
C= Parallel C/C++ Language Extension

©HOOPOE ProGroup, 2011.

C= Specification and

Reference Manual
Revision 0.5

2011

C= Parallel C/C++ Language Extension

|Page 2

Legal Notice

This document describes software distributed under a license agreement which, along with the present

document, must be an integral part of the software distribution package. A software package lacking the

license agreement is considered counterfeit and must be immediately deleted. By the fact of using the

software described in this document you accept all terms and conditions of the accompanying license

agreement.

For your convenience, the text of the accompanying license agreement is provided below.

Definitions

The present software comprises all materials related to C= Parallel C/C++ Programming Language

Extension, including but not limited to binary runtime libraries, header files, source code, and

documentation.

Terms of Use

This license agreement grants non-exclusive rights of use of the present software on terms and under

conditions set forth herein to any legitimate purchaser of a copy of the present software.

All other intellectual property rights are reserved to the authors and copyright and patent holders, which

is HOOPOE ProGroup.

This license agreement grants free use of the present software for personal non-commercial purposes.

Creation of competing products derived from the present software and/or based on any information

obtained from the analysis of the present software is prohibited by default and is subject to a separate

license agreement.

A non-limiting list of competing products comprises: threading libraries, compiler (translator) runtimes,

ports and translations of the present software to other operating systems, programming environments and

languages.

Any other legitimate use of the present software, not specifically addressed in this license document, is

allowed at a fee included in the purchase price of the present software and paid on a per software

developer basis.

Disclaimer

The present software is provided "as is" with no warranties, express or implied, including but not limited

to quality, performance, stability, compatibility with other software or hardware, fitness for a particular

purpose, and non-infringement of intellectual property rights.

Specification and Reference Manual

|Page 3

Contents

Overview.. 4

Getting Started .. 4

Parallel Execution Management Rules and Semantics 6

Language Specification .. 7

Programming Examples ... 9

Usage Model .. 12

Future Development Avenues ... 13

Links and Contacts ... 15

C= Parallel C/C++ Language Extension

|Page 4

Overview

C= (pronounced 'See Stripes') is a Parallel C/C++ Programming Language Extension. It is
designed to cover all typical parallel programming paradigms and complement or even
substitute existing parallel language extensions and libraries by providing a single
parallel language most naturally connected with the C/C++ syntax and semantics.

The principles and constructs of C= including flexible task-thread semantics, parallel
visibility scopes, object-free synchronization, and wake-wait task interaction paradigm
are conceived to be easily adopted by other procedural and object-oriented languages,
compiled or interpreted.

In brief, the main idea of C= is to motivate parallel thinking, let programmers focus on
writing parallel programs in the first place, rather than do the job twice by implementing
a sequential program and then trying to multithread it (though the latter approach,
inevitable in many cases, is also elegantly supported).

Currently, the C= language extension is implemented as a C library and does not imply
specific compiler support, nor radical changes to existing software building processes.

In this document we’re going to share all necessary information to assist a C/C++
programmer in smooth transitioning to parallel programming in C= by providing a high-
level language specification, explaining underlying parallel processing algorithms,
furnishing various code samples, and commenting on best programming practices.

Getting Started

Let’s begin with the traditional ‘Hello, world’ example re-written in C= to print the
greeting in parallel, and see how naturally understandable it is to a native C/C++
programmer. This example will also help us introduce and illustrate the basic (and most
important) concepts of task creation, execution, identification, synchronization and data
sharing.

void salute()

{

 parallel()

 {

 int idx = pix();

 serial()

 {

 parallel(3)

 {

 printf("Hello, world, from task %d-%d\n", idx, pix());

 }

 }

 }

}

Specification and Reference Manual

|Page 5

As you can see, the salute function contains two nested regions of parallel execution.
Each region of parallel execution is formed by the parallel operator, whose body, that is,
every statement within the {} scope, is (not surprisingly) executed concurrently by
multiple tasks or threads (please read further to learn how C= differentiates between
those two terms). It should be noted here that only the thread that entered the parallel
operator (initial thread) can continue execution beyond the parallel scope, any other
task/thread created/engaged by the parallel operator cannot go over the closing brace.

