected void SQLSaveReadPrincipal_Click(object
sender,EventArgs e)
{
 WindowsIdentity wi = WindowsIdentity.GetCur-
rent();
 WindowsPrincipal wp = new WindowsPrincipal(wi);
ISecurityCacheProvider securityCache = SecurityCacheFac-
tory.GetSecurityCacheProvider("CacheProvidersDB");
 IToken token = securityCache.SavePrincipal(wp);
 IPrincipal Principal=securityCache.
GetPrincipal(token);
}

3 Save or read the
Profile property.

protected void SQLSaveReadProfile_Click(object sender,
EventArgs e)
{
 WindowsIdentity wi = WindowsIdentity.GetCur-
rent();
 WindowsPrincipal wp = new WindowsPrincipal(wi);
 ISecurityCacheProvider securityCache =
 SecurityCacheFactory.GetSecurityCacheProvider
 ("CacheProvidersDB");
 IToken token = securityCache.SaveProfile(new ob-
ject());
 IPrincipal Principal = securityCache.
GetProfile(token);
}

4 Authorize the user
with AzMan.

protected void AzmanAuthProvider_Click(object sender,
 EventArgs e)
{
IAuthorizationProvider azManProvider = AuthorizationFac-
tory.GetAuthorizationProvider("DefaultAzManProvider");
 WindowsIdentity identity = WindowsIdentity.GetA-
nonymous();
 bool isAuthorized = azManProvider.Authorize(new
WindowsPrincipal(identity), "Authorize Purchase");
}

Testing for Performance and Scalability 215

ID Scenario Test code
5 Authorize the user

with the Authoriza-
tion Rule Provider.

protected void AuthRuleProvider_Click(object sender,
EventArgs e)
{
 AuthorizationRuleProvider authRuleProvider =
AuthorizationFactory.GetAuthorizationProvider("DefaultR
uleP
rovider") as AuthorizationRuleProvider;
boolauthorized = authRuleProvider.Authorize(principal,
"TestIdentityAndRoleRuleORMe");
}

Profiling the Workload
The number of users increases over time. The number of users was 1, 10, 50, 150, and
300. There was no test mix and there was no think time.

Setting Up the Load Test
The load test simulates many clients accessing the application block at the same time.
Use the information in the workload profile to set the load test parameters. For more
information, see Creating a Load Test.

Detecting Performance Issues
This section discusses the performance counters you should monitor to detect perfor-
mance issues. These counters pertain to the following areas:

Disk I/O
The network
The load agents
Locking and contention within the application

The following sections explain how to monitor these components.

Monitoring Disk I/O
Ideally, the CPU on the Web server should use close to 100 percent of its cycles for the
tests. When this does not occur, it may indicate that an external resource is constrain-
ing the server. For example, SQL Server may become I/O-bound when it writes to
the database during the Data Access Application Block tests. This can cause delays.
In this situation, you have to remove the constraint because it may cause you to miss
performance and contention problems. Possible solutions are to add more physical
disk drives (also commonly referred to as “spindles”) to the database server disk
subsystem in order to provide more disk I/O processing power, change the query so
that it does not write to the database, or only write the number of bytes that the disk
subsystem can handle without causing delays.

●

●

●

●

Enterprise Library Test Guide216

You should monitor I/O performance on the computer that hosts the application
block, the computer that hosts SQL Server, and on any other computer that hosts a
resource that the application block uses. Table 25 lists the performance counters you
can use to analyze disk I/O activity.

Table 25: Disk I/O Performance Counters

Performance monitor counter Description and recommendations
% Disk Time This is the percentage of elapsed time that

the selected disk drive is busy servicing I/O
requests. This should be approximately 5
percent.

% Idle Time This is the percentage of time during the
sample interval that the disk was idle. This
number should be approximately 95 percent on
both the Web server and the SQL Server.

Disk Reads/Sec and Disk Writes/Sec Together, these counters represent the number
of I/O operations issued against a particular
disk. Generally, there is a practical limit of
100 to140 operations per second per spindle.
Consult with your hardware vendor for a more
accurate estimation.

Avg. Disk sec/Read and Avg. Disk sec/Write Together, these counters measure disk latency.
Lower values are better than higher values, but
this value can vary and is dependent on the
size of the I/O operations and the workload
characteristics. Numbers also vary across
different storage configurations. For example,
the storage area network (SAN) cache size and
how often the cache is used can greatly impact
this metric.

On well-tuned online transaction processing
(OLTP) systems that are deployed on high per-
formance SANs, the ideal values vary between
less than 2 ms for the log files and 4 ms to 10
ms for data. Decision support system (DSS)
workloads may have higher latencies of 30 ms
or more. For Internet Information Services (IIS),
the number should be between 8 ms and 10
ms.

Persistent values of greater than 100 ms can
indicate I/O problems. However, this value is
dependent on workload characteristics and
the system hardware. When considering this
measurement, keep in mind the normal values
for your system.

Testing for Performance and Scalability 217

Performance monitor counter Description and recommendations
Avg. Disk Bytes/Read and Avg. Disk Bytes/
Write

Together, these counters represent the size of
the I/O operations. Large I/O sizes can cause
slightly higher disk latency. When you use this
counter to measure SQL Server I/O opera-
tions during the Enterprise Library performance
tests, this value tells you the average size of
the I/O operations that SQL Server issues to
fill query requests.

Avg. Disk Queue Length This counter represents the average number
of read and write requests that are queued for
the selected disk during the sample interval.
The general rule is to ideally have no more
than two requests per spindle. However, this
is difficult to measure because most SANs
use storage virtualization. In reality, this value
may be between 4 requests per spindle and
8 requests per spindle. In general, to detect
problems, look for a higher than average disk
queue length in combination with a higher than
average disk latency. This combination can
indicate that the SAN’s cache is overused.

Monitoring the Network
The primary point of monitoring the network is to check for bottlenecks. To do this,
use the Network Interface\Bytes Total/sec performance counter that belongs to the
Win32_PerfRawData_Tcpip_NetworkInterface class. This counter indicates the rate
at which bytes are sent and received over a network adapter.

Ideally, in a 100 MB network, the approximate value should be13,107,200 bytes/sec.
However, packet control transfers and connection handshakes cause loss, so not all
the bandwidth is available. Usually, this number does not exceed 70 percent of the
total bandwidth. Another often overlooked problem is that the network interface
card (NIC) is set to half duplex instead of full duplex. To find the card’s setting, per-
form the following steps.

	 To determine NIC mode
	 1.	On the taskbar, click Start, and then click Control Panel.
	 2.	Click Network Connections.
	 3.	Right-click the name of your network connection.
	 4.	Click Properties.
	 5.	Click Configure.
	 6.	Click the Advanced tab.

Enterprise Library Test Guide218

Also, a NIC’s autonegotiation feature may not properly set the duplex value. You
may have to disable the feature and manually set the NIC to full duplex.

Another problem that can increase network traffic is to host multiple Web controls
on the Web test page. Remove some of the controls to decrease the Web page’s use of
network resources.

Monitoring the Load Agents
A common problem during performance tests is that the load agents use all of the
system resources. Typically, the CPU is the problem. This may be because the trans-
action response times are very short. Another reason may be that it is expensive to
create the domain objects that the application block uses. To correct this problem,
increase the number of load agents. An agent should use no more than 75 percent to
80 percent of the CPU.

Monitoring for Locking and Contention
Locking and contention in an application are major performance issues because they
affect the application’s scalability. Use a tool. such as the profiler that is in Visual
Studio Team System. to pinpoint problems that are caused by locked data structures.
To identify contention problems, examine the .NET CLR LocksAndThreads\Con-
tention Rate/sec performance counter. This counter displays the rate at which the
common language runtime (CLR) unsuccessfully attempts to acquire a managed
lock. Sustained higher values may be a cause of concern, particularly if the applica-
tion block uses only a small percentage of the CPU.

Measuring Performance
Each Enterprise Library performance test ran for 5 minutes to 7 minutes. There were
no think times. The warm-up times were 30 seconds. (The warm-up time is used in
a test script to ensure that an application reaches a steady state before the test tool
starts to record results.) Results were recorded every 15 seconds.

Each Enterprise Library stress test ran for 12 hours to 72 hours. There were no think
times. The warm-up time was 5 minutes. Results were recorded every 60 seconds.
Usually, 72 hours with no think times is a good simulation of 2 weeks in a production
environment.

Data collection samples should contain a minimum of 120 samples. Adjust the sam-
pling interval according to the duration of the test. This is true for both performance
and stress tests. Longer tests should have longer intervals between samples to avoid
too many measurements and filling up the media store.

Testing for Performance and Scalability 219

Important concepts to keep in mind when you measure performance are:
Utilization
Idle time
Saturation

Utilization is (Resource Busy Time/Total Time of service) *100. Many performance
counters measure utilization. They have names that include percentages such as Pro-
cessor: % Processor Time.

Idle time is 100 percent – Utilization. The Enterprise Library tests use the Logical
Disk: % Idle Time counter to measure utilization.

Saturation means that a resource is used to 100 percent of its capacity, or close to it.

There are two sets of performance counters you can use to measure an application
block’s performance. The first set records the use of system resources. System re-
sources include memory, disk I/O, CPU usage, network I/O, and specific counters
associated with the CLR memory and with contention. Also, where applicable, there
are performance counters to measure SQL Server performance. For more information
about these counters, see Detecting Performance Issues.

The second set of performance counters measure end-to-end transaction times and
transactions per second. Here is a summary of the goals for these metrics:

The Process(w3wp_.exe)\Private Bytes and the Process(w3wp.exe)\Virtual
Bytes performance counters should not increase during the stress and perfor-
mance tests.
The number of CLR garbage collection handles or process handles should not
increase during stress and performance tests.
There should be no CLR lock contention coupled with a low measurement for
CPU usage. The CPU usage should be at close to 100 percent for all test cases,
except where there is dependency on an external resource such as during a SQL
Server query.
The ratio of context switches to system threads should not be more than 20.
The thread count should not increase during the stress and performance tests.
The transaction execution times and the transactions per second should remain
stable during stress and performance tests.
There should be no deadlocks or w3p3.exe process restarts.
The system memory and memory pools should be stable.
The latency times for reads and writes to logical drives should not be more than
7 ms.
Only the Exception Handling Application Block should have CLR exceptions.
Contention should not cause poor CPU usage.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Enterprise Library Test Guide220

The elapsed time spent performing garbage collection since the last garbage
collection recycle should be less than 10 percent during stress and performance
tests.
A Gen 2 collection should be one-tenth the value of the number of Gen 1 collec-
tions and a Gen 1 collection should be one-tenth the value of the number of Gen 0
collections.
Where applicable, there should be no SQL Server deadlocks.
Where applicable, the SQL Server Lock Waits/sec performance counter should be
zero.
Where applicable, there should be no SQL Server exceptions.

