Concise parallelism

Natural C/C++ Parallelism

A single operator to
control multiple parallel

void salute () programming paradigms
{
parallel ()
{
int idx = pix(); Natural C/C++ semantics

A single operator to il () and variable visibility
{ rules and scopes

parallel (3)
{

control parallel
synchronization

printf ("Hello, world, from task %$d-%d\n", idx, pix()):;
}

Clear means of

parallel identification
and interaction

Elegant Multitasking

std: :vector<Data> data;

parallel (5000000)
{

int 1 = pix();

serial (&datalil])
{

datal[i] .process() ;

Synchronized access to
any data element
without introducing
synchronization objects

Stack

Single Execution State

{
Task No. = 5000000;

Code pointer;
Registers;

}

Each thread from a pool decrements
the task counter and “creates” a job to
execute from a single execution state:

* No CPU oversubscription
* Dynamic work balancing
* Minimal memory footprint

* No task queue management overhead

Language-Friendly Multithreading

A single operator to
class X control multi-threading
{ and multitasking

A real independent thread in a

class constructor!

void* volatile id;

X()
{ Getting a global ID promotes a

£{>arallel (2) task to an independent thread

void* pid = pid();

£ (pix() Thread-0 returns,
{ thread-1 waits until
e = el woken up by another
while (id) thread/taSk void X::read()

{ {

wait () ; wake (id) ;

getMoreData () ; processDatal() ;

) Reaching the break

demotes a thread to a task

Easy Software Analysis

Use the same compiler,

std: :vector<Data> data; debugger and proﬁler

tools as for sequential
: software

parallel (data.size)
{ /// Timing: 5 sec; Parallelism = 95%; Time per CPU: CPUO = 30%, CPUl = 30%...
for(int 1 = 0; 1 < n; i++4)
{ /// Avrg iterations = 100
int j = pix();

void f (int n)

parallel ()
{ /// Timing: 4.5 sec; Parallelism = 80%; Time per CPU: CPUO = 30%, CPUl = 30%...
datal[j] .process() ;

serial ()
{ /// Timing: 4.5 sec; Contention = 30%;
datal[j].reduce();

} C=source code is a perfect performance model by itself: a
C= profiler can annotate each parallel, sequential and cyclic

) region with timings, contention, iterations, balance, etc.

exactly in alignment with a corresponding operator

Software Implications

A powerful parallel
programming language...

Re-writing parallel runtimes in C=
will eliminate CPU oversubscription

ﬁl OpenMP I and guarantee efficient resource
management, especially in complex,
TBRB multi-module applications using

several parallel runtimes

| Cilk | simultaneously

...and a unified parallel

runtime

CRT

PPL

>|| AMP (@CPU I

>|| OpenCL @QCPU I

Hardware Implications

std: :vector<Data> data;

parallel (data.size)

{

datal[pix ()] .process () ;

\Z

Single Execution State

{

Task No. = data.size;

Code pointer;
Registers;

}

C= programs are designed for
massive parallelism w/o
incurring extra overhead by
forming a single execution state
for any number of parallel tasks

Co-processors fetch
the state transparently
to CPU and OS and
smoothly accelerate
execution of existing
programs

— e e R A A e A A B R S AL
Il i

g g2 3 s % o= e e 3w

S — — e fot Pt s, W P o

— e