The first parallel operator (without operands) executes its body in the number of tasks
that is equal to the number of available processors.

The pix built-in function (an acronym of ‘Parallel IndeX’) returns the integer index of the
current task. That index is stored in the idx variable, which is private to the tasks of the
current parallel region, that is, each parallel task possesses its own copy of idx initialized
with each task’s own parallel index. Note that the initial task/thread is always assigned
index 0.

The serial operator (not surprisingly, again) serializes execution of the statements within
its scope, in other words, it ensures that its body is executed by only one task of the
outer parallel region at a time.

Inside the serial region, there’s the second parallel region, though this time the number
of concurrent tasks is explicitly specified as an operand of the parallel operator.

Naturally, the pix function, when used in the second parallel region, returns indices of
the second region’s tasks within [0..2] range. Another natural assumption is that the
value of the idx variable set up by a task from the first parallel region is visible to all
tasks of the second, nested region.

Now we’re equipped to understand the entire operation of the above code sample: it
creates a parallel task per processor, saves each task index, and then for each task, one
by one, creates three more tasks, and prints the following (on a dual-processor system):

Hello, world, from task 1-1

Hello, world, from task 1-3

Hello, world, from task 1-2

Hello, world, from task 0-1

Hello, world, from task 0-2

Hello, world, from task 0-3

The actual sequence of prints may be arbitrary, but the output from the same processor
is guaranteed to be grouped together (by the serial operator).

Summing up, the primary concept of C= is to introduce parallel control flow operators,
rather than just means of data exchange, to cover the widest possible range of parallel
programming paradigms, and inherit the concept of data visibility scopes from
sequential languages to define standard rules of data sharing and parallel access.

See the next section to learn how the above ideas are supported by internal algorithms
of parallel execution.

C= Parallel C/C++ Language Extension

|Page 6

Parallel Execution Management Rules and Semantics

First of all, let’s define the following terms: task and thread.

A thread is a system-level execution entity. A program, even a sequential one, is always
executed within a context of at least one thread.

A task for the purposes of C= language is a portion of work that can be executed by a
thread. Each task is represented by an execution state, which is hardware and system-
dependent and is opaque to a C= programmer.

Let’s track the execution of the parallel operator step-by-step:

 parallel()

 {

 ...

 }

1. The thread executing a sequential program encounters the parallel operator.
2. It saves the current execution state, plus computes and saves the total number of

tasks that need to be formed out of the saved state and executed.
3. The thread fetches the first task (index 0, so-called initial task or thread) and signals

to a pool of threads from C= runtime library to start fetching and executing tasks.
4. Each thread of the C= runtime thread pool fetches a task and executes it.
5. The procedure repeats until there’s no task left.
6. The task execution state ends at the closing brace of the parallel operator, so no

task/thread can continue execution beyond the parallel scope, except for the initial
thread that entered the parallel operator.

7. The initial thread continues executing the sequential program, while pooled threads
wait on a semaphore.

As becomes evident from the above explanation, such a scheme of parallel execution
management automatically ensures efficient processor utilization and dynamic work
balancing and eliminates thread conflicts due to work stealing: each thread forms a new
task from the saved execution context independently, rather than stealing the work
from other threads.

But in many cases there is a need for a dedicated thread to process asynchronous
events, pre-load data, etc. C= provides all necessary means for that inside the same
parallel operator: whenever a task tries to obtain its system-unique identifier (to be
shared with other threads and to be used for thread synchronization), the C= runtime
‘promotes’ the task to an independent thread, and adds a new thread to the thread
pool to continue fetching and executing other parallel tasks.