Table 26 lists the relevant performance counters and their respective thresholds.

Table 26: Performance Counters Used in Performance and Stress Testing

Area Performance counter name Threshold
Processor % Processor Time This value should be close

to 100 percent when the
load simulation saturates the
application block. This usu-
ally happens with 10 virtual
clients because there are no
think times. Any contention
or external dependency may
cause this value to be too
low. For scalability tests, this
metric is used in conjunction
with end-to-end transactions
per second.

Processor % Privileged Time This value should be no
higher than 20 percent to 25
percent.

Process (w3wp) Handle Count This value should remain
stable during stress tests.

●

●

●

●

●

Testing for Performance and Scalability 221

Area Performance counter name Threshold
Process (w3wp) Private Bytes This value should remain sta-

ble during stress tests. Small
amounts of memory, less than
50 MB to 60 MB, are reserved
for the Caching Application
Block when the test adds
many items to the cache. In
the Caching Application Block,
the number of private bytes
can add up to almost all the
available memory if items
are added to the cache and
there is no expiration policy
and no scavenging. If there is
a memory leak, this perfor-
mance counter increases.

Process (w3wp) Virtual Bytes The number of virtual bytes
should not exceed the number
of private bytes by more
than 800 MB. The difference
between the number of virtual
bytes and private bytes is
because it is possible to com-
mit more memory than the
process actually owns. Virtual
bytes represent virtual ad-
dress space. When the num-
ber of virtual bytes is close
to the 2 GB limit, memory
fragmentation causes the sys-
tem to slow down. Eventually,
an OutofMemoryException
exception occurs.

continued

Enterprise Library Test Guide222

Area Performance counter name Threshold
Process (w3wp) Thread Count This value should remain

stable during stress tests. The
thread count of a worker pro-
cess should be no more than
75 + ((maxWorkerThreads +
maxIoThreads) * # of CPUs),
where # of CPUs is the value
in the Machine.config file. The
Caching Application Block
uses its own background
scheduler for expiration and
scavenging. The value of this
performance counter should
be constant while the scav-
enging and expiration scenar-
ios are being stress tested.
This means that the scheduler
does not have any memory
leaks.

Process (w3wp) Elapsed Time This performance counter
keeps track of the elapsed
time, in seconds, that the
process has been running. In
other words, it measures an
application block’s availability.
The value should remain con-
stant during the stress tests.
If the value is less than the
length of the test, an ASP.NET
recycle occurred, which may
indicate a problem.

Memory Pool Paged Bytes This value should be less than
90 MB and remain stable dur-
ing stress tests. Larger values
can indicate that the applica-
tion block is unnecessarily al-
locating system objects, such
as security tokens or thread
handles. The Enterprise
Library uses instrumentation
that allocates unmanaged
handles and performance
counters objects. In particular,
you should monitor this per-
formance counter during the
Cryptography Application Block
stress tests.

Testing for Performance and Scalability 223

Area Performance counter name Threshold
Memory Pool Nonpaged Bytes This is the number of bytes in

the nonpaged pool, an area
of system memory for objects
that cannot be written to disk,
but must remain in physical
memory as long as they are
allocated. This value should
remain stable during stress
tests.

Memory Committed Bytes This value is the amount of
virtual memory that is sup-
plied either by RAM or by a
secondary storage device.
You can use it to calculate
the contention index. This
index is the ratio of Commit-
tedBytes/Total RAM. This
ratio should be less that 2:1.
Higher ratios mean that there
is too much paging. The only
scenario where a larger ratio
is acceptable is when the
Caching Application Block
adds unique keys to the cache
without using any scavenging
or expiration policies.

Memory Pages/sec This value should be zero. It
represents hard page faults,
which indicates that there is
memory starvation because of
a memory leak.

Memory Available MBytes This value should be stable
during the stress tests. Low
values for SQL Server is
normal because it allocates
as much memory as it can for
caching. In general, the value
should be at least 20 MB for
IIS when it hosts Enterprise
Library. The exception is when
the Caching Application Block
adds unique keys to the cache
without using scavenging or
expiration policies. In this
case, the value is dependent
on the number of items you
add to the cache.

continued

Enterprise Library Test Guide224

Area Performance counter name Threshold
.NET CLR Memory (w3wp) % Time in GC This is the percentage of time

spent performing the last
garbage collection. An average
value of 5 percent or less is
ideal because all threads are
suspended during a garbage
collection. For Enterprise
Library, this number should be
from 5 percent to 9 percent.
The most common cause of
a high value is that the ap-
plication block is allocating
memory for too many objects
for each request.

.NET CLR Memory (w3wp) # Gen 0 Collections
Gen 1 Collections
Gen 2 Collections

These counters indicate the
number of times the gen-
eration (Gen) n objects are
garbage-collected from the
start of the application. The
number of Gen 0 collections
should be 10 times higher
than Gen 1 collections, which
should be 10 times higher
than Generation 2 collections.
In other words, a Gen 1 collec-
tion should be one-tenth the
value of the number of Gen 0
collections, and so on.

.NET CLR Memory (w3wp) # GC Handles This value should be stable
during stress tests. It is the
current number of garbage col-
lection handles in use.

Testing for Performance and Scalability 225

Area Performance counter name Threshold
.NET CLR Memory (w3wp) # Bytes in all Heaps This value should be stable

during the stress tests. It
indicates the current memory
allocated in bytes on the
garbage collection heaps.
If there is a memory leak
within managed memory, this
counter increases along with
the Process (w3wp)\ Private
Bytes performance counter.
If there is a memory leak
within unmanaged memory,
the # Bytes in all Heaps
performance counter remains
stable, while the Private
Bytes performance counter
increases.

.NET CLR Locks and Threads Contention Rate / sec This number should be less
than 9/sec. For Enterprise
Library, higher numbers indi-
cate poor scalability, particu-
larly when running the code
on computers with multiple
processors or to 64-bit com-
puters. A high contention rate
indicates poor scalability and
low throughput on multi-pro-
cessor computers.

Logical Disk (drive) Current Disk Queue Length This value should be no more
than 2 requests per spindle,
unless there is paging.

Logical Disk (drive) Avg. Disk Read Queue Length This value should be no more
than 2 requests per spindle,
unless there is paging.

Logical Disk (_Total) Avg. Disk Write Queue Length This value should be no more
than 2 requests per spindle,
unless there is paging.

Logical Disk (drive) Avg. Disk/Sec Write
Avg. Disk/Sec Read

Both of these counters should
have values of less than 6
ms.

continued

Enterprise Library Test Guide226

Area Performance counter name Threshold
Logical Disk (drive) % Idle Time This value should be higher

than 90 percent. Values lower
indicate that either there is
paging or the application block
writes to the SQL Server da-
tabase. This value should be
high for computers that host
Enterprise Library.

System Threads This value should be stable
and read in conjunction with
the Process\ThreadCount
performance counter.

System Context Switches/sec This is the rate of switches
from one thread to another.
The value should not be
higher than System\Threads
* 20. Higher values indicate
that there is either conten-
tion or context switching from
kernel mode to user mode.
The ContextSwitchesPerSec
performance counter should
linearly increase as the
throughput, load, and the num-
ber of CPUs increases. If it
increases exponentially, there
is a problem. For Enterprise
Library, this number should
be low in all test cases for all
application blocks.

.NET CLR Security % Time in RT Checks This value should be less than
7 percent. It is the percentage
of elapsed time spent per-
forming runtime code access
security checks since the last
sample.

.NET CLR Exceptions (w3wp) # Exceptions Thrown This value should be zero,
except for the Exception
Handling Application Block,
when it should be ignored.
This application block causes
exceptions that are recorded
in the performance monitor.

SqlServer:AccessMethods Full Scans/sec This value should be less than
3.

Testing for Performance and Scalability 227

Area Performance counter name Threshold
SqlServer:AccessMethods Full Page Splits/sec This value should be less than

10.
SqlServer:Buffer Manager Buffer Cache Hit Ratio This value should be higher

than 80 percent.
SqlServer:Buffer Manager Lazy Writes/sec This value should be close to

zero.
SqlServer:Cache Manager Cache Hit Ratio This value should be higher

than 80 percent.
SqlServer:Locks Average Wait Time This value should be less than

2 ms and remain stable dur-
ing the stress tests.

SqlServer:Locks Number of Deadlocks/sec This value should be zero.
SqlServer:Memory Manager Total Server Memory This value should be less than

75 percent.
SqlServer:Memory Manager Lock Blocks This value should be stable

during the stress tests.

Understanding and Measuring Transaction Times
This section discusses the threshold levels for the different transaction metrics. The
threshold defines the highest value that the transaction metric can be and still be ac-
ceptable. This section also demonstrates how to measure transactions. Here are the
acceptable threshold values:

Transaction Times Threshold. The application block’s threshold should be no
more than 12 percent to 32 percent higher than the baseline transaction times
metric.
TransactionsPerSecond. The application block’s threshold metric should be no
more than 12 percent to 32 percent higher than the baseline’s transactions per
second metric. The total transactions or total hits can be proved by reading Web
Service \Total Anonymous Users performance counter after recycling IIS in
between test cases.
Total Transactions. The application block’s threshold metric should be no more
than 12 percent to 32 percent higher than the baseline’s total transactions metric.
To find the total transactions (or total hits), examine the Web Service\Total
Anonymous Users performance counter. You must stop and restart IIS between
test cases because the counter starts to count when the service starts.

A transaction in a Web test is like a timer. You can encapsulate a set of actions in a
transaction. You can think of a typical transaction as starting a timer, requesting a
page, requesting another page, and then ending the timer. This series of actions, from
start to end, constitutes a transaction. You can make more granular measurements of

●

●

●

Enterprise Library Test Guide228

transactions than are possible with performance counters. To do this, place a Begin-
Transaction method before the first action. Place an EndTransaction method after the
last action. After you save the script, you will see an icon in the Web Test Editor.

