
Concise parallelism

Natural C/C++ Parallelism

void salute()

{

 parallel()

 {

 int idx = pix();

 serial()

 {

 parallel(3)

 {

 printf("Hello, world, from task %d-%d\n", idx, pix());

 }

 }

 }

}

A single operator to
control multiple parallel
programming paradigms

Natural C/C++ semantics
and variable visibility

rules and scopes
A single operator to

control parallel
synchronization

Clear means of
parallel identification

and interaction

Elegant Multitasking
std::vector<Data> data;

parallel(5000000)

{

 int i = pix();

 serial(&data[i])

 {

 data[i].process();

 }

}

Stack

Single Execution State

{

 Task No. = 5000000;

 Code pointer;

 Registers;

}

Synchronized access to
any data element

without introducing
synchronization objects

Each thread from a pool decrements
the task counter and “creates” a job to
execute from a single execution state:

• No CPU oversubscription
• Dynamic work balancing
• Minimal memory footprint
• No task queue management overhead

Language-Friendly Multithreading
class X

{

 void* volatile id;

 X()

 {

 parallel(2)

 {

 void* pid = pid();

 if(pix())

 {

 id = pid;

 while(id)

 {

 wait();

 getMoreData();

 }

 }

 break;

 }

 }

};

void X::read()

{

 wake(id);

 processData();

}

A single operator to
control multi-threading

and multitasking

Getting a global ID promotes a
task to an independent thread

Reaching the break
demotes a thread to a task

A real independent thread in a
class constructor!

Thread-0 returns,
thread-1 waits until

woken up by another
thread/task

Easy Software Analysis

std::vector<Data> data;

void f(int n)

{

 parallel(data.size)

 { /// Timing: 5 sec; Parallelism = 95%; Time per CPU: CPU0 = 30%, CPU1 = 30%...

 for(int i = 0; i < n; i++)

 { /// Avrg iterations = 100

 int j = pix();

 parallel()

 { /// Timing: 4.5 sec; Parallelism = 80%; Time per CPU: CPU0 = 30%, CPU1 = 30%...

 data[j].process();

 serial()

 { /// Timing: 4.5 sec; Contention = 30%;

 data[j].reduce();

 }

 }

 }

 }

}

Use the same compiler,
debugger and profiler
tools as for sequential

software

C= source code is a perfect performance model by itself: a
C= profiler can annotate each parallel, sequential and cyclic

region with timings, contention, iterations, balance, etc.
exactly in alignment with a corresponding operator

Re-writing parallel runtimes in C=
will eliminate CPU oversubscription

and guarantee efficient resource
management, especially in complex,

multi-module applications using
several parallel runtimes

simultaneously

Software Implications

C=
TBB

A powerful parallel
programming language…

…and a unified parallel
runtime

OpenMP

Cilk

CRT

OpenCL @CPU

PPL

AMP @CPU

Hardware Implications

Truly mobile, data-consistent,
cheap and powerful architecture!

Slide a tablet into an
accelerator box and get

faster software, vivid
graphics, detailed scenes,
real-time video encoding

– right away!

PU PU PU

PU PU PU

PU PU PU

Memory

Single Execution State

{

 Task No. = data.size;

 Code pointer;

 Registers;

}

CPU

CPU

CPU

Co-processors fetch
the state transparently

to CPU and OS and
smoothly accelerate
execution of existing

programs

C= programs are designed for
massive parallelism w/o

incurring extra overhead by
forming a single execution state
for any number of parallel tasks

std::vector<Data> data;

parallel(data.size)

{

 data[pix()].process();

}