C= provides special functions to asynchronously wake such an independent thread and
to wait for a wakeup signal, thus defining an easy-to-follow parallel thread interaction
paradigm (please see the accompanying code samples).

The code sample from the previous section makes use of the serial operator. The
operator, in addition to its reduced form (as shown in the above sample), allows for
specifying a pointer to the actual memory object which has to be protected from being

Specification and Reference Manual

|Page 7

accessed in parallel. In effect, data structures of sequential programs do not need to be
redesigned in order to accommodate for various locks and other synchronization
objects. On the contrary, the serial operator of C= enables object-free synchronization
and saves both memory and programmers’ efforts.

Another important feature illustrated in the previous section’s example is the use of
variable visibility scopes to differentiate between shared and private variables. C=
declares the following sharing rules:

(1) All variables within a parallel scope are private.
(2) All global variables (beyond a function scope) are shared by reference; that is, each

parallel task accesses the same physical object while operating on such a variable.
(3) All local (automatic) variables located within the function scope but beyond (upper

than) the parallel scope are shared by value; that is, each parallel task can read the
same value when accessing such variables. No assumption can be made as to
whether the values are duplicated or parallel tasks access the same data location.
Hence it is recommended to update shared variables through shared pointers and
initialize those pointers prior to entering a parallel region – it is a safe, least-
common-denominator practice to meet possible limitations of different
implementations of C=.

See the next section on syntactic and semantic details.

Language Specification

This section recites C= language specification, though not in the formal way of ISO
standards but rather in a more relaxed form, which nevertheless provides enough
information to a C/C++ programmer on C= syntax.

Hereinafter C= normative syntax elements are printed in black, whereas syntax
elements specific to the current implementation are shown in gray. Those gray elements
will become implicit in complier- or preprocessor-based implementations.

An operator to execute enclosed statements {} in parallel by the number of tasks
specified by expression; expression comprises a valid C/C++ expression that evaluates to
an integer value, or an empty string; in case expression is empty, the number of tasks in
the parallel region is automatically set equal to the number of available processors:

parallel(expression)

{

}

An operator to execute enclosed statements {} atomically, that is, sequentially with
respect to other tasks simultaneously entering this operator; expression comprises a
valid C/C++ expression that evaluates to a void pointer, or an empty string; in case
expression is empty, the operator serializes execution of all tasks of the current parallel
region; otherwise, the operator serializes execution of every task that executes the
operator with the same expression (that is, is going to reference the same memory
object):

C= Parallel C/C++ Language Extension

|Page 8

serial(expression)

{

}

Note that any combination of nested serial operators is allowed. As a good practice, use
the same nesting order of serial operators when synchronizing memory accesses from
different functions.

A non-blocking trial serialization operator to execute statements in try{} atomically in
case no other task is executing the serial operator with the same expression; otherwise,
execute statements in else{} block:

try(serial(expression))

{

}

else

{

}

Please note that no control transfer to or from the middle of the parallel or serial
operator scope is allowed. That effectively disallows the use of return, goto,
setjmp, and longjmp statements inside the operator scope and forces exception
handling not to cross the operator scope as well.

A built-in function to obtain the index of the current parallel task within the current
parallel region; index 0 is always assigned to the initial task/thread in whose context the
parallel operator was invoked:

int pix();

A built-in function to obtain the number of parallel tasks in the current parallel region:

int pno();

A built-in function to obtain the parallel ID of the current thread; in the current C=
implementation causes the C= runtime to promote the current task to an independent
thread; returns 0 in case of error, for instance, insufficient system resources to convert
the current task to an independent thread; it is a good practice to call this function in all
tasks of a parallel region unconditionally:

void* pid();

A built-in function to wake a thread of the specified parallel ID:

void wake(void* pid);

A built-in function to wait for a wakeup signal infinitely:

void wait();