The following code example shows how to add transactions to the Logging Applica-
tion Block test harness.

this.BeginTransaction("LogWriter");
 yield return request1;
WebTestRequest request2 = new WebTestRequest("http://10.3.15.50/EntLibtests/Log-
ging.asp);
 request2.Method = "POST";
 FormPostHttpBody request2Body = new FormPostHttpBody();
 request2Body.FormPostParameters.Add("__VIEWSTATE",
 ViewState); request2Body.FormPostParameters.Add("DropDownList1","Even
tlogCatetory");
request2Body.FormPostParameters.Add("Button6", "LogCategory");
request2Body.FormPostParameters.Add("__EVENTVALIDATION", EventValidation);
 request2.Body = request2Body;
 this.EndTransaction("LogWriter");
 yield return request2;

Testing for Scalability
Scalability tests determine whether adding more system resources, such as CPUs or
computers, or adding any external resources, such as SQL Server or disk arrays, can
increase throughput without degrading performance. They also identify any lock-
ing problems and contention for resources that may not be found during the perfor-
mance tests. Contentions problems are also called bottlenecks.

Identifying Bottlenecks
There are two approaches to test for bottlenecks:

You can increase the load beyond the saturation point to see whether the through-
put remains stable.
You can perform the tests with computers that have 2 to 4 processors. You should
do this with both 32-bit computers and 64-bit computers.

The Enterprise Library scalability tests use the second approach. The main goal is to
determine that contention in the code does not interfere with the application block’s
throughput. Test this to see if the appropriate metrics remain stable when the loads
exceed the specified constraints on the system resources.

●

●

http://10.3.15.50/EntLibtests/Log-ging.asp
http://10.3.15.50/EntLibtests/Log-ging.asp
http://10.3.15.50/EntLibtests/Log-ging.asp

Testing for Performance and Scalability 229

Hardware Configurations
Table 27 lists the hardware configuration for the Enterprise Library scalability tests.

Table 27: Hardware Configurations for Scalability Tests

Server A Server B Server C Server D Server E
Architecture 32 bit 32 bit 64 bit 64 bit 64 bit
Number of pro-
cessors

2 4 2 4 4

Processor speed 2,790 Mhz 1,903 Mhz 1,804 Mhz 1,804 Mhz 1,804 Mhz
Physical Memory 1024 MB 4048 MB 3072 MB 3072 MB 5098 MB
Manufacturer/
Model

HP DL 380
PROLIANT G3

HP DL 560
PROLIANT G1

HP DL 385
PROLIANT
G1

HP DL 385
PROLIANT
G1

HP DL 385
PROLIANT
G1

Characteristics Intel Xeon
Prestonia pro-
cessors (2.8
GHz) with a
512 KB level
3 processor
cache and Hy-
per Threading
Technology

Intel (1.8 GHz)
with a 2 MB
level 3 proces-
sor cache and
Hyper Thread-
ing Technology

1 MB level
3 proces-
sor cache
and Hyper
Threading
Technology

1 MB level
3 proces-
sor cache
and Hyper
Threading
Technology

1 MB level
3 proces-
sor cache
and Hyper
Threading
Technology

Scalability Test Scenarios and Results
The scalability tests use scenarios for the Logging Application Block, the Caching Ap-
plication Block, and the Data Application Block. The scenarios are:

Logging Application Block. Write a message to the event log.
Caching Application Block. Add an item to the in-memory cache. (Each execu-
tion thread generates a unique key for every item.)
Data Application Block. Execute a stored procedure that returns one row from
the Northwind sample database.

Each scenario simulated 1, 10, 50, and 150 users.

Analysis of Logging Application Block Scalability Test
Figure 6 is a graph of the test results. It shows the results for both the 32-bit comput-
ers and 64-bit computers, each with 2 processors and then 4 processors.

●

●

●

Enterprise Library Test Guide230

Figure 6  Scalability results for Logging Application Block

The servers are always CPU bound. Other than the processors, there are no other
dependencies that can cause bottlenecks. The change in memory size between the
2-processor configuration and 4-processor configurations (for both the 32-bit comput-
ers and 64-bit computers) did not affect the relevant measurements.

Here is a summary of the results:
The 64-bit computers outperform the 32-bit computers by 45 percent for the
transactions per second measurement and for the total transactions measurement.
For all cases shown in Figure 6, there should be no I/O activity when the % Disk
Time performance counter is less than 7 percent.
The 32-bit computers with 2 processors could not support more than 10 concur-
rent users. The 32-bit computers with 4 processors could not support more than 50
concurrent users. The 64-bit computers with 2 processors could not support more
than 10 concurrent users. The 64-bit computers with 4 processors could not
support more than 50 concurrent users. Scalability increases as more concurrent
users are added to the test mix. Scalability increases are greatest when moving
from a 2-processor computer to a 4-processor computer. Moving from a 32-bit
computer to a 64-bit computer yields smaller increases.
The servers’ working sets always require less than 40 MB for all configurations.
The working set of an application is the set of memory pages currently available
in RAM.

●

●

●

●

Testing for Performance and Scalability 231

Measurements of the memory required by the working sets and the values of the
CLR % GC performance counter indicate that memory size did not cause any
bottlenecks during the scalability tests. All bottlenecks were caused by the limit to
the number of users the CPUs could support.
Processor queue lengths began to lengthen as the number of concurrent users
increased and the CPUs reached their limits. Values for processor queue lengths
were initially zero and increased to between 7 ms and 10 ms after the CPUs could
no longer support any more users.
The Logging Application Block has good scalability. This is largely due to the low
number of contentions per second. The value of the CLR Contention rate/sec
performance counter was approximately 8 per second when the CPU was used at
its full capacity (close to 100 percent) and 2 percent to 3 percent when the CPU
was below its saturation levels. These are low numbers that demonstrate that
there were very few contentions during the scalability tests.

Analysis of Data Access Application Block Scalability Test
Figure 7 is a graph of the test results. It shows the results for both the 32-bit comput-
ers and 64-bit computers, each with 2 processors and then 4 processors.

Figure 7  Scalability results for Data Access Application Block

The tests read one row of a database for each test cycle. There are no writes because
write operations can cause an increase in SQL Server I/O activity. In turn, this depen-
dency may affect the percentage of processor time that the application block can use.
The test should be performed without any dependencies that would prevent the CPU
from being used to its full capacity.

●

●

●

Enterprise Library Test Guide232

In the scalability tests for the Data Access Application Block, the processor queue
lengths began to lengthen as the number of concurrent users increased and the CPUs
reached their limits. Values for processor queue lengths were initially zero and in-
creased to between 7 ms and 10 ms after the CPUs could no longer support any more
users.

The servers are always CPU bound. Other than the processors, there are no other
dependencies that can cause bottlenecks. The change in memory size between the 2
processor configurations and 4 processor configurations (for both the 32-bit comput-
ers and 64-bit computers) did not affect the relevant measurements.

Here is a summary of the results:
The 64-bit computers outperform the 32-bit computers by 45 percent for the
transactions per second measurement and for the total transactions measurement.
For all cases shown in Figure 7, there should be no I/O activity when the % Disk
Time counter is less than 7 percent.
The 32-bit computers with 2 processors could not support more than 10 concur-
rent users. The 32-bit computers with 4 processors could not support more than 50
concurrent users. The 64-bit computers with 2 processors could not support more
than 10 concurrent users. The 64-bit computers with 4 processors could not
support more than 50 concurrent users. Scalability increases as the number of
concurrent users were added to the test mix when bigger deltas were observed
between 2 processors and 4 processors (32-bit computers and 64-bit computers).
The servers’ working sets always require less than 40 MB for all configurations.
Measurements of the memory required by the working sets and the values of the
CLR % GC performance counter indicate that memory size did not cause any
bottlenecks during the scalability tests. All bottlenecks were caused by the limit to
the number of users the CPUs could support.
The Logging Application Block has good scalability. This is largely due to the low
number of contentions per second. The value of the % Contention rate/sec perfor-
mance counter was approximately 8 per second with saturation of CPU in all
cases and between 2 percent and 3 percent below saturation levels.

Analysis of Caching Application Block Scalability Test
Figure 8 is a graph of the test results. It shows the results for both the 32-bit comput-
ers and 64-bit computers, each with 2 processors and then 4 processors.

●

●

●

●

●

●

Testing for Performance and Scalability 233

Figure 8  Scalability results for Caching Application Block

The scalability test for the Caching Application Block test is to insert items into the
in-memory cache. A cached item is defined as a key/value pair. The test harness
generates a random key value between 1 and 20,000. Each key is 100 KB. The 64-bit
CLR can only allocate up to1 GB for a given object but it can allocate as many objects
smaller than 1 GB as there is available memory.

The test cases are divided into those tests that add 10 KB values to the cache and
those that add 20 KB items to the cache. In either case, the key is 100 KB. A test may
use the same key in different transactions.

The tests ran on both the 32-bit computers and 64-bit computers with 4 processors.
The purpose was to test the scalability of the address space for both types of comput-
ers. The reason that there were no tests on computers with 2 processors is that the
number of processors does not affect how well the Caching Application Block uses
memory.

Results showed that, for the tests that used10 KB values, the number of transactions
on the 64-bit computers were 30 percent to 60 percent higher than on the 32-bit com-
puters. The actual percentage depends on the number of concurrent users consuming
processor cycles.

Before the 64-bit processor reached its limits, the percentages increased both for the
total number of transactions and throughput. The % GC performance counter was
less than 15 percent and the Contention/Sec performance counter was less than 9/
sec. At the heaviest load, it was possible to use approximately 98 percent of both the
32-bit computers and 64-bit computers.

Enterprise Library Test Guide234

Results showed that, for the tests that used 20 KB values, the 32-bit computer started
paging because there was insufficient memory to hold all the data. The Pages/Sec
performance counter went up between 160 pages/sec and 170 pages/sec. The % Pro-
cessor Time performance counter fell far below capacity. Generally, it was no higher
than 34 percent. The Private Bytes performance counter for the ASP.NET w3wp.exe
worker process was close to 1.7 GB.

For the 64-bit computer, it was possible to use values that were as large as 30 KB
while still maintaining acceptable levels for both response times and transactions per
second. During the heaviest load, the Private Bytes performance counter was at ap-
proximately 5 GB. There was little contention. The CLR contention rate/sec indicated
values less than 8 and the Pages/sec performance counter was zero.

Measuring Initialization Costs
The initialization cost is the amount of system resources and time necessary to pre-
pare an application block so that it can begin to execute requests. Subsequent costs
will be much less because the necessary code and data structures are now cached.
This measurement is not relevant for Web applications because the first hit (the
initialization process) is not considered an important factor in terms of performance.
However, the measurement does matter for smart client applications because clients
frequently stop and restart the application. This means that clients will repeatedly
initialize the code variables and data structures.

The .NET Framework XmlSerializer class, which Enterprise Library uses, illustrates
this. The initialization cost is high because the class must be compiled. Afterward, the
compiled version is in the cache.