An overloaded built-in wait function to wait for a wakeup during the specified number
of milliseconds; returns 0 in case the thread is woken up by the wake function; returns a
non-zero value if timed out:

Specification and Reference Manual

|Page 9

int wait(int milliseconds);

An explicit barrier-function to be used at the end of a parallel region; mutually exclusive
with the break operator; will become implicit in compiler-based C= implementations:

barrier();

An operator to skip the implicit barrier of a parallel region; mutually exclusive with the
barrier function; will merge with the standard C/C++ keyword in compiler-based C=
implementations; currently, in the library-based implementation, is also used to exit
serial regions:

break();

A keyword to ensure a shared variable is not stored in a register; will become implicit in
compiler-based C= implementations:

shared

Utility macros to distribute an integer range N among all tasks of the current parallel
region; the functionality of these macros can be replaced by a regular C= code (see
programming examples), they are not inherent part of the language and are provided
for convenience:

CPX_RANGE_START(N);

CPX_RANGE_END(N);

See the next section for programming examples and implementation-specific
information.

Programming Examples

This section illustrates C= programming in most typical examples and also describes
extra rules and limitations imposed on C= programmers by the current non-compiler-
based implementation, as well as best practices of C= programming.

For an extensive set of C= code samples and detailed comments, please refer to the
accompanying readme.cpp file.

Strictly speaking, the example furnished in the ‘Getting Started’ section is written in
pure C= and needs to be slightly modified as shown in readme.cpp to meet the
limitations of the current library-based implementation.

Let us study the most typical case of data decomposition in the following example that
multiplies two arrays, element-by-element, and prints the accrued sum of the products:

CStripes/Windows/readme.cpp
CStripes/Windows/readme.cpp

C= Parallel C/C++ Language Extension

|Page 10

const int N = 0x1000;

float a[N], b[N];

void decompose()

{

 /// this variable is shared by value

 float sum = 0;

 /// shared by value and since it is a pointer

 /// all its copies point to the same location

 /// shared keyword inserted before psum ensures that both sum and

 /// psum aren't register variables, and all

 /// *psum operations will not be removed by the compiler

 float* shared psum = ∑

 parallel()

 {

 /// execute the code below by

 /// the number of tasks = the number of processors

 /// private variables

 /// some compilers pre-compute constants,

 /// keep them in registers,

 /// and do not do the actual initialization;

 /// so there may be a need for explicit initialization

 /// unless C= is supported natively

 volatile float zero = 0;

 /// this should not be volatile to allow for optimizations

 float s = zero;

 /// use pre-defined macros to divide the data

 /// into non-overlapping regions (static decomposition of work)

 /// each task automatically receives its portion of work,

 /// not necessarily equal

 for(int i = CPX_RANGE_START(N),

 end = CPX_RANGE_END(N); i < end; i++)

 {

 /// do multiplication normally

 s += a[i] * b[i];

 }

 /// serialize all tasks of this parallel region

 serial()

 {

 /// reduce the local sums into one shared sum

 *psum += s;

 /// exit the serial region (will become implicit)

 break();

 }

 /// ensure the initial task/thread that entered the parallel

 /// region does not exit before all other tasks complete

 ///(will become implicit)

 barrier();

 }

 printf("Sum = %f\n", sum);

}

Specification and Reference Manual

|Page 11

Now let’s illustrate dynamic work balancing in the example of Fibonacci numbers
computation:

/// compute the Fibonacci number of order n

int fibonacci(int n)

{

 if(n < 2)

 {

 return n;

 }

 return fibonacci(n - 1) + fibonacci(n - 2);

}

void computeFibNumbers()

{

 /// allocate a vector of Fibonacci numbers to compute

 std::vector<int> a;

 /// set up a shared pointer to access the vector

 std::vector<int>* shared ap = &a;

 /// initialize the vector

 a.push_back(41);

 a.push_back(24);

 a.push_back(26);

 a.push_back(42);

 /// set up the output vector and the shared pointer to access it

 std::vector<int> v;

 std::vector<int>* shared vp = &v;

 /// pre-allocate the output space

 v.insert(v.begin(), (const int)a.size(), 0);

 /// create as many tasks as there’re elements in the input vector

 /// C= runtime ensures to run one task per processor at a time

 /// and fetches new tasks for execution automatically,

 /// so that the work is evenly balanced between processors

 parallel(a.size())

 {

 /// get the current task's index (just an optimization)

 int i = pix();

 /// compute the task's Fibonacci number and save it

 (*vp)[i] = fibonacci((*ap)[i]);

 barrier();

 }

 /// print the results

 std::cout << "Fibonacci: ";

 for(std::vector<int>::iterator i = v.begin(); i < v.end(); i++)

 {

 std::cout << *i << " ";

 }

 std::cout << std::endl;

}

C= Parallel C/C++ Language Extension

|Page 12

To avoid possible limitations of different C= implementations it is recommended to
adhere to the following programming practices:

 Access a shared variable via a shared pointer and explicitly specify the pointer as
such by inserting the shared keyword immediately before the pointer’s name.

 Use the volatile modifier to ensure a variable outside of the parallel scope is not
kept in a register (in case of reading the variable from the parallel region).

 Do not obtain the address of an outside variable (using & operator) from a parallel
region.

 Do not jump into or out of a parallel or serial region, do not return from the function
when executing code inside a parallel or serial region, handle all exceptions within
the parallel/serial operator scope.

 Please keep in mind that not all existing runtime functions are thread-safe, exercise
care when invoking them inside a parallel region.

 Avoid declaring large automatic (local) arrays in functions containing parallel regions
as that may have a negative performance impact in case of non-compiler-based C=
implementations.

To switch between parallel and sequential versions of your program quickly, you may
want to design your code (when and where applicable, of course) for an arbitrary
number of tasks and use an explicit argument in the parallel operator:
parallel(x){}, so that the argument can be easily redefined: #define x 1.

See the next section on how to start using C= in software projects.

Usage Model

The current implementation of C= runtime library is compatible (subject to the
accompanying disclaimer – see legal notice above) with Microsoft1 Windows and Linux
operating systems (please consult the accompanying readme.txt file for the list of OS
versions) and supports IA32 and Intel 64/AMD64 processor architectures (including Intel
Many Integrated Core architecture).

The current implementation of C= language extension implies the use of a C/C++
compiler that supports variadic (variable-argument) macros.

C= package does not require installation and is always ready to use, however, for the
sake of convenience, the package can be registered with Microsoft Windows operating
system and Microsoft VisualStudio C/C++ integrated development environment as
explained in the accompanying readme.txt file.

C= package can be used as an ordinary C library by including C=.h header file and linking
your project with C=.lib file as appropriate for target hardware architecture. To run your
resulting executable, please make sure the appropriate C=.dll can be found on the
system DLL loading path.

In case the C= package is registered with Microsoft VisualStudio, vesrions 8 or 9, it is
enough to add "#include <C=.h>" directive to your source files, and the linking will
be performed automatically, even for pre-existing projects.

1
 All names and brands referenced in this document may be claimed as the property of their respective owners

readme.txt
readme.txt

Specification and Reference Manual

|Page 13

C= package has no specific dependencies on language runtime or other libraries, which
implies its compatibility (subject to the above disclaimer) with other parallel
programming solutions (for instance, Intel Threading Building Blocks, OpenMP, and
Microsoft Concurrency Runtime). However, there may be occasional conflicts as
keywords defined by different parallel programming extensions may coincide: thus
OpenMP standard makes use of the parallel keyword: #pragma omp parallel. To
avoid such conflicts, the C= header file (C=.h) contains a special language customization
section that maps C= keywords to their internal codenames, for instance:
#define parallel CPX_KEYWORD_PARALLEL, which, in effect, enables a
programmer to redefine any C= keyword and avoid compilation conflicts.