For situations where the initialization cost is important, you should measure the
times it takes to execute the most expensive execution paths. To do this, write a test
console application that measures and displays the initialization costs. The following
code shows how to do this for the XmlSerializer class.

public class OrderedItem
{
 public string Nationality;
 public string Description;
 public decimal UnitPrice;
 public int Quantity;
}

class Class1
{
 [STAThread]
 static void Main(string[] args)
 {

 for(int i=0;i<=10;i++)

Testing for Performance and Scalability 235

 {

 int start = Environment.TickCount;
serializer = new XmlSerializer(typeof(OrderedItem),"ns");
 int stop = Environment.TickCount;
 Console.WriteLine(" Time create serializer: {0}
milliseconds", stop - start);
 }
}
}

If you examine the Visual Studio Team System profiler, you see that although the
code creates the XmlSerializer object 11 times, the program incurs the largest costs
when it first compiles the types inside the XmlSerializer object. After this, subse-
quent calls use the compiled version in the cache. Table 28 lists the information from
the profiler.

Table 28: Profiler Information

Method name Time in ms
Number of
calls

System.Xml.Serialization.XmlSerializer..ctor 795.67 11
System.Xml.Serialization.XmlSerializer.GenerateTempAssembly 645.37 1
System.Xml.Serialization.TempAssembly..ctor 644.42 1
System.Xml.Serialization.TempAssembly.GenerateAssembly 414.6 1
System.Xml.Serialization.Compiler.Compile 281.72 1

Extrapolating Workload Profiles
It is possible to extrapolate workload characterizations for the load tests, even though
you do not know the actual application that will host the application blocks or the
systems on which the application will run.

Defining a load test is one of the steps in writing a performance test plan specifica-
tion. The load test runs concurrent scenarios and records a system’s behavior. You
generate a test load by creating virtual users and a simulation that accurately reflects
how actual users use the application.

To characterize a performance test workload, you should associate the number of
concurrent users with the think times that occur between iterations.

When you create a load test for an application, you often have no data about how
many concurrent users there actually will be or the type of computer or network you
need to consider. For example, your load test may be for an application that will actu-
ally run on a single computer with a processor and a disk subsystem or it may run
over an intranet. However, you can use Little’s Law to extrapolate from a given per-
formance specification or goal and calculate a realistic number of concurrent users.

Enterprise Library Test Guide236

Little’s Law says that the average number of users (which is U) in a stable system
(over some time interval) is equal to their average arrival rate (which is R), multiplied
by their average time in the system (which is T). Expressed as an equation, this is U =
R * T.

For a given system (whether a single computer or a complex network), you can
measure the throughput of a system, which is the same as the average arrival rate,
by dividing the number of users by the time they spend using the system This can be
expressed as R = U / T.

Assume that users will wait some typical interval of time, named To, between re-
quests. This is the think time. Because U = R * T, the number of users in think time,
Uo, will be Uo = R * To. Therefore, the total number of users (Ut) is Ut = U + U0 = R * T
+ R * To = R(T + To). So Ut = R(T + To). Finally, R = Ut/ (T + To).

As a concrete example, assume that there is an application that uses Enterprise Li-
brary. The application has 200 users who generate 1,600 requests in 15 minutes. The
average response time is 2 seconds. If T0 = (U / R) – T, the average think time is (200
/ 1.77) – 2) or 110.2 seconds, where 1.77 is the average arrival rate, or the number of
requests per second.

To calculate the number of users without including think times, you can apply the
equivalent ways of specifying R, where R = U / T and R = Ut/ (T+T0). Therefore, U /
T = Ut / T + T0. In the example, this means that U / 2 = 200/ (2+110). Simplifying, 2U
+110U = 400. This means that there are 4 users when there are no think times. You can
use the same technique to extrapolate any workload as long as you have a produc-
tion profile for the application or a performance test goal. (A production profile mod-
els the types and numbers of concurrent operations an application should be able to
support.)

Debugging Memory Leaks
This section discusses how to find and troubleshoot memory leaks. It assumes that
you have the WinDbg debugger and the Son of Strike (SOS) extension.

After you use the performance counters to decide that a particular application block
has a memory leak, modify the test harness to call GC.Collect; which forces a gar-
bage collection. This prevents the debugger from producing false positives. In this
case, false positives mean memory that seems to be allocated when it really is not
because the garbage collector has already reclaimed it. The following example shows
the Cryptography Application Block’s modified test harness.

protected void CryptoHash_Click(object sender, EventArgs e)
 {
 byte[] b = new byte[Int32.Parse(TextBox1.Text)];
 byte[] hs=Cryptographer.CreateHash("HMACSHA1", b);
 Cryptographer.CompareHash("HMACSHA1", b, hs);

Testing for Performance and Scalability 237

 HashProviderFactory factory = new HashProviderFactory();
 IHashProvider hashProvider = factory.Create("hashprovider");
 hashProvider.CreateHash(b);
 System.GC.Collect();

 }

Next, run the test again until the performance counters register the suspicious behav-
ior. You can now use WinDbg to find and troubleshoot the memory leak.

	 To use WinDbg
	 1.	On the taskbar, click Start, point to All Programs, point to Debugging Tools for

Windows, and then click WinDbg. WinDbg starts.
	 2.	Because ASP.NET hosts the application block, you must attach the debugger to

w3wp.exe. On the File menu, click Attach to Process. The Attach to Process list
box appears. Click the By Executable option button. Click w3wp.exe. Click OK.

After performing these steps, load the SOS extension to WinDbg. Open a command
window in the debugger and type:

!loadby sos mscorwks

Next, look at the heap. Type:

!dumpheap -stat

This command reports all the managed objects that are currently in the heap, sorted
by number of allocations and size. The MT column, where MT stands for Method
Table, lists the pointers to the tables that describe the objects. The Count column lists
the number of objects that exist in the heap for each type of object. The TotalSize col-
umn lists the amount of memory that is being used by any one type of object. The last
column is the fully typed name of the object.

MT Count TotalSize Class Name
029b0800 11502 138024 Microsoft.Practices.EnterpriseLibrary.
Caching.Expirations.NeverExpired
79124670 193 229708 System.Char[]
79124228 12721 340908 System.Object[]
029b06d4 11501 460040 Microsoft.Practices.EnterpriseLibrary.Caching.
CacheItem
790fa3e0 20210000 93908800 System.String
791242ec 140 14656992 System.Collections.Hashtable+bucket[]

The suspicious entries have the largest counts and the largest sizes.

Assume that the number of System.String objects appears suspicious. The memory
dump says that there are 20210000 of those objects. This appears too high.

You need to look at MT location 790fa3e0. Type:

!dumpheap -mt 790fa3e0

Enterprise Library Test Guide238

The following information appears in the command window:

1e321b38 791242ec 144
1e322194 791242ec 144
1e322374 791242ec 144
1e322578 791242ec 144
1e322710 791242ec 144
.
.
.

The first column reports the memory location of the object. The second column lists
the method table. The third column lists the size in bytes of the object. Scroll down to
view all the objects.

The problem you are investigating is that objects that should be released are not be-
ing released as expected. This means that there must be reference to the objects some-
where. The following command will help you to see what objects hold references to
the objects in question. Type:

!gcroot 1e322710

The screen displays the following information:

eax:Root:1e3226d8(System.Collections.Hashtable)->
1e322710(System.Collections.Hashtable+bucket[])
ecx:Root:1e3226d8(System.Collections.Hashtable)->
1e322710(System.Collections.Hashtable+bucket[])

The root trace points to objects that allocate the suspicious strings. You should exam-
ine the methods in your code that perform this function and see if the resources are
not being released when they should be.

If you need to investigate memory leaks that involve GCHandles objects, type:

!gchandles

This command reports the handle statistics and those managed objects that are held
in the GCHandles table. The information is in the same format as the heap display.

Using the Test Cases

This chapter discusses some of the test cases that uncovered bugs and issues in Enter-
prise Library – January 2006. The test cases cover three areas:

Performance
Security
Functionality

For each of these test cases, there is:
A problem, which is the problem the test case uncovered.
A proposed solution, which is the proposed solution to the problem.
A verification, which is how the solution was tested to see whether it solved the
problem.

The test cases are representative of the sorts of bugs and issues you might see in your
own code.

Performance Testing
The goals of performance testing are:

To verify that the application block meets the performance requirements while
staying within the budgeted constraints on system resources. The performance
requirements can include different measurements, such as the time it takes to
complete a particular scenario (this is known as the response time) or the number
of concurrent or simultaneous requests that can be satisfied for a particular opera-
tion within a specific response time. Examples of system resources are CPU time,
memory, disk I/O, and network I/O.
To identify the bottlenecks in the application block’s code. The bottlenecks can
be caused by issues such as memory leaks, slow response times, or resource
contention under load.

The performance tests measure cost in terms of system resources. The unit of mea-
surement is transactions per second. The baseline is the performance of Enterprise
Library version 1.1 and .NET Framework code that performs similar functions. The
cost is expressed as the percentage of overhead. This is the difference, in transactions
per second, between the baseline and Enterprise Library – January 2006, divided by
the baseline transactions per second.

●

●

●

●

●

●

●

●

Enterprise Library Test Guide240

General Performance Tests
All the application blocks were tested to confirm that they meet the performance
requirements. Some tests were specific for particular application blocks and some
tests applied to all the application blocks. A good example of a performance test that
applied to all the application blocks was determining the cost of creating and binding
instrumentation providers and listeners. The following example is for the Cryptogra-
phy Application Block.

Determining the Cost of Creating and Binding Instrumentation Objects
This performance test determines the cost, in terms of system resources, of creating
the instrumentation objects. The instrumentation objects include WMI (Windows
Management Instrumentation), performance counters, and event logs. The cost of
creating instrumentation objects for the Cryptography Application Block in Enter-
prise Library – January 2006 was compared with the cost of creating instrumentation
objects for the Cryptography Application Block in Enterprise Library version 1.1. The
goal was that the overhead in Enterprise Library – January 2006 be within acceptable
limits when compared with Enterprise Library version 1.1.

Test Cases

Two test cases were used to measure the cost of creating the instrumentation objects
for the Cryptography Application Block. One case used the SymmetricCryptoPro-
viderFactory class to create a symmetric algorithm provider with the instrumenta-
tion enabled. The other test case used the SymmetricCryptoProviderFactory class to
create a symmetric algorithm provider with the instrumentation disabled. The dif-
ference between the two cases provided the cost of creating and binding the instru-
mentation objects. Similar test cases were used with the hash providers.

Problems

The results from the performance tests showed that the cost of creating instru-
mentation providers for the Cryptography Application Block was higher than the
allowable limits in Enterprise Library – January 2006 than in Enterprise Library
version 1.1. An analysis of the application block revealed that the use of reflec-
tion to create the instrumentation objects was responsible for the performance
overhead. To properly bind the classes, reflection-based binding requires that the
SymmetricCryptoProviderFactory class reflect through all the methods in the Sym-
metricAlgorithmInstrumentationListener class and all the events in SymmetricAl-
gorithmInstrumentationProvider class.

Solution

The solution is to create an explicit binder that implements the IExplicitInstrumenta-
tionBinder.Bind method. The Bind method explicitly binds the instrumentation pro-
vider’s events with the instrumentation listener’s methods, which avoids the need to

Using the Test Cases 241

use reflection. The following code shows the SymmetricAlgorithmInstrumentation-
Binder class, which implements the IExplicitInstrumentationBinder interface.

public class SymmetricAlgorithmInstrumentationBinder : IExplicitInstrumentation-
Binder
{
 public void Bind(object source, object listener)
 {
 SymmetricAlgorithmInstrumentationListener castedListener = (SymmetricAlgor
ithmInstrumentationListener)listener;
 SymmetricAlgorithmInstrumentationProvider castedProvider = (SymmetricAlgor
ithmInstrumentationProvider)source;
 castedProvider.cyptographicOperationFailed += castedListener.Cyptographic-
OperationFailed;
 castedProvider.symmetricDecryptionPerformed+= castedListener.SymmetricDe-
cryptionPerformed;
 castedProvider.symmetricEncryptionPerformed += castedListener.SymmetricEn-
cryptionPerformed;
 }
}

Verification

Running the two test cases again after applying the preceding code verified that the
cost of creating the instrumentation objects was within acceptable limits.

Determining the Cost of Creating Objects Using the FileConfigurationSource Class
Another example of a general performance test is the cost of creating objects with
data contained in a configuration file as opposed to data that is in memory. The
following example uses the Data Access Application Block to determine the cost of
creating a domain object from data in the file configuration source. To pass the test,
the cost of creating domain objects with the FileConfigurationSource class could be
slightly more than when using the SystemConfigurationSource class.

Test Cases

Two test cases determined the cost of creating domain objects with the FileCon-
figurationSource class. One test created a Database object with the DatabasePro-
viderFactory class and used the FileConfigurationSource class to retrieve the
configuration data from a file. The other test did the same but used the SystemCon-
figurationSource class to retrieve the data from memory. Comparing the results
showed whether the application block’s performance was acceptable.

Problems

The results from the performance tests showed that it was more expensive to create a
Database object with the FileConfigurationSource class than to create one with the
SystemConfigurationSource class. An analysis of the application block revealed that
the FileConfigurationSource class read the appropriate sections from the configura-
tion file each time it created a Database object. This increased the number of I/O
operations and impacted the application block’s performance.

Enterprise Library Test Guide242

Solution

The SystemConfigurationSource class uses the .NET Framework System.Configura-
tion.ConfigurationManager class, which caches the Configuration object. Caching
the object reduces the number of I/O operations. Similarly, the FileConfiguration-
Source class could also cache the Configuration object, which should substantially
improve the application block’s performance. However, if the file changes, the data in
the cache is out of date. To address this issue, the FileConfigurationSource class was
modified to implement a notification handler that watches the configuration file to
see if it changes. If it does, the handler notifies the configuration source to update the
cache.

The following code shows the configuration object is cached and retrieved from the
cache.

private System.Configuration.Configuration GetConfiguration()
{
 if (cachedConfiguration == null)
 {
 lock (cachedConfigurationLock)
 {
 if (cachedConfiguration == null)
 {
 cachedConfiguration = ConfigurationManager.OpenMappedExeConfiguration
(fileMap,ConfigurationUserLevel.None);
 }
 }
 }
return cachedConfiguration;
}

The following code shows the method that the notification handler invokes to update
the cache.

internal void UpdateCache()
{
 System.Configuration.Configuration newConfiguration
 = ConfigurationManager.OpenMappedExeConfiguration(fileMap,ConfigurationUserLevel.
None);
 lock (cachedConfigurationLock)
 {
 cachedConfiguration = newConfiguration;
 }
}

Using the Test Cases 243

Verification

Running the two test cases again after applying the preceding code examples verified
that the cost of creating a domain object with the FileConfigurationSource class was
within acceptable limits.

Specific Performance Tests
Specific aspects of each application block were also tested to see if their performance
was acceptable. This section discusses performance issues that were found in the
Data Access Application Block, the Logging Application Block, and the Cryptogra-
phy Application Block.

Testing the Logging Application Block
The Logging Application Block was tested to determine the cost of logging messages
to a database trace listener. To pass the test, the cost of logging to a database trace
listener should be scalable. If the number of transactions per second decreases as the
number of requests increases, there is a bottleneck.

Test Case

To run the test case, the application block was first configured to use a database trace
listener to log messages to a database. The test case logged messages to the database
with the Logger.Write method. A performance test tool was used to analyze the
results.

Problem

The results from the performance test showed that the transactions per second de-
creased when the numbers of users increased. This decrease occurred because, with
a large number of users, there was significant contention for access to the database
trace listener.

This contention exists because the LogSource class enumerates through all the trace
listeners that the application block is configured to use and calls each trace listener’s
TraceData method. Before calling the method, the LogSource class first checks to see
whether the trace listeners are thread safe by calling each trace listener’s IsThread-
Safe property. It locks a trace listener if it is not thread safe. The FormattedData-
baseTraceListener class derives from FormattedTraceListenerBase, which has the
IsThreadSafe property set to false. This means that the FormattedDatabaseTraceL-
istener class is locked for every call to its TraceData method. This is why there is
contention for access to the database trace listener.

Enterprise Library Test Guide244

Solution

The FormattedDatabaseTraceListener class is already thread safe, so there is no need
to lock the database trace listener. The solution is to set the IsThreadSafe property to
true in the FormattedTraceListenerBase class. This is the base class of the Formatted-
DatabaseTraceListener class. The following is the modified code.

public abstract class FormattedTraceListenerBase : TraceListener, IInstrumenta-
tionEventProvider
{
 public override bool IsThreadSafe
 {
 get
 {
 return true;
 }
 }
}

Verification

Running the test case again after applying the preceding code verified that the data-
base trace listener was scalable.

Testing the Cryptography Application Block
The Cryptography Application Block was tested to determine the cost of reading a
symmetric key from a key file. To pass the test, the cost could be slightly more than
when using Enterprise Library version 1.1 or when using one of the symmetric algo-
rithm classes in the .NET Framework 2.0 System.Security.Cryptography namespace.

Test Case

To run the test case, a key file was first generated with the Enterprise Library Con-
figuration Console. The data protection scope could be either current user or local
machine. The test case called the application block’s KeyManager.Read method to
read the symmetric key.

Problems

The test case revealed two problems. The first problem was that reading the key from
the file for each request was an expensive I/O operation that caused poor perfor-
mance. The second problem was that to read keys from an input stream, the appli-
cation block used the .NET Framework FileStream class. It constructed FileStream
objects with read/write access to the file. When concurrent users tried to access the
file, the .NET framework threw a System.IO.IOException exception. The following
error message displayed:

The process cannot access the file because it is being used by another process.

Using the Test Cases 245

This is the code that caused the problems.

public static ProtectedKey Read(string protectedKeyFileName, DataProtectionScope
dpapiProtectionScope)
{
 using (FileStream stream = new FileStream(protectedKeyFileName, FileMode.
Open))
 {
 return Read(stream, dpapiProtectionScope);
 }
}

Solution

To solve the first problem, the Read method was modified so that it read the symmet-
ric key only once from the file and then cached the key in a static collection. Subse-
quent reads retrieved the file from the cache, which greatly reduced the performance
overhead.

To solve the second problem, the Read method was modified to use constructors that
included the FileShare.Read enumeration. This allowed multiple users to concur-
rently read the file. The following is the code that solved both the performance prob-
lem and the concurrency problem.

public static ProtectedKey Read(string protectedKeyFileName, DataProtectionScope
dpapiProtectionScope)
{
 string completeFileName = Path.GetFullPath(protectedKeyFileName);
 if (cache[completeFileName] != null)
return cache[completeFileName];
 using (FileStream stream = new FileStream(protectedKeyFileName, FileMode.Open,
FileAccess.Read, FileShare.Read))
 {
 ProtectedKey protectedKey = Read(stream, dpapiProtectionScope);
 cache[completeFileName] = protectedKey;
 return protectedKey;
 }
}

Verification

Running the test case again after applying the preceding code verified that the cost of
reading a key from a file was within acceptable limits. In addition, concurrent users
could now read the file.

Security Testing
The goals of security testing are the following:

Identify the potential threats to the application blocks.
Identify the vulnerabilities of the application blocks.
Provide counter measures to these threats and vulnerabilities.

●

●

●

Enterprise Library Test Guide246

In general, threats can be classified as spoofing identity, tampering with data, re-
pudiation, information disclosure, denial of service, and elevation of privileges. To
learn more about these threats, see Threat Modeling Web Applications on MSDN in the
Microsoft patterns & practices Developer Center.

General Security Tests
All the application blocks are required to request code access security permissions for
the appropriate assemblies. Code access security allows code to be trusted to varying
degrees depending on where the code originates and on other aspects of the code’s
identity.

Test Case

The application blocks use reflection in multiple places to create domain objects. The
test case was to review the code in the AssemblyInfo file to determine whether the
application block requests permission to use reflection. This permission is necessary
for the application block to run in low-trust environments. (The AssemblyInfo file
contains information such as attributes, files, resources, types, versioning informa-
tion, and signing information for modifying an assembly’s metadata.)

Problem

The test case revealed that the ReflectionPermission class that controls access to
the metadata was not defined in the AssemblyInfo file. This class defines the set of
permissions that are required for application block assemblies to run in low-trust
environments.

When the application block runs in a low-trust environment, the system administra-
tor must explicitly grant those permissions that allow the application block to run.
The explicit permission to use reflection allows the ObjectBuilder subsystem to use
reflection and access private class members and metadata.

Solution

The solution was to add a ReflectionPermission object with the necessary permis-
sions to the AssemblyInfo file. The following code shows how to do this.