Another valuable option is the ability to use traditional debugging and profiling
instruments in the course of C= program design, development, optimization and
maintenance.

See the next section to learn about technology perspectives.

Future Development Avenues

A natural development avenue would be to integrate C= support into C/C++ compilers
or implement a source file pre-processing utility for those programmers who value
syntactic purity over the flexibility and independence of an extension library.

Another logical move would be to introduce the parallel programming concept of C= in
other languages, either sharing C-syntax or not, (for instance, J=, F=, JavaScript=, C#=),
as the notion of parallel execution state and task management algorithms implemented
in C= are not specific to native compiled languages and can be employed in
MRTE/JIT/interpreted languages and programming environments.

The C= concept opens up opportunities of static correctness analysis: since the borders
of parallel regions are syntactically defined, it becomes a relatively easy task to detect
the illegal use of some constructs within a parallel region. For instance, the use of return
operator, long jump, exception handling functions and unary address operators within a
parallel or serial scope, where it may be ambiguous or not supported by a certain C=
implementation.

As the relationship between parallel scopes and variable visibility scopes is defined, a
static correctness analysis tool may hint on the use of the serial operator to synchronize
access to certain data, or warn the programmer on possible variable sharing issues,
specific to a particular C= implementation. For instance, on the use of local (automatic)
variables not through a shared pointer in case C= is not natively supported by a C/C++
compiler.

Dynamic analysis tools may benefit from the fact that the (nested) structure of parallel
and serial execution regions is known at any point of program execution. For instance,
whenever an unguarded access to a variable is detected, it may be attributed to an
appropriate parallel region, and the analysis tool may also suggest inserting a serial
operator with the variable’s address as the parameter.

C= Parallel C/C++ Language Extension

|Page 14

C= may as well serve as a unified means of heterogeneous programming, that is,
programming for computer systems comprised of central processors and additional
parallel co-processor accelerator cards. Consider the following example:

void f()

{

 int a;

 parallel()

 {

 int x = pix();

 int b;

 parallel()

 {

 int y = pix();

 int c;

 parallel()

 {

 int z = pix();

 int d;

 }

 }

 }

}

The above code maps effectively to a Many-Integrated-Cores or GP-GPU device: the
inner parallel region maps to execution units or individual hardware threads, the
second-nested region maps to blocks of threads, and the least nested one maps to the
high-level cores/devices (if any). The same is true for the data: variable d is local to each

hardware thread, c is stored in a shared thread-block space, b may be located at, for
instance, the GP-GPU card’s global space, while a resides in the system memory. Note
that {x,y,z} variables comprise a hierarchical thread identifier and can be used as
data array indices, and the overall logic of parallel data processing is made clearly visible
with the use of nested parallel operators.

A similar principle may be applied to mapping parallel code to different nodes of a
distributed system, though an easier solution may be to employ C= for parallelizing
execution inside each SMP node and use existing (traditional or custom) mechanisms for
inter-node data exchange.

Nearest development plans include porting the current C= library-based solution to
other operating systems, subject to the actual interest and demand.

See the next section to get in touch with the authors and find links to the latest
information.

Specification and Reference Manual

|Page 15

Links and Contacts

Latest updates and related information can be found at:

www.hoopoesnest.com

Please address your questions related to sales and licensing to:

sales@hoopoesnest.com

Please send your questions regarding maintenance and support to:

support@hoopoesnest.com

Please forward other related questions and suggestions to:

cstripes@hoopoesnest.com

http://www.hoopoesnest.com/
mailto:sales@hoopoesnest.com
mailto:support@hoopoesnest.com
mailto:cstripes@hoopoesnest.com

	Overview
	Getting Started
	Parallel Execution Management Rules and Semantics
	Language Specification
	Programming Examples
	Usage Model
	Future Development Avenues
	Links and Contacts