 [assembly: ReflectionPermission(SecurityAction.RequestMinimum, MemberAccess =
true)]

Verification

Examining the AssemblyInfo file after applying the preceding code showed that it
included a ReflectionPermission object.

http://msdn.microsoft.com/practices/topics/security/default.aspx?pull=/library/en-us/dnpag2/html/tmwa.asp

Using the Test Cases 247

Specific Security Tests
Specific aspects of each application block were also tested to see if they followed
security best practices. This section discusses security issues that were found in the
Data Access Application Block and the Cryptography Application Block.

Testing the Data Access Application Block
This test case determined whether the Data Access Application Block violated secu-
rity best practices by returning the password that is stored in the ConnectionString
property to the user. It is important to ensure that this does not happen because it can
give malicious users access to sensitive information.

Test Case

The test case checked to see if the application block returned the password to the
user. If it did, the test case failed. The following code implemented the test case.

 [TestMethod]
 public void TestPasswordInConnectionStringWithDAAB()
 {
 Database db =DatabaseFactory.CreateDatabase("PasswordProtectedConnectionString
Instance");
 db.Connection.Open();
 string connectionString = db.ConnectionString;
 db.Connection.Close();
 if (connectionString.Contains("password=test"))
 {
 Assert.Fail();
 }
 }

Problem

The test case failed because the Database class exposed the ConnectionString prop-
erty as a public member. This allowed a user to read the password. The following
code caused the problem.

public string ConnectionString
{
 get
 {
 return this.connectionString.ToString();
 }
}

Solution

The Database class was modified so that the ConnectionString property was
changed from a public member to a protected internal member. A new public prop-
erty named ConnectionStringWithoutCredentials was added. This property returns

Enterprise Library Test Guide248

the connection string without including sensitive information such as the password.
The following is the modified code.

protected internal string ConnectionString
{
 get
 {
 return this.connectionString.ToString();
 }
}

public string ConnectionStringWithoutCredentials
{
 get
 {
 return ConnectionStringNoCredentials;
 }
}

Verification

Running the test case again after modifying the code verified that the Connection-
StringWithoutCredentials property did not return the password.

Testing the Cryptography Application Block
This test case determined whether the Cryptography Application Block cleared a
decrypted key from memory after using it to encrypt and decrypt data.

Test Case

During a code review, the SymmetricCryptographer and HashCryptographer classes
were examined to see if they cleared decrypted keys from memory after using them.

Problem

The code review revealed that the SymmeticCryptographer and HashCryptographer
classes did not clear decrypted keys from memory before returning the data. The fol-
lowing code shows the SymmetricCryptographer code. The code for the HashCryp-
tographer class was similar.

public byte[] Decrypt(byte[] encryptedText)
 {
 byte[] output = null;
 byte[] data = ExtractIV(encryptedText);
 this.algorithm.Key = Key;
 using (ICryptoTransform transform = this.algorithm.CreateDecryptor())
 {
 output = Transform(transform, data);
 }
 return output;
 }

Using the Test Cases 249

Solution

The solution was to zero out the unencrypted algorithm key before returning the
data. The application block code was modified by adding the CryptographyUtility.
ZeroOutBytes method. The following is the modified code.

public byte[] Decrypt(byte[] encryptedText)
{
byte[] output = null;
byte[] data = ExtractIV(encryptedText);
this.algorithm.Key = Key;
using (ICryptoTransform transform = this.algorithm.CreateDecryptor())
{
 output = Transform(transform, data);
}
CryptographyUtility.ZeroOutBytes(this.algorithm.Key);
return output;
 }

Verification

The CryptographyUtility.ZeroOutBytes method was examined to verify that it
cleared the algorithm key, which is contained in a byte array. The method incorpo-
rates the .NET Framework Array.Clear method, which clears byte arrays.

public static void ZeroOutBytes(byte[] bytes)
{
 if (bytes == null)
 {
 return;
 }
 Array.Clear(bytes, 0, bytes.Length);
}

Functional Testing
The objective of the functional tests is to verify that the application block meets all
of its functional requirements. This section discussions functional issues that were
found in the Cryptography Application Block, the Data Access Application Block,
the Exception Handling Application Block, the Logging Application Block, and the
Security Application Block.

Testing the Cryptography Application Block
This test case determined whether the Cryptography Application Block would en-
crypt data when the data protection scope was set to LocalMachine and there was no
entropy.

Enterprise Library Test Guide250

Test Case

The test case created an instance of the DpapiCryptographer class and passed the
DataProtectionScope mode as LocalMachine. It called the DpapiCryptographer.
Encrypt method with null entropy. It then checked to verify that the data was en-
crypted.

Problem

The Encrypt method checked to see whether the DataProtectionScope enumeration
was set to LocalMachine. If it was, and there was no entropy, the method threw an
exception. This is incorrect. Entropy is not a requirement for local stores in highly
trusted computers that are used for server-side applications. The DataProtection-
Scope.LocalMachine setting with no entropy is actually valid. The following code
caused the problem.

public byte[] Encrypt(byte[] plaintext)
{
 if (DataProtectionScope.LocalMachine == storeScope)
 {
 throw new InvalidOperationException(Resources.DpapiMustHaveEntropyForMa-
chineMode);
 }
 return Encrypt(plaintext, null);
}

Solution

To solve the problem, the code that checked for the LocalMachine setting when there
was no entropy was removed. The following is the modified code.

public byte[] Encrypt(byte[] plaintext)
{

 return Encrypt(plaintext, null);
}

Verification

Running the modified code verified that the Encrypt method no longer threw an
exception.

Testing the Data Access Application Block
The test case determined whether the Data Access Application Block could read con-
figuration information from a configuration source other than a file. For the test, the
configuration source was an in-memory dictionary and the configuration information
was a connection string.

Using the Test Cases 251

Test Case

The test case first created a dictionary configuration source and then added the
connection string to the <connectionStrings> section. It then used the DatabasePro-
viderFactory class to create a Database instance. The test case passed the dictionary
configuration source as a parameter.

Problem

The test case failed with the following exception:

System.Configuration.ConfigurationErrorsException: The requested database instance is not
defined in configuration.

The application block used the DatabaseConfigurationView.GetConnectionString-
Settings method to read the relevant configuration section. This class relies on the.
NET Framework ConfigurationManager class, which only reads configuration files.
The following is the code that caused the problem.

public ConnectionStringSettings GetConnectionStringSettings(string name)
{
 ConnectionStringSettings connectionStringSettings = ConfigurationManager.
ConnectionStrings[name];
…
}

Solution

The application block should be able to read configuration information from any
configuration source. If the configuration information is not defined in the specified
configuration source, the application block should use the ConfigurationManager
class to look in the configuration file. This is shown in the following code.

public ConnectionStringSettings GetConnectionStringSettings(string name)
{
…
ConnectionStringSettings connectionStringSettings;
ConfigurationSection configSection = configurationSource.GetSection("connectionStrin
gs");
if ((configSection != null) && (configSection is ConnectionStringsSection))
{
 ConnectionStringsSection connectionStringsSection = configSection as Connection-
StringsSection;
 connectionStringSettings = connectionStringsSection.ConnectionStrings[name];
}
else
 connectionStringSettings = ConfigurationManager.ConnectionStrings[name];
 …
}

Enterprise Library Test Guide252

Verification

Running the test case again after applying the preceding code verified that the appli-
cation block could retrieve configuration information from the dictionary configura-
tion source.

Testing the Exception Handling Application Block
The test case determined whether the Exception Handling Application Block logged
the information retrieved by the .NET Framework Exception.Data property. This
property gets a collection of key/value pairs that provide additional, user-defined
information about an exception.

Test Case

The test case created an Exception object and added additional information to the
Data collection. The test case used the ExceptionPolicy.HandleException method
and checked to see whether the additional information, in addition to the exception,
was logged.

Problem

The test case failed because the additional information was not logged. The Loggin-
gExceptionHandler.HandlerException method passes the exception message and
the stack trace but not the additional information that is stored in the Data collection.
Therefore, this information is not logged. The following is the code that caused the
failure.

public Exception HandleException(Exception exception, Guid handlingInstanceId)
{
 WriteToLog(CreateMessage(exception, handlingInstanceId));
 return exception;
}

Solution

The WriteToLog method was modified. A new parameter named exception.Data was
added to the method signature. This parameter passes the additional information.
Also, within the WriteToLog method, code was added that enumerated the Data
collection and added that information to the ExtendedProperties collection of the
LogEntry instance. The following is the modified code.

public Exception HandleException(Exception exception, Guid handlingInstanceId)
{
 WriteToLog(CreateMessage(exception, handlingInstanceId), exception.Data);
 return exception;
}

protected virtual void WriteToLog(string logMessage, IDictionary exceptionData)
{
 …
 foreach (DictionaryEntry dataEntry in exceptionData)

Using the Test Cases 253

 {
 if (dataEntry.Key is string)
 {
 entry.ExtendedProperties.Add(dataEntry.Key as string, dataEntry.
Value);
 }
 }
 this.logWriter.Write(entry);
}

Verification

Running the test case again after applying the preceding code verified that the ap-
plication block logged the additional information.

Testing the Logging Application Block
The test case checked to see whether multiple traces sources that were configured to
use the same trace listener used the same instance of that trace listener to log messag-
es. For example, if two trace sources were configured to use the same trace listener,
they should both use the same instance of that trace listener.

Test Case

The test case configured multiple trace sources to log messages to a single instance of
the FlatFileTraceListener. It then added the relevant categories to a LogEntry object.
These categories route the messages to the trace listener. It logged the messages with
the Logger.Write method.

Problem

The test case failed because the application block created one instance of the trace
listener for every trace source. For example, if two trace sources were configured to
use the same trace listener, two instances of the same trace listener were created and
the message was logged twice. The trace listener that acquired the lock wrote to the
log. The second trace listener could not write to the log, but the message was logged
to a file created by the .NET Framework in response to the problem. Because the file
was locked by whichever instance of the trace listener acquired the lock first, the
other instances that tried to log the message threw exceptions. The .NET Framework
handled the exceptions and created a new file with a new GUID for every trace lis-
tener instance that unsuccessfully tried to access the locked file.

Solution

The solution was to create a cache of all the configured trace listeners. The cache
should contain only one instance of each trace listener.

Verification

Running the test case after the cache was added verified that the message was logged
only once to the file and that the .NET Framework did not create multiple files with
different GUIDs.

Enterprise Library Test Guide254

Testing the Caching Application Block
The test case checked to see that the Caching Application Block did not try to scav-
enge items in the cache when the number of items to scavenge was set to zero.

Test Case

The test case checked to see that the ScavengerTask class looked at the number of
times to scavenge before it began scavenging.

Problem

The test case failed because the DoScavenging method did not check the number of
items to be scavenged before it began to scavenge. As a result, each time an item was
added, the method would unnecessarily scavenge the cache. The following is the
code that caused the problem.

public void DoScavenging()
{
 Hashtable liveCacheRepresentation = cacheOperations.CurrentCacheState;
 int currentNumberItemsInCache = liveCacheRepresentation.Count;
 if (scavengingPolicy.IsScavengingNeeded(currentNumberItemsInCache))
 {
 ResetScavengingFlagInCacheItems(liveCacheRepresentation);
 SortedList scavengableItems = SortItemsForScavenging(liveCacheRepresentation);
 RemoveScavengableItems(scavengableItems);
 }
}

Solution

The ScavengerTask.DoScavenging method was modified so that it first checked to
see if the number of items to be scavenged was set to zero. If it was, it did not scav-
enge the cache. The following is the modified code.

public void DoScavenging()
{
 if (NumberOfItemsToBeScavenged == 0) return;
 Hashtable liveCacheRepresentation = cacheOperations.CurrentCacheState;
 int currentNumberItemsInCache = liveCacheRepresentation.Count;
 if (scavengingPolicy.IsScavengingNeeded(currentNumberItemsInCache))
 {
 ResetScavengingFlagInCacheItems(liveCacheRepresentation);
 SortedList scavengableItems = SortItemsForScavenging(liveCacheRepresentation);
 RemoveScavengableItems(scavengableItems);
 }
}

Using the Test Cases 255

Verification

Running the test case again after applying the preceding code verified that no scav-
enging took place when the number of items to scavenge was set to zero.

Testing the Security Application Block
The test case checked to see that the Security Application Block’s secure cache did not
generate valid tokens for an invalid identity, principal, or profile. Instead, the cache
should throw an exception.

Test Case

The test case used the SecurityCacheFactory to create an in-memory cache store. It
passed null values to the SaveIdentity, SavePrincipal, and SaveProfile methods. The
following code shows the test case for the SaveProfile method.

 [TestMethod]
 [ExpectedException(typeof(ArgumentNullException))]
public void InMemorySaveWithNullProfileTestFixture()
{
 ISecurityCacheProvider securityCache = SecurityCacheFactory.GetSecurityCachePro
vider("CacheProvider");
 IToken token = securityCache.SaveProfile(null);
 if (token != null)
 {
 Assert.Fail();
 }
}

Problem

The test case failed because the cache issued a valid token for an invalid value. The
problem was that the CachingStoreProvider class did not validate the input values.
The following is the code that caused the problem.

public override IToken SaveProfile(object profile)
{
 GuidToken guidToken = new GuidToken();
 SaveProfile(profile, guidToken);
 return guidToken;
}

Enterprise Library Test Guide256

Solution

The SaveProfile, SaveIdentity, and SavePrincipal methods on the Security-
CacheProvider class were modified to check the input values and to throw excep-
tions if they were null. The following is the modified SaveProfile method.

public override IToken SaveProfile(object profile)
{
 if (profile == null)
 {
 throw new ArgumentNullException("profile");
 }
…
}

Verification

Running the test case again after applying the preceding code verified that the cache
threw the ArgumentNullException exception when the input value was null.

Index

Symbols
<Car> section, 17‑18
<itemsConfiguration> section, 17
.NET Framework test code

Cryptography Application Block
test code, 209‑210

Exception Handling Application
Block test code, 202

.NUnit.sln, 6

.VSTS.sln, 6

A
acknowledgments, 9
additional resources, 157
application blocks

globalization best practices,
159‑160

performance and scalability,
183‑215

architectural diagrams, 126‑127
ASP.NET, 169‑171
ASP.NET Framework test code,

187‑189
assemblies threats, 132‑133
assembly-level checklist, 143‑144
AssemblyInfo files, 246
audience, 1
automated tests, 5‑8

B
best practices see globalization

best practices; security best
practices

bottlenecks
I/O performance, 217
scalability, 228

C
CacheManager type object,

178‑179

Caching Application Block, 23‑40
automated tests, 36‑40
automated tests setup, 6
code test cases, 24‑25
design test cases, 24
functional testing example,

254‑255
performance and scalability,

183‑189
requirements, 23
scalability tests, 232‑234
scenarios, 184
test cases selection, 23‑25
test cases verification, 25‑36

block code, 27‑30
block design, 25‑26

Visual Studio Team System tests,
36‑40

Caching Application Block test
code, 185‑187

<Car> section, 17‑18
checklists, 143‑156

assembly-level, 143‑144
class-level, 144‑145
code access, 154‑155
cryptography, 145‑147
delegates, 150
design and deployment, 156
exception management, 148‑149
general code review, 143
managed code reviews, 143‑152
reflection, 151
secrets, 147‑148
serialization, 150‑151
unmanaged code access, 152

class-level checklist, 144‑145
classes, 129‑130
code access checklist, 154‑155
code access security, 246
code reviews, 5
configuration files

altering directory path, 140‑141
threats, 133‑134

configuration sources, 251
contents, 8
conversion see globalization best

practices

costs see initialization costs;
overhead costs

counters, 215‑217
Cryptography Application Block,

41‑54
automated tests, 51‑54
automated tests setup, 7
code checklist example, 5
code test cases example, 4
design test cases example, 3
design verification example, 4
functional testing example,

249‑250
memory leaks, 236‑237
.NET Framework test code

scenarios, 209‑210
performance and scalability,

204‑212
performance testing examples,

240‑241, 244‑245
requirements, 23
scenarios, 205‑206
security testing example,

248‑249
test cases selection, 41‑43

block code, 42‑43
block design, 42

test cases verification, 43‑51
block code, 45‑51
block design, 43‑45

cryptography checklist, 145‑147
CryptographyUtility.

ZeroOutBytes method, 249
CryptoTestScript.bat, 7

D
Data Access Application Block,

55‑67
automated tests, 64‑66
automated tests setup, 7
functional testing example,

250‑252
performance and scalability,

195‑201
performance testing example,

241‑243

Index258

requirements, 55
scalability tests, 231‑232
scenarios, 195‑196
security testing example,

247‑248
test cases selection, 55‑57

block code, 56‑57
block design, 56

test cases verification, 57‑63
block code, 59‑63
block design, 57‑58

test code scenarios, 197‑199
data binding

generating unique keys, 184‑185
for Web tests, 179‑181

database logs, 134‑135
Debug.Assert statements, 141‑142
delegates checklist, 150
dependencies, 130‑131
design and deployment checklist,

156
design reviews, 4
dictionary configuration sources,

251
directory path, 140‑141
disk I/O, 215‑217
distributor service, 137
domain objects, 241‑243
DREAD

acronym defined, 132
threat 1, 133
threat 2, 134
threat 3, 134
threat 4, 135
threat 5, 136
threat 6, 136
threat 7, 137
threat 8, 138
threat 9, 140
threat 10, 140
threat 11, 141
threat 12, 142

E
e-mail threats, 137
end-to-end transaction times, 219

Enterprise Library 1.1, 188
Enterprise Library Core, 11‑21

automated tests, 17‑21
automated tests setup, 6‑8
code test cases, 12
design test cases, 11‑12
requirements, 11
test cases verification, 13‑17

code, 14‑17
design, 13‑14

test examples, 17‑21
entropy, 249‑250
entry points, 127‑128
error message faking, 134
event instrumentation, 138‑140
event log flooding, 134
Exception Handling Application

Block, 67‑83
automated tests, 77‑83
automated tests setup, 8
functional testing example,

252‑253
.NET Framework test code

scenarios, 202
performance and scalability,

201‑204
requirements, 67
scenarios, 201
test cases selection, 67‑69

block code, 68‑69
block design, 68

test cases verification, 69‑77
block code, 70‑77
block design, 69‑70

exception management checklist,
148‑149

Exception.Data property, 252
external dependencies, 130‑131

F
FileConfigurationSource class,

241‑243
flat file logs, 135‑136
form post parameters, 180‑181
functional testing

Caching Application Block
example, 254‑255

Cryptography Application Block
example, 249‑250

Data Access Application Block
example, 250‑252

Exception Handling Application
Block example, 252‑253

overview, 2‑3
Security Application Block

example, 255‑256
functional testing overview, 2‑3

G
GC.Collect, 236
general code review checklist, 143
globalization best practices,

159‑165
application blocks, 159‑160
creating a test plan, 160‑163
creating the test environment,

164
executing and analyzing results,

165
pseudo-localization, 163‑164
Strgen tool, 160

H
hardware configurations, 229
harnesses see test harnesses
HashCryptographer class, 248
hits see total transactions
host engine, 171

I
idle time, 219
IExplicitInstrumentationBinder

interface, 241
implementation assumptions, 131
initialization costs

defining performance criteria,
171

measuring, 234‑236
input validation, 140
instrumentation objects, 240‑241
introduction, 1‑9
<itemsConfiguration> section, 17

Index 259

K
key files, 244
keys

key files, 244
symmetric, 244
unique, 184‑185

L
Library 1.1, 188
Little’s Law, 235‑236
load agents, 218
load tests

creating, 182‑183
described, 167
setup, 172‑174

localization see globalization best
practices

LocalMachine, 249‑250
locking and contention, 218
log file’s directory path, 140‑141
log messages, 136
Logging Application Block, 64‑99

assets, 125‑126
automated tests, 95‑99
performance and scalability,

189‑195
performance testing example,

243‑244
scalability tests, 229‑231
scenarios, 190
security best practices, 124‑132
test cases selection, 85‑87

block code, 86‑87
block design, 86

test cases verification, 87‑95
block code, 88‑95
block design, 87‑88

threats, 132‑133

M
managed code review checklists,

143‑152
memory leaks, 236‑238
message queue threats, 137

metrics
Caching Application Block,

188‑189
Cryptography Application

Block, 211‑212
Data Access Application Block,

200‑201
Exception Handling Application

Block, 203‑204
Logging Application Block,

192‑195
transactions, 219

N
.NET Framework test code

Cryptography Application Block
test code, 209‑210

Exception Handling Application
Block test code, 202

network monitoring, 217‑218
NIC mode, 217‑218
.NUnit.sln, 6

O
overhead costs, 169‑171

P
performance and scalability,

167‑238
application blocks, 183‑215

Caching Application Block,
183‑189

creating a test harness,
184‑185

creating the test code,
185‑187

generating unique keys,
184‑185

profiling the work load,
187‑188

recording the metrics,
188‑189

setting up a load test, 188‑189
Cryptography Application

Block, 204‑212

creating a test harness,
206‑207

creating the test code,
207‑211

recording the metrics,
211‑212

Data Access Application Block,
195‑201

creating a test harness, 196
creating the test code,

196‑199
recording the metrics,

200‑201
Exception Handling

Application Block, 201‑204
creating a test harness, 201
creating the test code,

202‑203
recording the metrics,

203‑204
Logging Application Block,

189‑195
creating a test harness, 190
creating the test code,

190‑192
recording the metrics,

192‑195
Security Application Block,

213‑215
creating a test harness, 213
creating the test code,

213‑215
building test harnesses, 174‑183

creating a load test, 182‑183
creating a Web test script,

176‑177
data binding, 179‑181
defining the workload profile,

181‑182
illustration, 175
using the Web test script,

177‑179
debugging memory leaks,

236‑238
WinDbg, 237

defining performance criteria,
169‑171

Index260

initialization cost, 171
overhead cost, 169‑171

detecting performance issues,
215‑218

determining NIC mode,
217‑218

monitoring disk I/O, 215‑217
monitoring for locking and

contention, 218
monitoring the load agents,

218
monitoring the network,

217‑218
extrapolating workload profiles,

235‑236
initialization costs, 234‑235

profiler information, 235
load tests described, 167
measuring performance, 218‑228

transaction times, 227‑228
scalability, 228‑234

analysis of Caching
Application Block, 232‑234

analysis of Data Access
Application Block, 231‑232

analysis of Logging
Application Block, 229‑231

bottlenecks, 228
hardware configurations, 229
scenarios and results, 229‑234

scalability tests described, 168
setting up environment, 171‑174

host engine, 171
load tests, 172‑174
tuning, 174

stress tests described, 167
total transactions, 170

performance counters, 215‑217
performance testing

Cryptography Application Block
example, 240‑241, 244‑245

Data Access Application Block
example, 241‑243

see also test cases
permissions, 246
profiler information, 235
pseudo-localization, 163‑164

R
reflection, 240

checklist, 151
ReflectionPermission class, 246
request trees, 176
requirements, 2
resources, 157

S
saturation, 219
scalability see performance and

scalability
scalability tests

Caching Application Block,
232‑234

Data Access Application Block,
231‑232

described, 168
Logging Application Block,

229‑231
scenarios, 229

ScavengerTask class, 254‑255
scenarios

Caching Application Block, 184
Cryptography Application

Block, 205‑206
Cryptography Application Block

test code, 208
.NET Framework test code,

209‑210
Data Access Application Block,

195‑196
Data Access Application Block

test code, 197‑199
Exception Handling Application

Block, 201
Exception Handling Application

Block test code, 202
.NET Framework test code, 202

Logging Application Block, 190
Security Application Block, 213

scope, 1
secrets checklist, 147‑148

security see security best practices;
security testing; threats

Security Application Block, 101‑121
automated tests, 112‑121
automated tests setup, 8
functional testing example,

255‑256
performance and scalability,

213‑215
requirements, 101
scenarios, 213
test cases selection, 102‑103

block code, 102‑103
block design, 102

test cases verification, 103‑111
block code, 105‑111
block design, 103‑105

security best practices, 123‑157
additional resources, 157
Logging Application Block,

124‑132
architectural diagrams, 126‑127
external dependencies, 130‑131
identifying additional security

notes, 132
identifying assets, 124‑126
identifying entry points,

127‑128
identifying relevant classes,

129‑130
implementation assumptions,

131
requirements, 124
security reviews, 142‑156

assembly-level checklist,
143‑144

class-level checklist, 144‑145
code access checklist, 154‑155
cryptography checklist,

145‑147
delegates checklist, 150
design and deployment

checklist, 156
exception management

checklist, 148‑149
general code review checklist,

143

Index 261

managed code review
checklists, 143‑152

reflection checklist, 151
resource access checklist,

152‑153
secrets checklist, 147‑148
serialization checklist, 150‑151
threading checklist, 151
unmanaged code access

checklist, 152
threat models, 132‑142

security notes, 132
security testing

Cryptography Application
Block, 248‑249

Data Access Application Block,
247

see also test cases
serialization checklist, 150‑151
solution files, 6
stress tests described, 167
Strgen tool, 160
STRIDE, 132
strong names, 132‑133
symmetric keys, 244
SymmetricAlgorithm-

InstrumentationBinder class,
241

SymmetricCryptographer class,
248

SymmetricCryptoProviderFactory
class, 241

system requirements, 2
system resources, 219
SystemConfigurationSource class,

241‑242

T
templates

ASP.NET, 189
Caching Application Block,

188‑189
Cryptography Application

Block, 211‑212
Data Access Application Block,

200‑201

Enterprise Library-January 2006,
189

Exception Handling Application
Block, 203‑204

Logging Application Block,
193‑195

test cases, 239‑256
functional testing, 249‑256

Caching Application Block,
254‑255

Cryptography Application
Block, 249‑250

Data Access Application Block,
250‑252

Exception Handling
Application Block, 252‑253

Logging Application Block,
253

Security Application Block,
255‑256

overview, 3‑4
performance testing, 239‑245

FileConfigurationSource class,
241‑243

general performance tests,
240‑243

goals, 239
instrumentation objects,

240‑241
specific performance tests,

243‑245
Cryptography Application

Block, 244‑245
Logging Application Block,

243‑244
security testing, 245‑249

general security tests, 246
specific security tests, 247‑249

Cryptography Application
Block, 248‑249

Data Access Application
Block, 247‑248

test code
Caching Application Block,

185‑187
Cryptography Application

Block, 207‑211

Data Access Application Block,
196‑199

Exception Handling Application
Block, 202‑203

Logging Application Block,
190‑192

Security Application Block,
213‑215

test harnesses
Caching Application Block,

174‑175, 184‑185
Cryptography Application

Block, 206‑207
Data Access Application Block,

196
Exception Handling Application

Block, 201
Logging Application Block, 190
Security Application Block, 213

test project creation, 176
test scripts, 184‑185
testing see functional testing;

performance testing; security
testing

think times, 181
threading checklist, 151
threat 1, 132‑133
threat 2, 133‑134
threat 3, 134
threat 4, 134‑135
threat 5, 135‑136
threat 6, 136
threat 7, 137
threat 8, 137
threat 9, 138‑140
threat 10, 140
threat 11, 140‑141
threat 12, 141
threat classifications, 246
threats

assemblies, 132‑133
configuration files, 133‑134
e-mail, 137
message queues, 137

tokens, 255‑256
total hits see total transactions
total transactions, 170

Index262

Total Transactions value, 227
trace sources, 253
Transaction Times Threshold

value, 227
transactions

metrics, 219
total transactions, 170
in Web tests, 227‑228

transactions per second (TPS),
170‑171

TransactionsPerSecond value, 227
translation see globalization best

practices
tuning the test environment, 174

U
unique keys, 184‑185
unmanaged code access checklist,

152
unprotected log messages, 136
unsolicited e-mail, 137
utilization, 219

V
validation, 140
Visual Studio Team System tests

Caching Application Block,
36‑40

Cryptography Application
Block, 51‑54

Data Access Application Block,
64‑66

Enterprise Library Core, 17‑21
Exception Handling Application

Block, 77‑83
Logging Application Block,

95‑99
Security Application Block,

112‑121
.VSTS.sln, 6

W
Web tests

converting, 177
recording, 176‑177
scripting, 176‑177

using scripts, 177‑179
WinDbg, 237
WMI events, 138‑140
workload profiles

Caching Application Block,
187‑188

defining, 181‑182
extrapolating, 235‑236

X
XmlSerializer class, 234‑235

	Cover
	Title Page
	Contents
	Introduction
	Scope
	Audience
	System Requirements
	Functional Testing
	Creating Test Cases
	Performing Design Reviews
	Performing Code Reviews
	Running the Automated Tests

	Contents of the Enterprise Library Test Guide
	Acknowledgments

	Testing the Enterprise Library Core
	Requirements for the Core
	Selecting the Test Cases
	Verifying the Test Cases
	Using Automated Tests

	Testing the Caching Application Block
	Requirements for the Caching Application Block
	Selecting the Test Cases
	Verifying the Test Cases
	Using Automated Tests

	Testing the Cryptography Application Block
	Requirements for the Cryptography Application Block
	Selecting the Test Cases
	Verifying the Test Cases
	Using Automated Tests

	Testing the Data Access Application Block
	Requirements for the Data Access Application Block
	Selecting the Test Cases
	Verifying the Test Cases
	Using Automated Tests

	Testing the Exception Handling Application Block
	Requirements for the Exception Handling Application Block
	Selecting the Test Cases
	Verifying the Test Cases
	Using Automated Tests

	Testing the Logging Application Block
	Requirements for the Logging Application Block
	Selecting the Test Cases
	Verifying the Test Cases
	Using Automated Tests

	Testing the Security Application Block
	Requirements for the Security Application Block
	Selecting the Test Cases
	Verifying the Test Cases
	Using Automated Tests

	Testing for Security Best Practices
	Establishing the Security Requirements
	Analyzing the Logging Application Block
	Identifying the Assets
	Create an Architectural Diagram
	Identify the Entry Points
	Identify the Relevant Classes
	Identify the External Dependencies
	Identify the Implementation Assumptions
	Identify Any Additional Security Notes

	Building the Threat Models
	Performing Security Reviews
	Security Review Checklists

	Additional Resources

	Testing for Globalization Best Practices
	The Test Approach
	Creating a Test Plan
	Pseudo-Localization Testing
	Creating the Test Environment
	Execute and Analyze the Results

	Testing for Performance and Scalability
	Defining Performance Criteria
	Overhead Cost
	Initialization Cost
	Consistency
	Availability

	Setting Up the Test Environment
	Choosing the Host Engine
	Setting up the Test Environment
	Tuning the Test Environment

	Building Test Harnesses
	Creating a Web Test Script
	Defining the Workload Profile
	Creating a Load Test

	Testing the Application Blocks
	Testing the Caching Application Block
	Testing the Logging Application Block
	Testing the Data Access Application Block
	Testing the Exception Handling Application Block
	Testing the Cryptography Application Block
	Testing the Security Application Block

	Detecting Performance Issues
	Monitoring Disk I/O

	Measuring Performance
	Understanding and Measuring Transaction Times

	Testing for Scalability
	Identifying Bottlenecks
	Hardware Configurations
	Scalability Test Scenarios and Results

	Measuring Initialization Costs
	Extrapolating Workload Profiles
	Debugging Memory Leaks

	Using the Test Cases
	Performance Testing
	General Performance Tests
	Specific Performance Tests

	Security Testing
	General Security Tests
	Specific Security Tests

	Functional Testing

	Index

